
ECE560
Computer and Information Security

Fall 2020

Cryptography

Tyler Bletsch

Duke University

Some slides adapted from slideware accompanying
“Computer Security: Principles and Practice” by William Stallings and Lawrie Brown

2

REAL advice for using cryptography

• I’m about to teach cryptography basics, which you should know

• However, you should not reach for these functions in most real-
world programming scenarios!!

• Repeat after me:

I’ll provide more detailed advice after we understand the theory...

3

Introducing the “grey slides”

• From the textbook publisher

• Perfectly fine for the most part,
except...
▪ A bit out of date (you’ll see me

address this with my slides)

▪ Diagrams haven’t been updated
since the 90s (lol)

▪ Randomly wraps words in
needless colored shapes like a
drunk preshooler (why???)

4

Crypto basics summary

• Symmetric (secret key) cryptography
▪ c = Es(p,k)

▪ p = Ds(c,k)

• Message Authentication Codes (MAC)
▪ Generate and append: H(p+k), E(H(p),k), or tail of E(p,k)

▪ Check: A match proves sender knew k

• Asymmetric (public key) cryptography
▪ c = Ea(p,kpub)

▪ p = Da(c,kpriv)

▪ kpub and kpriv generated together, mathematically related

• Digital signatures
▪ Generate and append: s = Ea(H(p),kpriv)

▪ Check: Da(s,kpub)==H(p) proves sender knew kpriv

c = ciphertext
p = plaintext
k = secret key
Es = Encryption function (symmetric)
Ds = Decryption function (symmetric)

H = Hash function

Ea = Encryption function (asymmetric)
Da = Decryption function (asymmetric)
kpub = public key
kpriv = private key

s = signature

5

Symmetric (Secret Key) Encryption

Symmetric Encryption

• The universal technique for providing confidentiality

for transmitted or stored data

• Also referred to as conventional encryption or

single-key encryption

• Two requirements for secure use:

• Need a strong encryption algorithm

• Sender and receiver must have obtained copies

of the secret key in a secure fashion and must

keep the key secure

Plaintext

input

Y = E[K, X] X = D[K, Y]

X

K K

Transmitted

ciphertext

Plaintext

output

Secret key shared by

sender and recipient

Secret key shared by

sender and recipient

Encryption algorithm

(e.g., DES)

Decryption algorithm

(reverse of encryption

algorithm)

Figure 2.1 Simplified Model of Symmetric Encryption

Attacking Symmetric
Encryption

Cryptanalytic Attacks Brute-Force Attacks

⚫ Rely on:

⚫ Nature of the algorithm

⚫ Some knowledge of the

general characteristics of the

plaintext

⚫ Some sample plaintext-

ciphertext pairs

⚫ Exploits the characteristics of

the algorithm to attempt to

deduce a specific plaintext or

the key being used

⚫ If successful all future and past

messages encrypted with that

key are compromised

⚫ Try all possible keys on some

ciphertext until an intelligible

translation into plaintext is

obtained
⚫ On average half of all possible

keys must be tried to achieve
success

9

Hypothetical bad symmetric encryption algorithm:
XOR

• A lot of encryption algorithms rely on properties of XOR
▪ Can think of A^B as “Flip a bit in A if corresponding bit in B is 1”

▪ If you XOR by same thing twice, you get the data back

▪ XORing by a random bit string yields NO info about original data

• Each bit has a 50% chance of having been flipped

• Could consider XOR itself to be a symmetric encryption
algorithm (but it sucks at it!) – can be illustrative to explore

• Simple XOR encryption algorithm:
▪ E(p,k) = p ^ k (keep repeating k as often as needed to cover p)

▪ D(c,k) = c ^ k (same algorithm both ways!)

A B A^B

0 0 0

0 1 1

1 0 1

1 1 0

>>> a=501
>>> b=199
>>> a ^= b
>>> print a
306
>>> a ^= b
>>> print a
501

10

XOR “encryption” demo

Plaintext: 'Hello'

Key : 'key'

H e l l o

Plaintext : 01001000 01100101 01101100 01101100 01101111

k e y k e

Key : 01101011 01100101 01111001 01101011 01100101

Ciphertext: 00100011 00000000 00010101 00000111 00001010

Ciphertext: 00100011 00000000 00010101 00000111 00001010

Key : 01101011 01100101 01111001 01101011 01100101

Decrypted : 01001000 01100101 01101100 01101100 01101111

H e l l o

Key repeats>

^ XOR result

^ XOR result

12

Attacking XOR

• Known plaintext attack:
▪ Given plaintext : 01001000 01100101 01101100 01101100 01101111

▪ Given ciphertext : 00100011 00000000 00010101 00000111 00001010

▪ XOR result : 01101011 01100101 01111001 01101011 01100101

^^ it's the key!!!

• Chosen plaintext attack:
▪ Chosen plaintext : 00000000 00000000 00000000 00000000 00000000

▪ Given ciphertext : 01101011 01100101 01111001 01101011 01100101

▪ XOR result : 01101011 01100101 01111001 01101011 01100101

^^ it's the key!!!

• Ciphertext only attack:
▪ Ciphertext: 00100011 00000000 00010101 00000111 00001010

▪ "I assume the plaintext had ASCII text with lowercase letters, and in all such letters bit
6 is 1, but none of the ciphertext has bit 6 set, so i bet the key is most/all lower case
letters"

▪ "The second byte is all zeroes, which means the second byte of the key and plaintext
are equal"

▪ etc....

• Conclusion: XOR is a sucky encryption algorithm

Table 2.1

Comparison of Three Popular Symmetric

Encryption Algorithms

 DES Triple DES AES

Plaintext block size (bits) 64 64 128

Ciphertext block size (bits) 64 64 128

Key size (bits) 56 112 or 168 128, 192, or 256

DES = Data Encryption Standard

AES = Advanced Encryption Standard

Data Encryption Standard
(DES)

Until recently was the most widely used
encryption scheme

FIPS PUB 46

Referred to as the Data Encryption
Algorithm (DEA)

Uses 64 bit plaintext block and 56 bit key to
produce a 64 bit ciphertext block

Strength concerns:

Concerns about the algorithm itself

DES is the most studied encryption
algorithm in existence

Concerns about the use of a 56-bit key

The speed of commercial off-the-shelf processors
makes this key length woefully inadequate

1999

Table 2.2

Average Time Required for Exhaustive Key Search

Key size

(bits) Cipher

Number of

Alternative

Keys

Time Required at 109

decryptions/s

Time Required

at 1013

decryptions/s

56 DES 256 ≈ 7.2 ´ 1016 255 ns = 1.125 years 1 hour

128
AES

2128 ≈ 3.4 ´ 1038
2127 ns = 5.3 ´ 1021
years

5.3 ´ 1017 years

168
Triple DES

2168 ≈ 3.7 ´ 1050
2167 ns = 5.8 ´ 1033
years

5.8 ´ 1029 years

192 AES 2192 ≈ 6.3 ´ 1057 2191 ns = 9.8 ´ 1040
years

9.8 ´ 1036 years

256 AES 2256 ≈ 1.2 ´ 1077 2255 ns = 1.8 ´ 1060
years

1.8 ´ 1056 years

Triple DES (3DES)
⚫ Repeats basic DES algorithm three times using either

two or three unique keys

⚫ First standardized for use in financial applications in

ANSI standard X9.17 in 1985

⚫ Attractions:

⚫ 168-bit key length overcomes the vulnerability to brute-force

attack of DES

⚫ Underlying encryption algorithm is the same as in DES

⚫ Drawbacks:

⚫ Algorithm is sluggish in software

⚫ Uses a 64-bit block size

Advanced Encryption
Standard (AES)

Needed a
replacement for

3DES

3DES was not
reasonable for
long term use

NIST called for
proposals for a

new AES in 1997

Should have a security
strength equal to or

better than 3DES

Significantly improved
efficiency

Symmetric block cipher

128 bit data and
128/192/256 bit keys

Selected
Rijndael in

November 2001

Published as

FIPS 197

Computationally Secure

Encryption Schemes

• Encryption is computationally secure if:
• Cost of breaking cipher exceeds value of information

• Time required to break cipher exceeds the useful lifetime of the
information

• Usually very difficult to estimate the amount of
effort required to break algorithm (cryptanalysis)

• Can estimate time/cost of a brute-force attack

⚫ Typically symmetric encryption is applied to a unit of

data larger than a single 64-bit or 128-bit block

⚫ Electronic codebook (ECB) mode is the simplest

approach to multiple-block encryption
⚫ Each block of plaintext is encrypted using the same key

⚫ Cryptanalysts may be able to exploit regularities in the

plaintext

⚫ Modes of operation
⚫ Alternative techniques developed to increase the security

of symmetric block encryption for large sequences

⚫ Overcomes the weaknesses of ECB

20

Modes of operation are critical!

• Electronic Codebook (ECB) is what you’d come up with naively:
“Just apply the key to each block”

• But this means that identical blocks give identical ciphertext, which
can be informative to an attacker...

Figures from Wikipedia “Block cipher mode of operation”☺

See PoC||GTFO 4:13

for a poem about this

Block & Stream Ciphers

• Processes the input one block of elements at a time

• Produces an output block for each input block

• Can reuse keys

• More common

Block Cipher

• Processes the input elements continuously

• Produces output one element at a time

• Primary advantage is that they are almost always faster
and use far less code

• Encrypts plaintext one byte at a time

• Pseudorandom stream is one that is unpredictable without
knowledge of the input key

Stream Cipher

Encrypt

E
n

cr
y
p

ti
o

n

K

Figure 2.2 Types of Symmetric Encryption

b

b

b

b

P1

C1

P2

C2

b

b

Pn

Cn

EncryptK EncryptK

Decrypt
D

ec
ry

p
ti

o
n

K

b

b

b

b

C1

P1

C2

P2

b

b

Cn

Pn

Decrypt

(a) Block cipher encryption (electronic codebook mode)

(b) Stream encryption

K DecryptK

Pseudorandom byte

generator

(key stream generator)

Plaintext

byte stream

M

Key

K

Key

K

k k

Plaintext

byte stream

M

Ciphertext

byte stream

CENCRYPTION

Pseudorandom byte

generator

(key stream generator)

DECRYPTION

k

Table 20.3
Block Cipher Modes of Operation

Encrypt

Time = 1

IV

K

P1

C1

IV

Encrypt

Time = 2

K

P2

C2

Encrypt

Time = N

K

PN

P1 P2 PN

CN

C1 C2 CN

CN–1

CN–1

DecryptK DecryptK DecryptK

(a) Encryption

(b) Decryption

Figure 20.7 Cipher Block Chaining (CBC) Mode

25

The Initialization Vector

• The previous slide showed an “IV” (Initialization Vector”) used to
start the chain (it’s XORed with the first block of plaintext).
Something like this is used in many modes.
▪ IV is random per-message; ensures first block of two ciphertexts don’t match

just because plaintexts match.

• The IV must be known to both the sender and receiver, typically not
a secret (often included in the communication).

• IV integrity is important: If an opponent is able to fool the receiver
into using a different value for IV, then the opponent is able to
invert selected bits in the first block of plaintext. Other attacks,
too...
▪ A more detailed discussion can be found here.

https://stackoverflow.com/questions/3008139/why-is-using-a-non-random-iv-with-cbc-mode-a-vulnerability

Encrypt

IV

K

C1

(a) Encryption

Figure 20.8 s-bit Cipher Feedback (CFB) Mode

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

P1

64

s

s

s

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

P2

64

s

s

C2

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

PM

64

s

s

CM

CM–1

Encrypt

IV

K

P1

(b) Decryption

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

C1

64

s

s

s

C2

s s

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

64

s

P2

EncryptK

b – s bits

64

s bits
Shift register

b – s bitss bits
Select Discard

CM

64

s

PM

CM–1

Encrypt

Counter

K

P1

C1 C2 CN

(a) Encryption

(b) Decryption

Figure 20.9 Counter (CTR) Mode

Encrypt

Counter + 1

K

P2

Encrypt

Counter + N – 1

Counter Counter + 1 Counter + N – 1

K

PN

EncryptK

C1

P1 P2 PN

EncryptK

C2

EncryptK

CN

28

Message Authentication Codes (MAC) and
secure hash functions

Message Authentication

Protects against
active attacks

Verifies received
message is
authentic

Can use
conventional

encryption

•Contents have not been
altered

•From authentic source

•Timely and in correct
sequence

•Only sender and receiver
share a key

30

MAC overview

• Core idea: want to prove that message was sent by Alice
▪ Can’t do that directly (no time machine)

▪ Instead show that whoever did send it had access to a secret key

• Can use symmetric encryption:
▪ Include last block of E(message,key) in CBC mode – sender could only

generate that data if they had the key and message at the same time

▪ Shown in next slides

• Can use hash functions:
▪ Non-reversible, arbitrary size input to fixed size output

▪ Various schemes (shown in slide after next)

Message Authentication

Without Confidentiality
• Message encryption by itself does not provide a secure

form of authentication

• It is possible to combine authentication and
confidentiality in a single algorithm by encrypting a
message plus its authentication tag

• Typically message authentication is provided as a
separate function from message encryption

• Situations in which message authentication without
confidentiality may be preferable include:

• There are a number of applications in which the same message is
broadcast to a number of destinations

• An exchange in which one side has a heavy load and cannot afford the
time to decrypt all incoming messages

• Authentication of a computer program in plaintext is an attractive service

• Thus, there is a place for both authentication and
encryption in meeting security requirements

Message

MAC

K

K

Transmit

MAC

algorithm

MAC

algorithm

Compare

Figure 2.3 Message Authentication Using a Message

Authentication Code (MAC).

M
es

sa
g

e

M
es

sa
g

e

M
es

sa
g

e

K

E

K

(a) Using symmetric encryption

Compare

D

H

H

H

H

H

M
es

sa
g

e

M
es

sa
g

e

M
es

sa
g

e

PRa

E

PUa

(b) Using public-key encryption

Compare

D

M
es

sa
g

e

M
es

sa
g

e

M
es

sa
g

e

(c) Using secret value

Compare

K

K

K

K

Source A Destination B

Figure 2.5 Message Authentication Using a One-Way Hash Function.

H

To be useful for message
authentication, a hash function H must have the

following properties:

Can be applied to a block of data of any size

Produces a fixed-length output

H(x) is relatively easy to compute for any given x

One-way or pre-image resistant

•Computationally infeasible to find x such that H(x) = h

Computationally infeasible to find y ≠ x such that H(y) = H(x)

Collision resistant or strong collision resistance

•Computationally infeasible to find any pair (x,y) such that H(x) = H(y)

Security of Hash
Functions

• Two approaches to attacking a secure hash

function:
o Cryptanalysis

• Exploit logical weaknesses in the algorithm

o Brute-force attack

• Strength of hash function depends solely on the length of the hash

code produced by the algorithm

• SHA most widely used hash algorithm

• Additional secure hash function applications:
o Passwords

• Hash of a password is stored by an operating system

o Intrusion detection

• Store H(F) for each file on a system and secure the hash values

By idiot clowns
-TB

36

Common cryptographic hash functions

• MD5: Published 1992, compromised several ways, but it’s in enough
“how do i program webz” tutorials that novices keep using it
▪ Output size: 128 bits

• SHA-1: NIST standard published in 1995, minor weaknesses
published throughout the 2000s, broken in general in 2017.
Sometimes just called “SHA” which can be misleading. Don’t use.
▪ Output size: 160 bits

• SHA-2: NIST standard published in 2001. Still considered secure.
• Output size: a few choices between 224-512 bits

• SHA-3: NIST standard published in 2015. Radically different design;
thought of as a “fallback” if SHA-2 vulnerabilities are discovered.
▪ Output size: a few choices between 224-512 bits, plus “arbitrary size” option

• RIPEMD-160: From 1994, but not broken. Sometimes used for
performance reasons.
▪ Output size: 160 bits

37

Asymmetric (Public Key) Cryptography

Public-Key Encryption
Structure

• Publicly proposed by Diffie and Hellman in 1976

• Based on mathematical functions

• Asymmetric
o Uses two separate keys

o Public key and private key

o Public key is made public for others to use

• Some form of protocol is needed for distribution

⚫ Plaintext
⚫ Readable message or data that is fed into the algorithm as input

⚫ Encryption algorithm
⚫ Performs transformations on the plaintext

⚫ Public and private key
⚫ Pair of keys, one for encryption, one for decryption

⚫ Ciphertext
⚫ Scrambled message produced as output

⚫ Decryption key
⚫ Produces the original plaintext

⚫ User encrypts data using his or her own
private key

⚫ Anyone who knows the corresponding
public key will be able to decrypt the
message

Plaintext

input

Bobs's

public key

ring

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Joy

Mike

Mike Bob

Ted

Alice

Alice's public

key

Alice 's private

key

(a) Encryption with public key

Plaintext

input

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Bob's private

key

Bob

Bob's public

key

Alice's

public key

ring

Joy
Ted

(b) Encryption with private key

X

X

PUa

PUb

PRa

PRb

Y = E[PUa, X]

Y = E[PRb, X]

X =

D[PRa, Y]

X =

D[PUb, Y]

Figure 2.6 Public-Key Cryptography

Alice

Bob Alice

Algorithm Digital Signature Symmetric Key
Distribution

Encryption of
Secret Keys

RSA Yes Yes Yes

Diffie-Hellman No Yes No

DSS Yes No No

Elliptic Curve Yes Yes Yes

Table 2.3

Applications for Public-Key Cryptosystems

Computationally easy
to create key pairs

Computationally
easy for sender

knowing public key
to encrypt messages

Computationally
easy for receiver

knowing private key
to decrypt
ciphertext

Computationally
infeasible for
opponent to

determine private key
from public key

Computationally
infeasible for
opponent to

otherwise recover
original message

Useful if either key
can be used for

each role

RSA (Rivest,
Shamir,

Adleman)

Developed in 1977
Most widely accepted and
implemented approach to

public-key encryption

Block cipher in which the
plaintext and ciphertext

are integers between 0 and
n-1 for some n.

Diffie-Hellman
key exchange

algorithm

Enables two users to
securely reach agreement
about a shared secret that
can be used as a secret

key for subsequent
symmetric encryption of

messages

Limited to the exchange of
the keys

Digital
Signature

Standard (DSS)

Provides only a digital
signature function with

SHA-1

Cannot be used for
encryption or key

exchange

Elliptic curve
cryptography

(ECC)

Security like RSA, but with
much smaller keys

RSA Public-Key Encryption

• By Rivest, Shamir & Adleman of MIT in 1977

• Best known and widely used public-key algorithm

• Uses exponentiation of integers modulo a prime

• Encrypt: C = Me mod n

• Decrypt: M = Cd mod n = (Me)d mod n = M

• Both sender and receiver know values of n and e

• Only receiver knows value of d

• Public-key encryption algorithm with public key
PU = {e, n} and private key PR = {d, n}

Key Generation

 Select p, q p and q both prime, p ¹ q

 Calculate n = p ´ q

 Calculate f(n) = (p – 1)(q – 1)

 Select integer e gcd(f(n), e) = 1; 1 < e < f(n)

 Calculate d de mod f(n) = 1

 Public key KU = {e, n}

 Private key KR = {d, n}

Encryption

 Plaintext: M < n

 Ciphertext: C = Me (mod n)

Decryption

 Ciphertext: C

 Plaintext: M = Cd (mod n)

Figure 21.7 The RSA Algorithm

Encryption

plaintext

88

plaintext

88

ciphertext

11
88 mod 187 = 11

PU = 7, 187

Decryption

Figure 21.8 Example of RSA Algorithm

7
11 mod 187 = 88

PR = 23, 187

23

Number of
Decimal Digits

Number of Bits Date Achieved

100 332 April 1991

110 365 April 1992

120 398 June 1993

129 428 April 1994

130 431 April 1996

140 465 February 1999

155 512 August 1999

160 530 April 2003

174 576 December 2003

200 663 May 2005

193 640 November 2005

232 768 December 2009

Table 21.2

Progress in
Factorization

Timing Attacks
• Paul Kocher, a cryptographic consultant, demonstrated

that a snooper can determine a private key by keeping
track of how long a computer takes to decipher
messages

• Timing attacks are applicable not just to RSA, but also to
other public-key cryptography systems

• This attack is alarming for two reasons:

• It comes from a completely unexpected direction
• It is a ciphertext-only attack

Timing Attack
Countermeasures

Constant
exponentiation time

• Ensure that all
exponentiations take
the same amount of
time before returning a
result

• This is a simple fix but
does degrade
performance

Random delay

• Better performance
could be achieved by
adding a random delay
to the exponentiation
algorithm to confuse
the timing attack

• If defenders do not add
enough noise, attackers
could still succeed by
collecting additional
measurements to
compensate for the
random delays

Blinding

• Multiply the ciphertext
by a random number
before performing
exponentiation

• This process prevents
the attacker from
knowing what
ciphertext bits are
being processed inside
the computer and
therefore prevents the
bit-by-bit analysis
essential to the timing
attack

Diffie-Hellman Key
Exchange

• First published public-key algorithm

• By Diffie and Hellman in 1976 along with the
exposition of public key concepts

• Used in a number of commercial products

• Practical method to exchange a secret key
securely that can then be used for subsequent
encryption of messages

• Security relies on difficulty of computing
discrete logarithms

Global Public Elements

 q prime number

 a a < q and a a primitive root of q

User A Key Generation

 Select private X
A
 X

A
 < q

 Calculate public Y
A
 Y

A
 = a

XA mod q

User B Key Generation

 Select private X
B
 X

B
 < q

 Calculate public Y
B
 Y

B
 = a

XB mod q

Generation of Secret Key by User A

 K = (Y
B
)
XA mod q

Generation of Secret Key by User B

 K = (Y
A
)
XB mod q

Figure 21.9 The Diffie-Hellman Key Exchange Algorithm

52

Diffie-Hellman Example

Eavesdropping attacker would need to solve 6x mod 13 = 2 or 6x mod 13 = 9, which is hard.

Figure from here.

https://www.practicalnetworking.net/series/cryptography/diffie-hellman/

Other Public-Key Algorithms
Digital Signature

Standard (DSS)
Elliptic-Curve

Cryptography (ECC)

• FIPS PUB 186

• Makes use of SHA-1 and the
Digital Signature Algorithm
(DSA)

• Originally proposed in 1991,
revised in 1993 due to security
concerns, and another minor
revision in 1996

• Cannot be used for encryption or
key exchange

• Uses an algorithm that is
designed to provide only the
digital signature function

• Equal security for smaller bit size
than RSA

• Seen in standards such as IEEE
P1363, Elliptic Curve Diffie-
Hellman (ECDH), Elliptic Curve
Digital Signature Algorithm
(ECDSA)

• Based on a math of an elliptic
curve (beyond our scope)

Man-in-the-Middle Attack
• Attack is:

1. Darth generates private keys XD1 and XD2, and their public
keys YD1 and YD2

2. Alice transmits YA to Bob

3. Darth intercepts YA and transmits YD1 to Bob. Darth also
calculates K2

4. Bob receives YD1 and calculates K1

5. Bob transmits XA to Alice

6. Darth intercepts XA and transmits YD2 to Alice. Darth
calculates K1

7. Alice receives YD2 and calculates K2

• All subsequent communications compromised
Solution: Need to authenticate the endpoints

55

Digital Signatures

Digital Signatures
⚫ NIST FIPS PUB 186-4 defines a digital signature as:

”The result of a cryptographic transformation of data that,

when properly implemented, provides a mechanism for

verifying origin authentication, data integrity and signatory

non-repudiation.”

⚫ Thus, a digital signature is a data-dependent bit pattern,

generated by an agent as a function of a file, message, or

other form of data block

⚫ FIPS 186-4 specifies the use of one of three digital signature

algorithms:

⚫ Digital Signature Algorithm (DSA)

⚫ RSA Digital Signature Algorithm

⚫ Elliptic Curve Digital Signature Algorithm (ECDSA)

Figure 2.7 Simplified Depiction of Essential

Elements of Digital Signature Process

Bob Alice

Cryptographic

hash

function

h

Cryptographic

hash

function

hBob’s

private

key

Digital

signature

generation

algorithm

Bob’s

signature

for M

(a) Bob signs a message (b) Alice verifies the signature

Bob’s

public

key

Digital

signature

verification

algorithm

Return

signature valid

or not valid

Message M S Message M

S Message M

58

• Public keys are public

• People announce them

• But what if I
announce
“I’m Bob and
here’s my key”
when I’m not
Bob?

• Have a trusted
source verify
my identity and
sign my public key.

Unsigned certificate:

contains user ID,

user's public key,

as well as information

concerning the CA

Signed certificate

Figure 2.8 Public-Key Certificate Use

Generate hash

code of unsigned

certificate

Generate hash code

of certificate not

including signature

Generate digital signature

using CA's private key

H

H

Bob's ID

information

CA

information

Bob's public key

SG SV

Verify digital signature

using CA's public key

Return signature

valid or not valid

Use certificate to

verify Bob's public key

Create signed

digital certificate

Digital signatures to authenticate public keys

Certificate Authority (CA)

Certificate consists of:

•A public key with the identity of the key’s owner

•Signed by a trusted third party

•Typically the third party is a CA that is trusted by the user
community (such as a government agency, telecommunications
company, financial institution, or other trusted peak organization)

User can present his or her public key to the authority in
a secure manner and obtain a certificate

•User can then publish the certificate or send it to others

•Anyone needing this user’s public key can obtain the certificate and
verify that it is valid by way of the attached trusted signature

X.509

• Specified in RFC 5280

• The most widely accepted format for public-key
certificates

• Certificates are used in most network security
applications, including:
• IP security (IPSEC)

• Secure sockets layer (SSL)

• Secure electronic transactions (SET)

• S/MIME

• eBusiness applications

Figure from here.

http://www.imacat.idv.tw/tech/sslcerts.html

61

X.509 certificate contents

Figure from here.

Chrome’s report on
google.com’s certificate

https://developer.apple.com/documentation/security/certificate_key_and_trust_services/certificates

Public-Key Infrastructure
(PKI)

• The set of hardware, software, people, policies,
and procedures needed to create, manage, store,
distribute, and revoke digital certificates based
on asymmetric cryptography

• Developed to enable secure, convenient, and
efficient acquisition of public keys

• “Trust store”

• A list of CA’s and their public keys

63

Trust stores in practice

• Most chosen by OS or app vendor – major decision!

• Organization can change this – many companies add a private root
CA to all their machines so they can sign certificates internally

• If malware can add a root CA, they can have that CA sign *any*
malicious certificate, allowing man-in-the-middle attacks

• Some security software does this too so it can “inspect” encrypted
traffic for “bad stuff” (I think this is stupid and dangerous)

• Asymmetric crypto is more
expensive then symmetric

• Want best of both worlds?

• Just use asymmetric
on a random secret
key (small) and use that key
to symmetrically encrypt
the whole message (big)

Random

symmetric

key

Receiver's

public

key

Encrypted

symmetric

key

Encrypted

message

Encrypted

message

Digital

envelope

Figure 2.9 Digital Envelopes

(a) Creation of a digital envelope

E

E

Message

Random

symmetric

key

Receiver's

private

key

Encrypted

symmetric

key

(b) Opening a digital envelope

D

D
Digital

envelope

Message

“Digital Envelopes”: Reducing the amount of
asymmetric crypto you need to do

65

Random number generation

Random
Numbers

⚫ Keys for public-key

algorithms

⚫ Stream key for symmetric

stream cipher

⚫ Symmetric key for use as

a temporary session key

or in creating a digital

envelope

⚫ Handshaking to prevent

replay attacks

⚫ Session key

Uses include

generation of:

Random Number
Requirements

Randomness Unpredictability

⚫ Criteria:
⚫ Uniform distribution

⚫ Frequency of occurrence

of each of the numbers

should be approximately

the same

⚫ Independence

⚫ No one value in the

sequence can be inferred

from the others

⚫ Each number is

statistically independent

of other numbers in the

sequence

⚫ Opponent should not be

able to predict future

elements of the

sequence on the basis of

earlier elements

Random versus
Pseudorandom

Cryptographic applications typically make use of
algorithmic techniques for random number generation

• Algorithms are deterministic and therefore produce sequences of numbers
that are not statistically random

Pseudorandom numbers are:

• Sequences produced that satisfy statistical randomness tests

• Likely to be predictable

True random number generator (TRNG):

• Uses a nondeterministic source to produce randomness

• Most operate by measuring unpredictable natural processes

• e.g. radiation, gas discharge, leaky capacitors

• Increasingly provided on modern processors

69

Random versus Pseudorandom

• Random Number Generator (RNG)s:
▪ Common: Pseudo-Random Number Generator (PRNG)

• Algorithms are deterministic and therefore produce sequences of
numbers that are statistically random but not actually random
(can predict if we know the machine state)

▪ Better: True random number generator (TRNG):

• Uses a nondeterministic source to produce randomness (e.g. via external
natural processes like temperature, radiation, leaky capacitors, etc.)

• Increasingly provided on modern processors

• Important: if RNG can be predicted,
ALL AFFECTED CRYPTO IS BROKEN!

70

Practical crypto rules

he is sitting backwards in a chair so you know it’s time for REALTALK

71

Application note: “In-flight” vs “at-rest” encryption

• “In-flight” encryption: secure communication
▪ Examples: HTTPS, SSH, etc.

▪ Very common

▪ Commonly use asymmetric crypto to authenticate and agree on secret keys,
then symmetric crypto for the bulk of communications

• “At-rest” encryption: secure storage
▪ Examples: VeraCrypt, dm-crypt, BitLocker, passworded ZIPs, etc.

▪ Somewhat common

▪ Key management is harder: how to input the key? How to store it safely
enough to use it but ‘forget’ it at the right time to stop attacker?

▪ Worst case: the “LOL DRM” issue: Systems that store key with encrypted data

72

Good idea / Bad idea

• Which of the following are okay?

▪ Use AES-256 ECB with a fixed, well-chosen IV

• WRONG: ECB reveals patterns in plaintext (penguin!), use CBC or other

• WRONG: The IV should be random else a chosen plaintext can reveal key; also,
ECB mode doesn’t use an IV!

▪ Expand a 17-character passphrase into a 256-bit AES key through repetition

• WRONG: Human-derived passwords are highly non-random and could allow for
cryptanalysis; use a key-derivation algorithm instead

▪ Use RSA to encrypt network communications

• WRONG: RSA is horribly slow, instead use RSA to encrypt (or Diffie-Hellman to
generate) a random secret key for symmetric crypto

▪ Use an MD5 to store a password

• WRONG: MD5 is broken

• WRONG: Use a salt to prevent pre-computed dictionaries

▪ Use a 256-bit SHA-2 hash with salt to store a password

• WRONG: Use a password key derivation function with a configurable iteration
count to dial in computation effort for attackers to infeasibility

Adapted from here.

Note: We’ll cover password storage at
length later when we cover Authentication.

https://softwareengineering.stackexchange.com/questions/51403/what-should-web-programmers-know-about-cryptography

73

“Top 10 Developer Crypto Mistakes”

1. Hard-coded keys (need proper key management)

2. Improperly chosen IV (should be random per message)

3. ECB penguin problem (use CBC or another)

4. Wrong primitive used (e.g. using plain SHA-2 for password hash
instead of something like PBKDF2)

5. Using MD5 or SHA-1 (use SHA-2, SHA-3, or another)

6. Using password as crypto key (use a key derivation function)

7. Assuming encryption = message integrity (it doesn’t; add a MAC)

8. Keys too small (128+ bits for symmetric, 2048+ bits asymmetric)

9. Insecure randomness (need a well-seeded PRNG or ideally a TRNG)

10. “Crypto soup”: applying crypto without clear goal or threat model

Adapted from a post by Scott Contini here.

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

74

How to avoid problems like the above

Two choices:
1. Become a cryptography expert, deeply versed in every algorithm and every

caveat to its use. Hire auditors or fund and operate bug bounty programs to
inspect every use of cryptography you produce until your level of expertise
exceeds that of your opponents. Live in constant fear.

or

2. Use higher-level libraries!

• Vetted, analyzed, attacked, and patched over time

• Can subscribe to news of new vulnerabilities and updates

(NOTE: Some one-off garbage on github with 3 downloads doesn’t count)

75

Examples of higher level libraries

Low-level High level

Password hashing with salt, iteration count,
etc. (e.g., iterated SHA-2 with secure RNG-
generated salt)

At minimum, use something like PBKDF2.
Even better, use a user management library
that does this for you (for example, many web
frameworks like Django and Meteor handle
user authentication for you)

Secure a synchronous communication
channel from eavesdropping (e.g., X.509 for
authentication, DH for key exchange, AES for
encryption)

Use Transport Layer Security (TLS), or even
better, put your communication over HTTPS if
possible.

Secure asynchronous communications like
email from eavesdropping (e.g., RSA with a
public key infrastructure including X.509 for
key distribution and authentication, AES for
encryption)

Use OpenPGP (or similar) via email or another
transport. See also commercial solutions like
Signal.

Store content on disk in encrypted form (e.g.,
AES-256 CBC with key derived from password
using PBKDF2).

Use VeraCrypt, dm-crypt, BitLocker, etc. Even
a passworded ZIP is better than doing it
yourself.

If you find yourself needing to use crypto primitives yourself, check out “Crypto 101”.

https://www.crypto101.io/Crypto101.pdf

76

Conclusion

77

Crypto basics summary

• Symmetric (secret key) cryptography
▪ c = Es(p,k)

▪ p = Ds(c,k)

• Message Authentication Codes (MAC)
▪ Generate and append: H(p+k), E(H(p),k), or tail of E(p,k)

▪ Check: A match proves sender knew k

• Asymmetric (public key) cryptography
▪ c = Ea(p,kpub)

▪ p = Da(c,kpriv)

▪ kpub and kpriv generated together, mathematically related

• Digital signatures
▪ Generate and append: s = Ea(H(p),kpriv)

▪ Check: Da(H(p),kpub)==s proves sender knew kpriv

c = ciphertext
p = plaintext
k = secret key
Es = Encryption function (symmetric)
Ds = Decryption function (symmetric)

H = Hash function

Ea = Encryption function (asymmetric)
Da = Decryption function (asymmetric)
kpub = public key
kpriv = private key

s = signature

78

Asymmetric crypto applications summary

• Algorithms:
▪ RSA to encrypt/decrypt (can also sign, etc.)

▪ DH to agree on a secret key

▪ DSA to sign

• Signatures let you authenticate a transmission

• Certificates are signatures on a public key (asserts key owner)

• CAs offer certificates, are part of a chain of trust from root CAs

• Trust store is the set of certificates you take on “faith”: root CAs

• Digital envelope is when you RSA a secret key, then symmetric
encrypt the actual payload

79

Crypto basics summary

• Symmetric (secret key) cryptography
▪ c = Es(p,k)

▪ p = Ds(c,k)

• Message Authentication Codes (MAC)
▪ Generate and append: H(p+k), E(H(p),k), or tail of E(p,k)

▪ Check: A match proves sender knew k

• Asymmetric (public key) cryptography
▪ c = Ea(p,kpub)

▪ p = Da(c,kpriv)

▪ kpub and kpriv generated together, mathematically related

• Digital signatures
▪ Generate and append: s = Ea(H(p),kpriv)

▪ Check: Da(H(p),kpub)==s proves sender knew kpriv

c = ciphertext
p = plaintext
k = secret key
Es = Encryption function (symmetric)
Ds = Decryption function (symmetric)

H = Hash function

Ea = Encryption function (asymmetric)
Da = Decryption function (asymmetric)
k_pub = public key
k_priv = private key

s = signature

