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We begin with a review of important results from probability theory, then 

demonstrate the base-rate fallacy. 

 

J.1  CONDITIONAL PROBABILITY AND INDEPENDENCE 
 

We often want to know a probability that is conditional on some event. The 

effect of the condition is to remove some of the outcomes from the sample 

space. For example, what is the probability of getting a sum of 8 on the roll 

of two dice if we know that the face of at least one die is an even number? 

We can reason as follows. Because one die is even and the sum is even, the 

second die must show an even number. Thus, there are three equally likely 

successful outcomes: (2, 6), (4, 4) and (6, 2), out of a total set of 

possibilities of [36 – (number of events with both faces odd)] = 36 – 3 × 3 = 

27. The resulting probability is 3/27 = 1/9. 

 Formally, the conditional probability of an event A assuming the 

event B has occurred, denoted by Pr[A|B], is defined as the ratio 

 

  
Pr A | B[ ] = Pr AB[ ]

Pr B[ ]
 

where we assume Pr[B] is not zero. 

 In our example, A = {sum of 8} and B = {at least one die even}. The 

quantity Pr[AB] encompasses all of those outcomes in which the sum is 8 

and at least one die is even. As we have seen, there are three such 

outcomes. Thus, Pr[AB] = 3/36 = 1/12. A moment's thought should 

convince you that Pr[B] = 3/4. We can now calculate 

 

  
Pr A | B[ ] = 112

3 4
= 1
9
 

 

This agrees with our previous reasoning. 
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 Two events A and B are called independent if Pr[AB] = Pr[A]Pr[B]. It 

can easily be seen that if A and B are independent, Pr[A|B] = Pr[A] and 

Pr[B|A] = Pr[B]. 

 

J.2  BAYES' THEOREOM 
 

One of the most important results from probability theory is known as Bayes' 

theorem. First we need to state the total probability formula. Given a set of 

mutually exclusive events E1, E2, …, En, such that the union of these events 

covers all possible outcomes, and given an arbitrary event A, then it can be 

shown that 

 

 
  
Pr A[ ] = Pr A | Ei[ ]Pr Ei[ ]

i=1

n
∑  (J.1) 

 

 Bayes' theorem may be stated as follows: 

 

   

Pr Ei | A[ ] = Pr A | Ei[ ]P Ei[ ]
Pr A[ ]

=
Pr A | Ei[ ]P Ei[ ]
Pr A | Ej[ ]Pr Ej[ ]

j=1

n
∑

 
(J.2)

 
 

 Figure J.1a illustrates the concepts of total probability and Bayes' 

theorem. 

 Bayes' theorem is used to calculate "posterior odds," that is, the 

probability that something really is the case, given evidence in favor of it. 

For example, suppose we are transmitting a sequence of zeroes and ones 

over a noisy transmission line. Let S0 and S1 be the events a zero is sent at 

a given time and a one is sent, respectively, and R0 and R1 be the events 

that a zero is received and a one is received. Suppose we know the  
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A

E1 E2

E3 E4

Figure J.1  Illustration of Total Probability and Bayes' Theorem

= S0; 0 sent

= S1; 1 sent

= R0; 0 received

(b) Example(a) Diagram to illustrate concepts

= R1; 1 received

 
 

probabilities of the source, namely Pr[S1] = p and Pr[S0] = 1 – p. Now the 

line is observed to determine how frequently an error occurs when a one is 

sent and when a zero is sent, and the following probabilities are calculated: 

Pr[R0|S1] = pa and Pr[R1|S0] = pb. If a zero is received, we can then 

calculate the conditional probability of an error, namely the conditional 

probability that a one was sent given that a zero was received, using Bayes' 

theorem: 

 

  
Pr S1|R0[ ] = Pr R0|S1[ ]Pr S1[ ]

Pr R0|S1[ ]Pr S1[ ] +Pr R0|S0[ ]Pr S0[ ] =
pa p

pa p + 1− pb( ) 1− p( )  

 

 Figure J.1b illustrates the preceding equation. In the figure, the sample 

space is represented by a unit square. Half of the square corresponds to S0 
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and half to S1, so Pr[S0] = Pr[S1] = 0.5. Similarly, half of the square 

corresponds to R0 and half to R1, so Pr[R0] = Pr[R1] = 0.5. Within the area 

representing S0, one quarter of that area corresponds to R1, so Pr[R1/S0] = 

0.25. Other conditional probabilities are similarly evident. 

 

J.3  THE BASE RATE FALLACY DEMONSTRATED 
 

Consider the following situation. A patient has a test for some disease that 

comes back positive (indicating he has the disease). You are told that 

 

• The accuracy of the test is 87% (i.e., if a patient has the disease, 87% 

of the time, the test yields the correct result, and if the patient does not 

have the disease, 87% of the time, the test yields the correct result). 

• The incidence of the disease in the population is 1%. 

  

 Given that the test is positive, how probable is it that the patient does 

not have the disease? That is, what is the probability that this is a false 

alarm? We need Bayes' theorem to get the correct answer: 

 

� 

Pr well positive[ ] =
Pr positive well[ ]Pr well[ ]

Pr positive disease[ ]Pr disease[ ] + Pr positive well[ ]Pr well[ ]

=
0.13( ) 0.99( )

0.87( ) 0.01( ) + 0.13( ) 0.99( )
= 0.937

 

 

 Thus, in the vast majority of cases, when a disease condition is 

detected, it is a false alarm. 

 This problem, used in a study [PIAT91, PIAT94], was presented to a 

number of people. Most subjects gave the answer 13%. The vast majority, 

including many physicians, gave a number below 50%. Many physicians who 
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guessed wrong lamented, "If you are right, there is no point in making 

clinical tests!" The reason most people get it wrong is that they do not take 

into account the basic rate of incidence (the base rate) when intuitively 

solving the problem. This error is known as the base-rate fallacy [BARH80]. 

 How could this problem be fixed? Suppose we could drive both of the 

correct result rates to 99.9%. That is, suppose we have Pr[positive/disease] 

= 0.999 and Pr[negative/well] = 0.999. Plugging these numbers into the 

Equation (J.2), we get Pr[well/positive] = 0.09. Thus, if we can accurately 

detect disease and accurately detect lack of disease at a level of 99.9%, 

then the rate of false alarms will be 9%. This is much better, but still not 

ideal. Moreover, again assume 99.9% accuracy, but now suppose that the 

incidence of the disease in the population is only 1/10000 = 0.0001. We 

then end up with a rate of false alarms of 91%. In actual situations, 

[AXEL00] found that the probabilities associated with IDSs were such that 

the false alarm rate was unsatisfactory. 
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