
ECE560
Computer and Information Security

Fall 2020

Database Security

Tyler Bletsch

Duke University

⚫ Table of data consisting of rows and columns
⚫ Each column holds a particular type of data

⚫ Each row contains a specific value for each column

⚫ Ideally has one column where all values are unique, forming an
identifier/key for that row

⚫ Enables the creation of multiple tables linked
together by a unique identifier that is present in all
tables

⚫ Use a relational query language to access the
database
⚫ Allows the user to request data that fit a given set of criteria

⚫ Relation/table/file

⚫ Tuple/row/record

⚫ Attribute/column/field

Primary key

• Uniquely identifies a row

• Consists of one or more column names

Foreign key

• Links one table to attributes in another

View/virtual table

• Result of a query that returns selected
rows and columns from one or more
tables

Did Did Eid

Eid

4 15 2345

2345

5088

5088

6127092485

6127092485

human resources

human resources

528221 Robin

Robin

23

13 6127092246

6127092246

Neil

Neil

12

4 7712

7712

6127099348

6127099348

Jasmine

Jasmine

26

15 9664

9664

6127093148

6127093148

Cody

Cody

22

8 3054

3054

6127092729

6127092729

Holly

Holly

23

8 2976

2976

6127091945

6127091945

Robin

Robin

24

9 4490

4490

6127099380

6127099380

Smith

Smith

21

8 education

education

education

202035

9 accounts

accounts

709257

13 public relations 755827

15

primary

key

services

public relations

services

services

223945

Dname

Dname

Ename

Ename

Salarycode Ephone

Ephone

Department Table

Dacctno

Employee Table

foreign

key

(a) Two tables in a relational database

(b) A view derived from the database

Figure 5.4 Relational Database Example

primary

key

⚫ Standardized language to define schema, manipulate,

and query data in a relational database

⚫ Several similar versions of ANSI/ISO standard

⚫ All follow the same basic syntax and semantics

SQL statements can be used to:

• Create tables

• Insert and delete data in tables

• Create views

• Retrieve data with query statements

SQL Injection Attacks
(SQLi)

• One of the most
prevalent and
dangerous network-
based security threats

• Designed to exploit the
nature of Web
application pages

• Sends malicious SQL
commands to the
database server

• Most common attack
goal is bulk extraction
of data

• Depending on the
environment SQL
injection can also be
exploited to:
o Modify or delete data

o Execute arbitrary operating
system commands

o Launch denial-of-service (DoS)
attacks

Figure 5.5 Typical SQL Injection Attack

Legend:.

Internet

Router

Firewall

Switch

Wireless

access point

Web servers

Web

application

server

Database servers

Database

Data exchanged

between hacker

and servers

Two-way traffic

between hacker

and Web server

Credit card data is

retrieved from

database

Injection Technique

Subsequent text is ignored at execution time

The SQLi attack typically works by prematurely
terminating a text string and appending a new command

Because the inserted command may have additional strings appended to
it before it is executed the attacker terminates the injected string with a

comment mark “- -”

• Uses the same communication channel for injecting SQL
code and retrieving results

• The retrieved data are presented directly in application
Web page

• Include:

Tautology

This form of attack
injects code in one

or more conditional
statements so that

they always evaluate
to true

End-of-line
comment

After injecting code
into a particular
field, legitimate

code that follows are
nullified through

usage of end of line
comments

Piggybacked
queries

The attacker adds
additional queries

beyond the intended
query, piggy-

backing the attack
on top of a

legitimate request

• Data are retrieved using a different channel

• This can be used when there are limitations on

information retrieval, but outbound connectivity

from the database server is lax

SQLi Countermeasures

• Three types:

•Manual defensive
coding practices

•Parameterized query
insertion

•SQL DOM

Defensive
coding

•Signature based

•Anomaly based

•Code analysis

Detection
•Check queries at

runtime to see if they
conform to a model of
expected queries

Run-time
prevention

13

SQL injection examples

See here:

http://www.w3schools.com/sql/sql_injection.asp

http://www.w3schools.com/sql/sql_injection.asp

14

Proper database coding practices

• Escaping special characters ← Better than nothing…
$query = sprintf("SELECT * FROM users WHERE user='%s'",

mysql_real_escape_string($user));

• Parameterized queries ← Decent, if you have to…
$stmt = $pdo->prepare('SELECT * FROM employees WHERE
name = :name');

$stmt->execute(array('name' => $name));

• FRAMEWORKS: NOT DOING SQL YOURSELF! ← That’s where it’s at.

new_guy = User.create(

username = 'foo',

email = 'foo@bar.com',

age = 25,

lang = ['en', 'fr']

)

new_guy.commit();

Object Relational Mapper (ORM)
• The most common form of

database framework.
• Programmer writes class

definitions, framework creates
whole database automatically

• Classes integrate with database
with no extra code.

• Less work, no SQL injection

• There is no actual transfer of data, but the attacker is
able to reconstruct the information by sending particular
requests and observing the resulting behavior of the
Website/database server

• Include:

o Illegal/logically incorrect queries

• This attack lets an attacker gather important information
about the type and structure of the backend database of a
Web application

• The attack is considered a preliminary, information-gathering
step for other attacks

o Blind SQL injection

• Allows attackers to infer the data present in a database
system even when the system is sufficiently secure to not
display any erroneous information back to the attacker

Sensitive

data

Metadata

Authorized

access Unauthorized

access

Inference

Access Control

Non-

sensitive

data

Figure 5.7 Indirect Information Access Via Inference Channel

Name Position Salary ($) Department Dept. Manager

Andy senior 43,000 strip Cathy

Calvin junior 35,000 strip Cathy

Cathy senior 48,000 strip Cathy

Dennis junior 38,000 panel Herman

Herman senior 55,000 panel Herman

Ziggy senior 67,000 panel Herman

(a) Employee table

Position Salary ($) Name Department

senior 43, 000 Andy strip

junior 35,000 Calvin strip

senior 48,000 Cathy strip

(b) Two views

Name Position Salary ($) Department

Andy senior 43,000 strip

Calvin junior 35,000 strip

Cathy senior 48,000 strip

(c) Table derived from combining query answers

Figure 5.8 Inference Example

(Assume order is preserved)

• Access control system determines what access rights
the user has (create, insert, delete, update, read, write)

• Two commands for managing access rights:
• Grant

o Used to grant one or more access rights or can be used to assign
a user to a role

• Revoke
o Revokes the access rights

• Typical access rights are:
• Select
• Insert
• Update
• Delete
• References

⚫ The database is typically the most valuable information resource for any
organization

⚫ Protected by multiple layers of security

⚫ Firewalls, authentication, general access control systems, DB access

control systems, database encryption

⚫ Encryption becomes the last line of defense in database security

⚫ Can be applied to the entire database, at the record level, the

attribute level, or level of the individual field

⚫ Disadvantages to encryption:

⚫ Key management

⚫ Authorized users must have access to the decryption key for the data for which
they have access

⚫ Inflexibility

⚫ When part or all of the database is encrypted it becomes more difficult to
perform record searching

20

Database security summary

• Don’t do dumb coding practices that allow SQL injection
▪ Object Relational Mapper (ORM) = good

• Think carefully about different views of data and what they could
reveal if combined

• Apply principle of least privilege to database permissions

• Keep your database credentials secret!
▪ Don’t put them into git

• Database encryption may be applicable, if you can deal with key
management (don’t put key next to data!)

