ECE560 Computer and Information Security

Fall 2022

Wireless and Mobile Security

Tyler Bletsch Duke University

Adapted from "Chapter 24: Wireless Network Security" by Dr. Hossein Saiedian at Univ. Kansas, which in turn was adapted from Chapter 24 of our textbook

Wireless Security

Wireless Security Overview

It's like regular security, but the communications medium is more accessible.

Like if your wired network was like this:

Wireless Network Modes

- WiFi is specified in IEEE 802.11 with various lettered suffixes
- 802.11 wireless networks operate in two basic modes:
 - Infrastructure mode
 - Each wireless client connects directly to a central device called Access Point (AP)
 - No direct connection between wireless clients
 - AP acts as a wireless hub that performs the connections and handles them between wireless clients
 - Ad-hoc mode
 - Each wireless client connects directly with each other
 - No central device managing the connections
 - Rapid deployment of a temporary network where no infrastructure exists
 - Being deprecated by OS vendors (Windows 10 doesn't support it)

Wireless Networking Components

Endpoint

Access point

Figure 24.1 Wireless Networking Components

Wireless client: WIFI-enabled laptop/tablet, cell phone, Bluetooth device, ... Access point: Cell towers, WIFI hotspots, wireless routers Transmission medium: carries signals

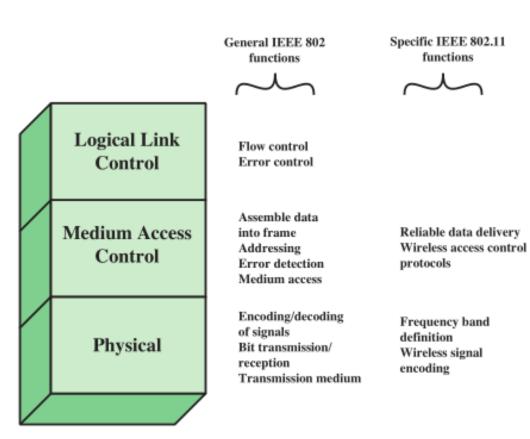
For WiFi, APs are identified by SSID:

- A client must set the same SSID as the one in that particular AP to join the network
- Without SSID, the client won't be able to select and join a wireless network

Wireless Network Threats

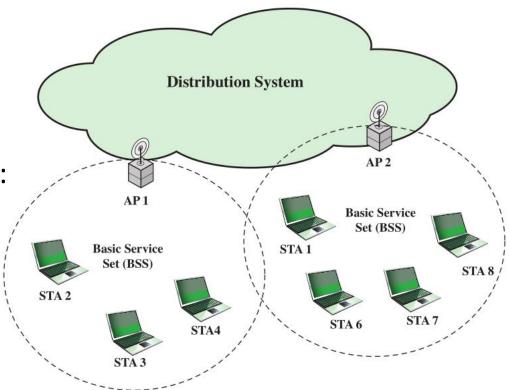
- Inappropriate association (either accidental or malicious)
- Identity theft (MAC spoofing)
- Man-in-the middle attacks
- Denial of service (DoS)
- Network injection
 - Bogus reconfiguration commands to routers/switches that degrade performance
- Unique attacks on non-traditional networks
 - Bluetooth, proprietary wireless

Proposed advice on securing wireless networks (some good, some okay, some bad)


- Use encryption
 - Yes, especially strong modern algorithms (WPA2)
- Change router's preset password
 - Yes. Not having a publicly known secret key usually helps with access control...
- Use and enable anti-virus, anti-spyware, firewall
 - True, but unrelated to wireless.
- Change default identifier on router
 - Good idea so you know what's-what, but does nothing for security.
- Reduce signal strength
 - Place away from windows and external walls, use directional antennas
 - Problem: attackers can boost power, get directional antennas, etc...
- Turn off SSID broadcasting
 - Waste of time.
- Apply MAC-filtering
 - Almost entirely useless due to MAC spoofing.
- Change your SSID every so often
 - This is so dumb it hurts

IEEE 802.11 Wireless LAN

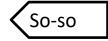
- IEEE 802: a committee responsible for LANs
- IEEE 802.11: responsible for developing wireless protocols
 - Key standards:
 - 802.11b: Uses 2.4GHz spectrum, up to 11Mbps
 - 802.11g: Uses 2.4GHz spectrum, up to 54Mbps
 - 802.11n: Uses 2.4 and 5GHz spectrum, up to 288Mbps or 600Mbps
 - 802.11ac: Uses 5GHz spectrum, up to ~3Gbps
 - A variant can use the frequencies formerly used in analog TV
 - 802.11ax: Uses 2.4GHz and 5GHz spectrum, up to 10Gbps
 - Upcoming not commonly deployed yet!


IEEE 802.11 Protocol Stack

- Physical layer (encode/decode signals)
- MAC layer: assembles MAC frame, disassembles frames and performs address recognition
- LLC: keeps track of frame transmission

IEEE 802.11 Extended Service Set

- **BSS** (Basic Service Set): the smallest building block
- BSSs connected via **APs**
 - APs functions as bridges
- **ESS** (Extended Service Set): two or more BSSs



IEEE 802.11# Wireless Security

Wired Equivalent Privacy (WEP)

Wi-Fi Protected

Access (WPA)

Garbage

Wi-Fi Protected Access 2 (WPA2)

WPA - WI-FI Protected Access

- Standardized in 2002
- Replacement of security flaws of WEP
- Improved data encryption
- Strong user authentication
- Because of many attacks related to static key, WPA minimize shared secret key in accordance with the frame transmission
- Use the RC4 algorithm in a proper way and provide fast transfer of the data before someone can decrypt the data.

WPA2 - WI-FI Protected Access 2

- Based on the IEEE 802.i standard
- The primary enhancement over WPA is the use of the AES (Advanced Encryption Standard) algorithm
- The encryption in WPA2 is done by utilizing either AES or TKIP
- Two modes:
 - Personal mode uses a PSK (Pre-shared key) & does not require a separate authentication of users
 - Enterprise mode requires the users to be separately authenticated by using the EAP protocol
- DukeBlue is WPA2-EAP!

WPA2

- WPA2 has immunity against many types of attacks
 - Man-in-the middle
 - Authentication forging
 - Replay
 - Key collision
 - Weak keys
 - Packet forging
 - Dictionary attacks

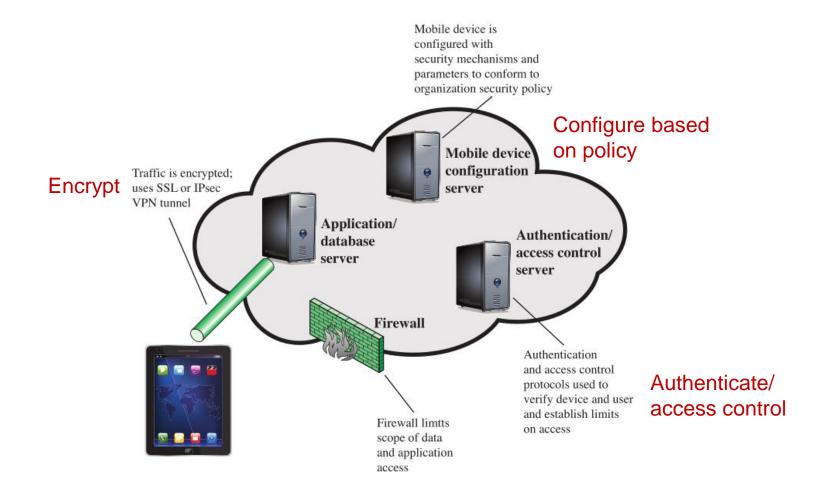
Procedures to Improve Wireless Security

- Enable WPA2-PSK (personal) or WPA2-EAP (enterprise)
 - AES is more secure, use TKIP for better performance
- Use a good passphrase

Mobile Security

Two ways to think about mobile security

- Security *against* mobile devices: mindset of the sysadmin
 - Our focus
- Security *for* mobile devices: mindset of vendors...sometimes?
 - We'll leave this aside unless we have extra time.
 - Short version:
 - Encryption
 - Per-app permissions and isolation
 - Sandboxing


Mobile Device Security Challenges

- Trends:
 - Bring Your Own Device (BYOD)
 - No more tight control over computing devices
 - De-perimeterization: static network perimeter is gone
 - Mobile network allows Internet gateways you don't control
 - External business requirements (guests, third-party contractors, ...) keep the above true
- Resulting threats:
 - Lack of physical security control
 - Use of untrusted mobile devices
 - Use of untrusted networks
 - Use of apps created by unknown parties
 - Interaction with other systems (e.g., cloud-based data sync)
 - Use of untrusted content

Mobile Device Security

- User training
- Mobile device configuration:
 - Enable auto-lock
 - Enable password/PIN/thumbprint protection
 - Disable/discourage auto-completion for passwords
 - Enable remote wipe
 - Up-to-date OS/software
 - Encrypt sensitive data
 - Prohibit installation of third-party apps
 - Most of the above can be enforced by policy via e.g. Microsoft Exchange
- Network/service configuration:
 - User devices disallowed on trusted networks
 - User devices must be registered (tied to human) to get on a network (e.g. Dukeblue)
 - Remote access via VPN only
 - Configure/enable SSL to prevent MITM attacks on infected endpoints

Mobile Device Security Elements

