

 -1-

Appendix K

SHA-3

William Stallings

K.1 THE ORIGINS OF SHA-3 .. 2	

K.2 EVALUATION CRITERIA FOR SHA-3 ... 4	

K.3 THE SPONGE CONSTRUCTION .. 6	

K.4 THE SHA-3 ITERATION FUNCTION f .. 13	

Structure of f ... 14	

Theta Step Function .. 17	

Rho Step Function ... 19	

Pi Step Function ... 21	

Chi Step Function ... 24	

Iota Step Function .. 24	

K.5 RECOMMENDED READING AND REFERENCES 26	

References ... 26	

Copyright 2014
 Supplement to
 Computer Security, Third Edition
 Pearson 2014
 http://williamstallings.com/ComputerSecurity

 -2-

The winning design for the Secure Hash Algorithm 3 (SHA-3) was announced

by NIST (National Institute of Standards and Technology) in October 2012.

SHA-3 is a cryptographic hash function that is intended to complement SHA-

2 as the approved standard for a wide range of applications. In this chapter,

we first look at the evaluation criteria used by NIST to select a candidate and

then examine the hash function itself.

K.1 THE ORIGINS OF SHA-3

As of this writing, SHA-1 has not yet been "broken." That is, no one has

demonstrated a technique for producing collisions in a practical amount of

time. However, because SHA-1 is very similar in structure and in the basic

mathematical operations used to MD5 and SHA-0, both of which have been

broken, SHA-1 is considered insecure and has been phased out for SHA-2.

 SHA-2, particularly the 512-bit version, would appear to provide

unassailable security. However, SHA-2 shares the same structure and

mathematical operations as its predecessors, and this is a cause for concern.

Because it will take years to find a suitable replacement for SHA-2, should it

become vulnerable, NIST decided to begin the process of developing a new

hash standard.

 Accordingly, NIST announced in 2007 a competition to produce the next

generation NIST hash function, to be called SHA-3. The basic requirements

that must be satisfied by any candidate for SHA-3 are the following.

 1. It must be possible to replace SHA-2 with SHA-3 in any application by

a simple drop-in substitution. Therefore, SHA-3 must support hash

value lengths of 224, 256, 384, and 512 bits.

 2. SHA-3 must preserve the online nature of SHA-2. That is, the

algorithm must process comparatively small blocks (512 or 1024 bits)

 -3-

at a time instead of requiring that the entire message be buffered in

memory before processing it.

 NIST received sixty-four entries by October 31, 2008; and selected fifty-

one candidate algorithms to advance to the first round on December 10,

2008, and fourteen to advance to the second round on July 24, 2009. Based

on the public feedback and internal reviews of the second-round candidates,

NIST selected five SHA-3 finalists to advance to the third (and final) round of

the competition on December 9, 2010. NIST completed its evaluation

process and announced a final standard in 2012. NIST selected Keccak for

the SHA-3 algorithm. Keccak was designed by a team of cryptographers

from Belgium and Italy: Guido Bertoni, Joan Daemen,1 Michaël Peeters, and

Gilles Van Assche. In their announcement, NIST explained the choice as

follows:

NIST chose KECCAK over the four other excellent finalists for its
elegant design, large security margin, good general performance,
excellent efficiency in hardware implementations, and for its
flexibility. KECCAK uses a new “sponge construction” chaining
mode, based on a fixed permutation, that can readily be adjusted
to trade generic security strength for throughput, and can generate
larger or smaller hash outputs as required. The KECCAK designers
have also defined a modified chaining mode for KECCAK that
provides authenticated encryption.

 The role of SHA-3 is somewhat different from that of AES. In the case of

AES, NIST approved AES as a replacement for DEA and 3DEA. Although

3DEA is still considered secure, it is not efficient and has a smaller key

length than one of the AES options. On the other hand, SHA-2 has held up

well and NIST considers it secure for general use. So SHA-3 is a complement

1 Joan Daemen is one of the two designers of Rijndael, the winner of the

AES competition a decade earlier.

 -4-

or alternative to SHA-2 rather than a replacement. The relatively compact

nature of SHA-3 may make it useful for so-called “embedded” or smart

devices that connect to electronic networks but are not themselves full-

fledged computers. Examples include sensors in a building-wide security

system and home appliances that can be controlled remotely.

K.2 EVALUATION CRITERIA FOR SHA-3

It is worth examining the criteria used by NIST to evaluate potential

candidates. These criteria span the range of concerns for the practical

application of modern cryptographic hash functions. When NIST issued its

original request for candidate algorithm nominations in 2007 [NIST07], the

request stated that candidate algorithms would be compared based on the

factors shown in Table K.1 (ranked in descending order of relative

importance). The three categories of criteria were:

 -5-

Table K.1 NIST Evaluation Criteria for SHA-3

SECURITY

•Applications of the hash function: Algorithms having the same hash length will be compared for the

security that may be provided in a wide variety of cryptographic applications, including digital
signatures (FIPS 186–2), key derivation (NIST SP 800–56A), hash-based message authentication codes
(FIPS 198), and deterministic random bit generators (SP 800–90).

•Specific requirements when hash functions are used to support HMAC, pseudorandom functions
(PRFs), and randomized hashing: The criteria list specific security requirements for these
applications.

•Addition security requirements: Specific collision and preimage resistant criteria.
•Evaluations relating to attack resistance: Hash algorithms will be evaluated against attacks or

observations that may threaten existing or proposed applications, or demonstrate some fundamental
flaw in the design, such as exhibiting nonrandom behavior and failing statistical tests.

•Other consideration factors: The quality of the security arguments/proofs, the clarity of the
documentation of the algorithm, the quality of the analysis on the algorithm performed by the
submitters, the simplicity of the algorithm, and the confidence of NIST and the cryptographic
community in the algorithm’s long-term security may all be considered.

COST

•Computational efficiency: Computational efficiency refers to the execution speed of the algorithm. The
evaluation of the computational efficiency of the candidate algorithms will be applicable to both
hardware and software implementations. The Round 1 analysis by NIST will focus primarily on software
implementations; hardware implementations will be addressed more thoroughly during the Round 2
analysis.

•Memory requirements: Memory requirements include such factors as gate counts for hardware
implementations, and code size and RAM requirements for software implementations. The memory
required to implement a candidate algorithm—for both hardware and software implementations of the
algorithm—will be considered during the evaluation process. The Round 1 analysis will focus primarily
on software implementations; hardware implementations will be addressed more thoroughly during
Round 2.

•Flexibility: Candidate algorithms with greater flexibility will meet the needs of more users than less
flexible algorithms, and therefore, are preferable. However, some extremes of functionality are of little
practical use (e.g., extremely short message digest lengths)—for those cases, preference will not be
given. Some examples of ‘‘flexibility’’ may include (but are not limited to) the following:

 a. The algorithm has a tunable parameter, which allows the selection of a range of possible
security/performance tradeoffs.

 b. The algorithm can be implemented securely and efficiently on a wide variety of platforms, including
constrained environments, such as smart cards.

 c. Implementations of the algorithm can be parallelized to achieve higher performance efficiency.

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

•Simplicity: A candidate algorithm shall be judged according to relative simplicity of design.

 -6-

• Security: The evaluation considered the relative security of the

candidates compared to each other and to SHA-2. In addition, specific

security requirements related to various applications and resistance to

attacks are included in this category.

• Cost: NIST intends SHA-3 to be practical in a wide range of

applications. Accordingly, SHA-3 must have high computational

efficiency, so as to be usable in high-speed applications, such as

broadband links, and low memory requirements.

• Algorithm and implementation characteristics: This category

includes a variety of considerations, including flexibility; suitability for a

variety of hardware and software implementations; and simplicity,

which will make an analysis of security more straightforward.

K.3 THE SPONGE CONSTRUCTION

The underlying structure of SHA-3 is a scheme referred to by its designers

as a sponge construction [BERT07, BERT11]. The sponge construction has

the same general structure as other iterated hash functions. The sponge

function takes an input message and partitions it into fixed-size blocks. Each

block is processed in turn with the output of each iteration fed into the next

iteration, finally producing an output block.

 The sponge function is defined by three parameters:

 f the internal function used to process each input block2

 r the size in bits of the input blocks, called the bitrate

2 The Keccak documentation refers to f as a permutation. As we shall see,

it involves both permutations and substitutions. We refer to f as the
iteration function, because it is the function that is executed once for
each iteration, that is, once for each block of the message that is
processed.

 -7-

 pad the padding algorithm

 A sponge function allows both variable length input and output, making

it a flexible structure that can be used for a hash function (fixed length

output), a pseudorandom number generator (fixed length input), and other

cryptographic functions. Figure K.1 illustrates this point. An input message

of n bits is partitioned into k fixed-size blocks of r bits each. If necessary,

the message is padded to achieve a length that is an integer multiple of r

bits. The resulting partition is the sequence of blocks P0, P1, …, Pk–1, with n

= k × r. For uniformity, padding is always added, so that if n mod r = 0, a

padding block of r bits is added. The actual padding algorithm is a parameter

of the function. The sponge specification proposes [BERT11] proposes two

padding schemes:

• Simple padding: Denoted by pad10*, appends a single bit 1 followed

by the minimum number of bits 0 such that the length of the result is a

multiple of the block length.

• Multirate padding: denoted by pad10∗1, appends a single bit 1

followed by the minimum number of bits 0 followed by a single bit 1

such that the length of the result is a multiple of the block length. This

is the simplest padding scheme that allows secure use of the same f

with different rates r.

 -8-

k r bits

Figure K.1 Sponge Function Input and Output

(a) Input

(b) Output

P0 P1

Z0 Z1

Zj–1

Pk–1

message pad

r bits r bits r bits

r bits r bits r bits

l bits

n bits

 After processing all of the blocks, the sponge function generates a

sequence of output blocks Z0, Z1, …, Zj–1, The number of output blocks

generated is determined by the number of output bits desired. If the desired

output is ℓ bits, then j blocks are produced, such that (j – 1) × r < ℓ ≤ j × r.

 Figure K.2 shows the iterated structure of the sponge function. The

sponge construction operates on a state variable s of b = r + c bits, which is

initialized to all zeros and modified at each iteration. The value r is called the

bitrate. This value is the block size used to partition the input message. The

term bitrate reflects that fact that r is the number of bits processed at each

 -9-

Figure K.2 Sponge Construction

(a) Absorbing phase

(b) Squeezing phase

f

r c

0c

0c

0c

0r 0c

P0

P1

P2

f

s

f

s

f

s

0cPk–1

b
r c
b

r c
Z0

r

Z1

 -10-

iteration: the larger the value of r, the greater the rate at which message

bits are processed by the sponge construction. The value c is referred to as

the capacity. A discussion of the security implications of the capacity is

beyond our scope. In essence, the capacity is a measure of the achievable

complexity of the sponge construction and therefore the achievable level of

security. A given implementation can trade claimed security for speed by

increasing the capacity c and decreasing the bitrate r accordingly, or vice-

versa. The default values for Keccak are c = 1024 bits, r = 576 bits, and

therefore b = 1600 bits.

 The sponge construction consists of two phases. The absorbing phase

proceeds as follows: For each iteration, the input block to be processed is

padded with zeroes to extend its length from r bits to b bits. Then, the

bitwise XOR of the extended message block and s is formed to create a b-bit

input to the iteration function f. The output of f is the value of s for the next

iteration.

 If the desired output length ℓ satisfies ℓ ≤ b, then at the completion of

the absorbing phase, the first ℓ bits of s are returned and the sponge

construction terminates. Otherwise, the sponge construction enters the

squeezing phase. To begin, the first ℓ bits of s are retained as block Z0.

Then, the value of s is updated with repeated executions of f, and at each

iteration, the first ℓ bits of s are retained as block Zi and concatenated with

previously generated blocks. The process continues through (j – 1) iterations

until we have (j – 1) × r < ℓ ≤ j × r. At this point the first ℓ bits of the

concatenated block Y are returned.

 Note that the absorbing phase has the structure of a typical hash

function. A common case will be one in which the desired hash length is

equal to the input block length; that is ℓ = r. In that case, the sponge

construction terminates after the absorbing phase. If a longer output than b

bits is required, then the squeezing phase is employed. Thus the sponge

 -11-

construction is quite flexible. For example, a short message with a length r

could be used as a seed and the sponge construction would function as a

pseudorandom number generator.

 To summarize, the sponge construction is a simple iterated construction

for building a function F with variable-length input and arbitrary output

length based on a fixed-length transformation or permutation f operating on

a fixed number b of bits. The sponge construction is defined formally in

[BERT11] as follows:

Algorithm The sponge construction SPONGE[f , pad, r]
Require: r < b

 Interface: Z = sponge(M, ℓ) with M ∈ Z
2
* , integer ℓ > 0 and Y ∈ Z

2


 P = M||pad[r](|M|)
 s = 0b
 for i = 0 to |P|r − 1 do

 s = s ⊕ (Pi||0b−r)
 s = f (s)
 end for
 Z = ⌊s⌋r
 while |Z|rr < ℓ do
 s = f (s)
 Z = Z||⌊s⌋r

 end while
 return ⌊Z⌋ℓ

 In the algorithm definition, the following notation is used: |M| is the

length in bits of a bit string M. A bit string M can be considered as a

sequence of blocks of some fixed length x, where the last block may be

shorter. The number of blocks of M is denoted by |M|x. The blocks of M are

denoted by Mi and the index ranges from 0 to |M|x −1. The expression ⎣M⎦ℓ

denotes the truncation of M to its first ℓ bits.

 -12-

Table K.2 SHA-3 Parameters

Message Digest
Size

224 256 384 512

Message Size no maximum no maximum no maximum no maximum

Block Size
(bitrate r)

1152 1088 832 576

Word Size 64 64 64 64

Number of
Rounds

24 24 24 24

Capacity c 448 512 768 1024

Collision
resistance

2112 2128 2192 2256

Second
preimage
resistance

2224 2256 2384 2512

Note: All sizes and security levels are measured in bits.

 The overall structure of SHA-3 is expressed as Keccak[r, c]. Table K.2

shows the supported values of r and c. SHA-3 makes use of the iteration

function f, labeled Keccak-f, which is described in the next section. The

overall SHA-3 function is a sponge function expressed as Keccak[r, c] to

reflect that SHA-3 has two operational parameters, r, the message block

size, and c, the capacity, with the default of r + c = 1600 bits. As Table K.2

indicates, the hash function security associated with the sponge construction

is a function of the capacity c.

 In terms of the sponge algorithm defined above, Keccak[r, c] is defined

as

Keccak[r, c] Δ SPONGE[Keccak-f[r + c], pad10*1, r]

 We now turn to a discussion of the iteration function Keccak-f.

 -13-

K.4 THE SHA-3 ITERATION FUNCTION f

We now examine the iteration function Keccak-f used to process each

successive block of the input message. Recall that f takes as input a 1600 bit

variable s consisting of r bits, corresponding to the message block size

followed by c bits, referred to as the capacity. For internal processing within

f, the input state variable s is organized as a 5 × 5 × 64 array a. The 64-bit

units are referred to as lanes. For our purposes, we generally use the

notation a[x, y, z] to refer to an individual bit with the state array. When we

are more concerned with operations that affect entire lanes, we designate

the 5 × 5 matrix as L[x, y], where each entry in L is a 64-bit lane. The use of

indices within this matrix is shown in Figure K.3.3 Thus, the columns are

labeled x = 0 through x = 4, the rows are labeled y = 0 through y = 4, and

the individual bits within a lane are labeled z = 0 through z = 63. The

mapping between the bits of s and those of a is

s[64(5y + x) + z] = a[x, y, z].

 We can visualize this with respect to the matrix in Figure K.3. When

treating the state as a matrix of lanes, the first lane in the lower left corner,

L[0, 0], corresponds to the first 64 bits of s. The lane in the second column,

lowest row, L[1, 0], corresponds to the next 64 bits of s. Thus, the array a is

filled with the bits of s starting with row y = 0 and proceeding row by row.

3 Note that the first index (x) designates a column and the second index

(y) designates a row. This is in conflict with the convention used in most
mathematics sources, where the first index designates a row and the
second index designates a column. (e.g., Knuth, D. The Art of Computing
Programming, Volume 1, Fundamental Algorithms; and Korn, G, and
Korn, T. Mathematical Handbook for Scientists and Engineers)

 -14-

Figure K.3 SHA-3 State Matrix

L[0, 4]

x = 0 x = 1 x = 2 x = 3 x = 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

a[x, y, 0] a[x, y, 1] a[x, y, 2]

y = 1

y = 0

y = 2

y = 3

y = 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

(a) State variable as 5 5 matrix A of 64-bit words

(b) Bit labeling of 64-bit words

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

a[x, y, 63]a[x, y, 62]a[x, y, z]

Structure of f
The function f is executed once for each input block of the message to be

hashed. The function takes as input the 1600-bit state variable and converts

it into a 5 × 5 matrix of 64-bit lanes. This matrix then passes through 24

rounds of processing. Each round consists of 5 steps, and each step updates

the state matrix by permutation or substitution operations. As shown in

Figure K.4, the rounds are identical with the exception of the final step in

each round, which is modified by a round constant that differs for each

round.

 -15-

theta e step

s

s

rho l step

pi � step

chi r step

R
ou

nd
 0

iota f step

Figure K.4 SHA-3 Iteration Function f

RC[0]

rot(x, y)

theta e step

rho l step

pi � step

chi r step

R
ou

nd
 2

3

iota f step RC[23]

rot(x, y)

 -16-

TableK.3 Step Functions in SHA-3

Function Type Description

θ Substitution
New value of each bit in each word depends its current
value and on one bit in each word of preceding column
and one bit of each word in succeeding column.

ρ Permutation The bits of each word are permuted using a circular bit
shift. W[0, 0] is not affected.

π Permutation Words are permuted in the 5×5 matrix. W[0, 0] is not
affected.

χ Substitution

New value of each bit in each word depends on its
current value and on one bit in next word in the same
row and one bit in the second next word in the same
row.

ι Substitution W[0, 0] is updated by XOR with a round constant.

 The application of the five steps can be expressed as the composition4

of functions:

R = ι ο χ ο π ο ρ ο θ

 Table K.3 summarizes the operation of the five steps. The steps have a

simple description leading to a specification that is compact and in which no

trapdoor can be hidden. The operations on lanes in the specification are

limited to bitwise Boolean operations (XOR, AND, NOT) and rotations. There

is no need for table-lookups, arithmetic operations, or data-dependent

rotations. Thus, SHA-3 is easily and efficiently implemented in either

hardware or software.

 We examine each of the step functions in turn.

4 If f and g are two functions, then the function F with the equation y =

F(x) = g[f(x)] is called the composition of f and g and is denoted as F =
g ο f.

 -17-

Theta Step Function
The Keccak reference defines the θ function as follows. For bit z in column x,

row y:

θ:"""a x,y,z!
"

#
$← a x,y,z!

"
#
$⊕ a x−1() ,y,z!

"(
#
$)

*y =0

4

∑ ⊕ a x+1() ,y, z−1()!
"(

#
$)

*y =0

4

∑ (K.1)

where the summations are XOR operations. We can see more clearly what

this operation accomplishes with reference to Figure K.5a. First, define the

bitwise XOR of the lanes in column x as:

C[x] = L[x, 0] ⊕ L[x, 1] ⊕ L[x, 2] ⊕ L[x, 3] ⊕ L[x, 4]

 Consider lane L[x, y] in column x, row y. The first summation in

Equation K.1 performs a bitwise XOR of the lanes in column (x – 1) mod 4 to

form the 64-bit lane C[x – 1]. The second summation performs a bitwise

XOR of the lanes in column (x + 1) mod 4, and then rotates the bits within

the 64-bit lane so that the bit in position z is mapped into position z + 1

mod 64. This forms the lane ROT(C[x + 1], 1). These two lanes and L[x, y]

are combined by bitwise XOR to form the updated value of L[x, y]. This can

be expressed as:

L[x, y] ← L[x, y] ⊕ C[x – 1] ⊕ ROT(C[x + 1], 1)

 Figure K.5.a illustrates the operation on L[3,2]. The same operation is

performed on all of the other lanes in the matrix.

 -18-

Figure K.5 Theta and Chi Step Functions

(a) e step function

Lt[2, 3]L[2, 3] ROT(C[3], 1)C[1]

L[0, 4]

x = 0 x = 1 x = 2 x = 3 x = 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

y = 1

y = 0

y = 2

y = 3

y = 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

(b) r step function

L[2, 3]L[2, 3] L[3, 3] AND L[4, 3]

L[0, 4]

x = 0 x = 1 x = 2 x = 3 x = 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

y = 1

y = 0

y = 2

y = 3

y = 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

 Several observations are in order. Each bit in a lane is updated using

the bit itself and one bit in the same bit position from each lane in the

preceding column and one bit in the adjacent bit position from each lane in

the succeeding column. Thus the updated value of each bit depends on 11

bits. This provides good mixing. Also, the theta step provides good diffusion,

 -19-

as that term was defined in Chapter 3. The designers of Keccak state that

the theta step provides a high level of diffusion on average and that without

theta, the round function would not provide diffusion of any significance.

Rho Step Function
The ρ function is defined as follows:

ρ:"""a x,y,z!
"

#
$← a x,y,z!

"
#
$ if x = y = 0

otherwise,

 ρ:"""a x,y,z!
"

#
$← a x,y, z−

t+1() t+ 2()
2

'

(

)
))

*

+

,
,,

!

"

-
-
-

#

$

.

.

.

 (K.2)

 with t satisfying 0 ≤ t < 24 and 0 1
2 3

!

"
#

$

%
&

t

1
0

!

"
#

$

%
&= x

y

!

"
##

$

%
&& in GF 5()

2×2

 It is not immediately obvious what this step performs, so let us look at

the process in detail.

 1. The lane in position (x, y) = (0, 0), that is L[0, 0], is unaffected. For

all other words, a circular bit shift within the lane is performed.

 2. The variable t, with 0 ≤ t < 24, is used to determine both the amount

of the circular bit shift and which lane is assigned which shift value.

 3. The 24 individual bit shifts that are performed have the respective

values
t+1() t+ 2()

2
mod 64 .

 -20-

 4. The shift determined by the value of t is performed on the lane in

position (x, y) in the 5×5 matrix of lanes. Specifically, for each value of

t, the corresponding matrix position is defined by

x
y

!

"
##

$

%
&&=

0 1
2 3

!

"
#

$

%
&

t
1
0

!

"
#

$

%
& . For example, for t = 3, we have:

x
y

!

"
##

$

%
&&=

0 1
2 3

!

"
#

$

%
&

3
1
0

!

"
#

$

%
& mod(5

= 0 1
2 3

!

"
#

$

%
& 0 1

2 3

!

"
#

$

%
& 0 1

2 3

!

"
#

$

%
& 1

0

!

"
#

$

%
& mod(5

= 0 1
2 3

!

"
#

$

%
& 0 1

2 3

!

"
#

$

%
& 0

2

!

"
#

$

%
& mod(5

= 0 1
2 3

!

"
#

$

%
& 2

6

!

"
#

$

%
& mod(5 = 0 1

2 3

!

"
#

$

%
& 2

1

!

"
#

$

%
& mod(5

= 1
7

!

"
#

$

%
& mod(5 = 1

2

!

"
#

$

%
&

 Table K.4a shows the calculations that are performed to determine the

amount of the bit shift and the location of each bit shift value. Note that all

of the rotation amounts are different. Table K.4b shows the rotation values

for each lane in the matrix.

 The ρ function thus consists of a simple permutation (circular shift)

within each lane. The intent is to provide diffusion within each lane. Without

this function diffusion between lanes would be very slow.

 -21-

Table K.4a Rotation Values Used in SHA-3

(a) Calculation of values and positions

T g(t) g(t) mod
64

x, y t g(t) g(t) mod
64

x, y

0 1 1 1, 0 12 91 27 4, 0
1 3 3 0, 2 13 105 41 0, 3
2 6 6 2, 1 14 120 56 3, 4
3 10 10 1, 2 15 136 8 4, 3
4 15 15 2, 3 16 153 25 3, 2
5 21 21 3, 3 17 171 43 2, 2
6 28 28 3, 0 18 190 62 2, 0
7 36 36 0, 1 19 210 18 0, 4
8 45 45 1, 3 20 231 39 4, 2
9 55 55 3, 1 21 253 61 2, 4
10 66 2 1, 4 22 276 20 4, 1
11 78 14 4, 4 23 300 44 1, 1

Note: g(t) = (t + 1)(t + 2)/2

 x
y

!

"
##

$

%
&&=

0 1
2 3

!

"
#

$

%
&

t
1
0

!

"
#

$

%
& mod(5

(b) Rotation values by lane position in matrix

 x = 0 x = 1 x = 2 x = 3 x = 4

y = 4 18 2 61 56 14
y = 3 41 45 15 21 8
y = 2 3 10 43 25 39
y = 1 36 44 6 55 20
y = 0 0 1 62 28 27

Pi Step Function
The π function is defined as follows:

 -22-

 π :"""a x,y!
"

#
$← a &x , &y!

"
#
$,"with"

x
y

'

(
))

*

+
,,=

0 1
2 3

'

(
)

*

+
,

&x
&y

'

(
))

*

+
,, (K.3)

 This can be rewritten as (x, y) × (y, (2x + 3y)). Thus, the lanes within

the 5×5 matrix are moved so that the new x position equals the old y

position and the new y position is determined by (2x + 3y) mod 5. Figure

K.6 helps in visualizing this permutation. Lanes that are along the same

diagonal (increasing in y value going from left to right) prior to π are

arranged on the same row in the matrix after π is executed. Note that the

position of L[0, 0], is unchanged.

 Thus the π step is a permutation of lanes: the lanes move position

within the 5×5 matrix. The ρ step is a permutation of bits: bits within a lane

are rotated. Note that the π step matrix positions are calculated in the same

way that, for the ρ step, the one-dimensional sequence of rotation constants

is mapped to the lanes of the matrix.

 -23-

Z[0, 4]

x = 0 x = 1 x = 2

(a) Lane position at start of step

(b) Lane position after permutation

Figure K.6 Pi Step Function

x = 3 x = 4

Z[0, 3]

Z[0, 2]

Z[0, 1]

Z[0, 0]

y = 1

y = 0

y = 2

y = 3

y = 4 Z[1, 4]

Z[1, 3]

Z[1, 2]

Z[1, 1]

Z[1, 0]

Z[2, 4]

Z[2, 3]

Z[2, 2]

Z[2, 1]

Z[2, 0]

Z[3, 4]

Z[3, 3]

Z[3, 2]

Z[3, 1]

Z[3, 0]

Z[4, 4]

row 0row 3
row 1

row 4
row 2

row 2

row 4

row 1

row 3

Z[4, 3]

Z[4, 2]

Z[4, 1]

Z[4, 0]

Z[2, 0]

x = 0 x = 1 x = 2 x = 3 x = 4

Z[4, 0]

Z[1, 0]

Z[3, 0]

Z[0, 0]

y = 1

y = 0

y = 2

y = 3

y = 4 Z[3, 1]

Z[0, 1]

Z[2, 1]

Z[4, 1]

Z[1, 1]

Z[4, 2]

Z[1, 2]

Z[3, 2]

Z[0, 2]

Z[2, 2]

Z[0, 3]

Z[2, 3]

Z[4, 3]

Z[1, 3]

Z[3, 3]

Z[1, 4]

Z[3, 4]

Z[0, 4]

Z[2, 4]

Z[4, 4]

 -24-

Chi Step Function
The χ function is defined as follows:

 χ :"""a x!"
#
$← a x!"

#
$⊕ a x+1!

"
#
$⊕1()"AND"a x+ 2!

"
#
$() (K.4)

 This function operates to update each bit based on its current value and

the value of the corresponding bit position in the next two lanes in the same

row. The operation is more clearly seen if we consider a single bit a[x, y, z]

and write out the Boolean expression:

a x,y,z!
"

#
$← a x,y,z!

"
#
$⊕ NOT a x+1,y,z!

"
#
$()()AND a x+ 2,y,z!

"
#
$()

 Figure K.5b illustrates the operation of the χ function on the bits of the

lane L[3, 2]. This is the only one of the step functions that is a nonlinear

mapping. Without it, the SHA-3 round function would be linear.

Iota Step Function
The ι function is defined as follows:

 ι:"""a← a⊕ RC ir
#
$
%
& (K.5)

 This function combines each array element with a round constant that

differs for each round. It breaks up any symmetry induced by the other four

routines. In fact, Equation K.5 is somewhat misleading. The round constant

is applied only to the first lane of the internal state array. We express this is

as follows:

 -25-

Table K.5 Round Constants in SHA-3

Roun
d

Constant
(hexadecimal)

Numb
er of 1

bits

 Round Constant
(hexadecimal)

Numb
er of 1

bits
0 0000000000000001 1 12 000000008000808B 6
1 0000000000008082 3 13 800000000000008B 5
2 800000000000808A 5 14 8000000000008089 5
3 8000000080008000 3 15 8000000000008003 4
4 000000000000808B 5 16 8000000000008002 3
5 0000000080000001 2 17 8000000000000080 2
6 8000000080008081 5 18 000000000000800A 3
7 8000000000008009 4 19 800000008000000A 4
8 000000000000008A 3 20 8000000080008081 5
9 0000000000000088 2 21 8000000000008080 3
10 0000000080008009 4 22 0000000080000001 2
11 000000008000000A 3 23 8000000080008008 4

L[0, 0] ← L[0, 0] ⊕ RC[ir] 0 ≤ ir ≤ 24

 Table K.5 lists the 24 64-bit round constants. Note that the Hamming

weight, or number of 1 bits, in the round constants ranges from 1 to 6. Most

of the bit positions are zero and thus do not change the corresponding bits in

L[0, 0]. If we take the cumulative OR of all 24 round constants, we get

RC[0] OR RC[1] OR … OR RC[23] = 800000008000808B

 Thus, only 7 bit positions are active and can affect the value of L[0, 0].

Of course, from round to round, the permutations and substitutions

propagate the effects of the ι function to all of the lanes and all of the bit

positions in the matrix. It is easily seen that the disruption diffuses through

θ and χ to all lanes of the state after a single round.

 -26-

K.5 RECOMMENDED READING AND REFERENCES

[CRUZ11] provides background on the development of SHA-3 and an

overview of the five finalists. [PREN10] provides a good background on the

cryptographic developments that led to the need for a new has algorithm.

[BURR08] discusses the rationale for the new hash standard and NIST's

strategy for developing it.

BURR08 Burr, W. "A New Hash Competition." IEEE Security & Privacy,
May-June, 2008.

CRUZ11 Cruz, J. "Finding the New Encryption Standard, SHA-3." Dr.

Dobb's, October 3, 2011. http://www.drdobbs.com/security/finding-
the-new-encryption-standard-sha-/231700137

PREN10 Preneel, B. "The First 30 Years of Cryptographic Hash Functions

and the NIST SHA-3 Competition." CT-RSA'10 Proceedings of the 2010
international conference on Topics in Cryptology, 2010.

References
BERT07 Bertoni, G., et al. "Sponge Functions." Ecrypt Hash Workshop

2007, May 2007.

BERT11 Bertoni, G., et al. "Cryptographic Sponge Functions." January

2011, http://sponge.noekeon.org/.

