
ECE560
Computer and Information Security

Fall 2020

Reverse Engineering

Tyler Bletsch

Duke University

With additional content by Jiaming Li, NC State University, 2015

2

What is software reverse engineering?

• Determine and possibly change program logic
▪ “Logic” ≠ Just observed behavior

• Ethics
▪ Useful for good:

• Analyze malware

• Understand undocumented legacy code

• Watch/read/play the stuff you paid for

▪ Useful for evil

• “Crack” software
(remove restrictions)

• Find exploits

• Cheat at games

3

Types of tools

• Disassembler
▪ Turn compiled program into assembly

▪ Not perfect

▪ Static tool

• Debugger
▪ Step through running program

▪ Dynamic tool

• Hex editor
▪ Make changes to binaries

• Monitoring tools
▪ Watch system calls, library calls, etc.

Also, decompiler:
• Attempts to turn assembly back into source code.
• Usually awful at machine code, but managed code (e.g. Java,

Python) can produce decent results.

4

Examples of tools

• Linux:
▪ Disassember: objdump (free), IDA Pro (free and paid versions),

Ghidra (free, from NSA!)

▪ Debugger: gdb and its front-ends

▪ Hex editor: okteta, bless, lots more…

▪ Monitoring: strace, ltrace

• Windows:
▪ Disassembler: IDA Pro (free and paid versions),

Ghidra (free, from NSA!)

▪ Debugger: WinDBG (basic), OllyDbg (shareware), SoftICE ($1000+)

▪ Hex editor: XVI32, Notepad++ with plugin, etc.

▪ Monitoring tools: Process Monitor, Explorer, and more.

• X86 in general: A hypervisor (VMware, KVM, etc.)

IDA Pro eats basically anything

5

Debug or disassemble? Both.

• Disassembler gives static results

▪ Good overview of program logic

▪ But need to “mentally execute” program

▪ Difficult to jump to specific functionality in the code

• Debugger is dynamic

▪ Can set break points; fast forward to code for relevant functionality

▪ Can treat complex code as “black box”

▪ Not all code disassembles correctly

• Disassembler and debugger both required for any serious reverse engineering
task

From "Computer Science 654 Lecture 5: Software Reverse Engineering" by Wayne Patterson, Howard Univ. 2009.

6

Example 1: HW2 auto-grader

• Python decompiles very easily

7

Example 2: Minecraft

• Minecraft is a Java program, no mod support

• All mods use something like the Mod Coder Pack (MCP):

“Use MCP to decompile the Minecraft client and server jar files.

Use the decompiled source code to create mods for Minecraft.

Recompile modified versions of Minecraft.

Reobfuscate the classes of your mod for Minecraft.”

• Entire mod community is built on reverse engineering!

8

Examining multi-component systems

• Weaknesses often at the seams – where parts of system come
together
▪ Most visible, often exploitable

▪ Example: SQL injection

• If not the seams, at least focus on the least protected part

Thing A Thing B

Aim here if possible

9

Example 3: Auto-grader for
a homework question you didn’t get

• Was used last year, but cut because it involves implementing SHA-3,
which is commonly supported in most libraries by now.

• We’ll focus on the auto-grader and its anti-tamper mechanisms.

• Two files: (1) Binary hw3sign, (2) shell script sha-test.sh

• Normal usage:

10

Example 3: Auto-grader for
a homework question you didn’t get

• Naïve attack: Just change the script

11

Example 3: Lost HW autograder

• Naïve attack: Just change the script
▪ Failed: hw3sign must be checking it somehow!

12

Example 3: Lost HW autograder
Topology

sha-test.sh

hw3sign

13

Example 3: Lost HW autograder

• Could look at behavior with strace:
$ strace -f -o trace.txt ./sha-test.sh myenc

...

$ cat trace.txt

4127 execve("./sha-test.sh", ["./sha-test.sh", "myenc"], [/* 46 vars */]) = 0

4127 brk(0) = 0x1700000

4127 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x7f55d5a17000

4127 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or
directory)

4127 open("/etc/ld.so.cache", O_RDONLY) = 3

4127 fstat(3, {st_mode=S_IFREG|0644, st_size=210058, ...}) = 0

4127 mmap(NULL, 210058, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f55d59e3000

4127 close(3) = 0

...

• But hw3sign never appears to open sha-test.sh:
$ grep open trace.txt | grep sha-test.sh

4127 open("./sha-test.sh", O_RDONLY) = 3

▪ This one line is from when sha-test.sh itself is started

▪ There’s more mystery here that I’ll leave to you…

14

Example 3: Lost HW autograder
Best place to attack?

sha-test.sh

hw3sign

15

Example 3: Lost HW autograder

• Two past successful student attacks

• Black box attack:
▪ hw3sign signs the binary, then the certificate itself

▪ What if we ask it to “test” a doctored certificate as a binary – it will sign it for
us! No understanding needed!

• Chameleon attack:
▪ Add cheating to sha-test.sh; also add code to copy a legit sha-test.sh over

itself before doing signings

▪ Malicious behavior occurs then hides before check occurs

▪ Example of a TOCTOU attack (Time-Of-Check/Time-Of-Use)!

16

Example 4:
NSA Codebreaker challenge, 2015

• Scenario:
▪ Terrorists using a cryptography program to decrypt/authenticate messages

from leadership

▪ What we have:

• The program: codebreaker3.exe

• A member’s key: tier1_key.pem

• A text file with a hidden message: tier1_msg.txt

▪ At first glance, the program appears to simply check stock information, but
that’s a ruse.

▪ Need to reverse engineer it:
Challenge has 4 tasks, we’ll do 2.

Adapted from content by Jiaming Li, NC State University, 2015

17

Codebreaker Task 1: Decrypt

• Need to decode message we have.

• The program:

Adapted from content by Jiaming Li, NC State University, 2015

18

Codebreaker Task 1: Decrypt

• Do static analysis with IDA Pro
▪ Load binary

▪ Confirm binary format options

▪ Process:

• Code is disassembled

• Call graph of assembly code built

• All memory references are cross-referenced,
especially string literals

Adapted from content by Jiaming Li, NC State University, 2015

19

Codebreaker Task 1: Decrypt

• Do static analysis with IDA Pro, check the all string information

Adapted from content by Jiaming Li, NC State University, 2015

20

Codebreaker Task 1: Decrypt

• Press x, this leads us to the location where this string appears:

Adapted from content by Jiaming Li, NC State University, 2015

21

Codebreaker Task 1: Decrypt

• OK, let’s try “decoder” parameter:

Adapted from content by Jiaming Li, NC State University, 2015

22

Codebreaker Task 1: Decrypt

• We need to find where “Failed binary name check” appears:

• and this comes from:

Adapted from content by Jiaming Li, NC State University, 2015

23

Codebreaker Task 1: Decrypt

• Then we change our program name to
“secret-messenger.exe” and try again:

Adapted from content by Jiaming Li, NC State University, 2015

24

Codebreaker Task 1: Decrypt

• Ideas?

• Let’s jam the stuff into symbol and action fields

Adapted from content by Jiaming Li, NC State University, 2015

25

Codebreaker Task 2:
Bypass access limitation

• We’ve collected a new message file - this one to a different field
operative whose key we also have.

• Each operative has their own decrypt tool, each tool will only
decrypt content “addressed” to its owner.

• Need to defeat this access limitation to decrypt the message.

Adapted from content by Jiaming Li, NC State University, 2015

26

Codebreaker Task 2:
Bypass access limitation

• Let’s go back to IDA to find where this error appears:

26Adapted from content by Jiaming Li, NC State University, 2015

27

Codebreaker Task 2:
Bypass access limitation

• Note down the address of “cmp ax,4756h”, press SPACE:

• How to test if this is the check?

• How to bypass the check?

Adapted from content by Jiaming Li, NC State University, 2015

28

Codebreaker Task 2:
Bypass access limitation

• In order to bypass this check as easily as possible, we can just
modify the assembly code or change the specific flag during
execution. Load the program with ollydbg:

Adapted from content by Jiaming Li, NC State University, 2015

29

Codebreaker Task 2:
Bypass access limitation

• Press CTRL+g go to the address 00401bf2,
press F2 set breakpoint:

Adapted from content by Jiaming Li, NC State University, 2015

30

Codebreaker Task 2:
Bypass access limitation

• Let’s run the program and it will stop at this breakpoint, press F8 to
run one more step and we modify the conditional JUMP instruction
manually:

Adapted from content by Jiaming Li, NC State University, 2015

31

Codebreaker Task 2:
Bypass access limitation

• Then, right click → copy to executable→ all modification, so we just
saved our new program, let’s try to run it:

Adapted from content by Jiaming Li, NC State University, 2015

32

Codebreaker Tasks 3 and 4

• Task 3: Analyze decryption logic and develop a compatible
encryption tool

• Task 4: Spoof messages so they appear to come from group
leadership. Tell all recipients:
“Leadership has arranged a meeting with the local
authorities…Meet at the city police station at 18:00. Be discreet, and
come unarmed as to not draw attention.” (LOL)

Adapted from content by Jiaming Li, NC State University, 2015

33

Anti-reverse engineering

• Basics:

▪ Turn off debug symbols (-g)

▪ Strip other symbols (e.g. “strip” tool on *NIX)

▪ Consider static linking (no external calls to standard libraries to trace)

• Anti-disassembly:

▪ Encrypted or self-modifying code

▪ Code riddled with junk that is jumped over

• Can especially confuse x86 assemblers due to variable-length instructions

• Anti-debugging:

▪ Identify if debugger is in use (effects on real time, use of debug registers, etc.) and act
differently

▪ Use threads in complex ways to get less deterministic behavior

• Tamper resistance:

▪ Hash parts of ones own code/data and verify periodically

▪ The verification code is also code, though…

• Obfuscation:

▪ Include lots of unreachable code to increase work the reverse engineer must do

34

DRM: Digital Rights Management

• Attempt to restrict what users can do with
data they have on a computer they own

• Almost every implementation looks like this:

▪ Customer gets everything in the dashed box

▪ Problem?

35

DRM deployment process

DRM scheme is deployed

DRM scheme is cracked in 5 minutes

Crackers/pirates have nice open product,
paying customers get inferior locked

product

Developer makes fat
stacks of cash

Lots of frantic meetings
in some corporate office

Pirated variant goes
on sale in gray market

Angry executives
vow to make next

generation of
DRM even more

draconian (but no
less crackable),

alienating paying
customers and
hastening their

business model’s
demise.

(LOL)

