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The winning design for the Secure Hash Algorithm 3 (SHA-3) was announced 

by NIST (National Institute of Standards and Technology) in October 2012. 

SHA-3 is a cryptographic hash function that is intended to complement SHA-

2 as the approved standard for a wide range of applications. In this chapter, 

we first look at the evaluation criteria used by NIST to select a candidate and 

then examine the hash function itself. 

 

K.1  THE ORIGINS OF SHA-3 
 

As of this writing, SHA-1 has not yet been "broken." That is, no one has 

demonstrated a technique for producing collisions in a practical amount of 

time. However, because SHA-1 is very similar in structure and in the basic 

mathematical operations used to MD5 and SHA-0, both of which have been 

broken, SHA-1 is considered insecure and has been phased out for SHA-2. 

 SHA-2, particularly the 512-bit version, would appear to provide 

unassailable security. However, SHA-2 shares the same structure and 

mathematical operations as its predecessors, and this is a cause for concern. 

Because it will take years to find a suitable replacement for SHA-2, should it 

become vulnerable, NIST decided to begin the process of developing a new 

hash standard. 

 Accordingly, NIST announced in 2007 a competition to produce the next 

generation NIST hash function, to be called SHA-3. The basic requirements 

that must be satisfied by any candidate for SHA-3 are the following. 

 

 1. It must be possible to replace SHA-2 with SHA-3 in any application by 

a simple drop-in substitution. Therefore, SHA-3 must support hash 

value lengths of 224, 256, 384, and 512 bits. 

 2. SHA-3 must preserve the online nature of SHA-2. That is, the 

algorithm must process comparatively small blocks (512 or 1024 bits) 
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at a time instead of requiring that the entire message be buffered in 

memory before processing it. 

 

 NIST received sixty-four entries by October 31, 2008; and selected fifty-

one candidate algorithms to advance to the first round on December 10, 

2008, and fourteen to advance to the second round on July 24, 2009. Based 

on the public feedback and internal reviews of the second-round candidates, 

NIST selected five SHA-3 finalists to advance to the third (and final) round of 

the competition on December 9, 2010. NIST completed its evaluation 

process and announced a final standard in 2012. NIST selected Keccak for 

the SHA-3 algorithm. Keccak was designed by a team of cryptographers 

from Belgium and Italy: Guido Bertoni, Joan Daemen,1 Michaël Peeters, and 

Gilles Van Assche. In their announcement, NIST explained the choice as 

follows: 

 

NIST chose KECCAK over the four other excellent finalists for its 
elegant design, large security margin, good general performance, 
excellent efficiency in hardware implementations, and for its 
flexibility. KECCAK uses a new “sponge construction” chaining 
mode, based on a fixed permutation, that can readily be adjusted 
to trade generic security strength for throughput, and can generate 
larger or smaller hash outputs as required. The KECCAK designers 
have also defined a modified chaining mode for KECCAK that 
provides authenticated encryption. 

 

 The role of SHA-3 is somewhat different from that of AES. In the case of 

AES, NIST approved AES as a replacement for DEA and 3DEA. Although 

3DEA is still considered secure, it is not efficient and has a smaller key 

length than one of the AES options. On the other hand, SHA-2 has held up 

well and NIST considers it secure for general use. So SHA-3 is a complement 

                                   
1  Joan Daemen is one of the two designers of Rijndael, the winner of the 

AES competition a decade earlier. 
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or alternative to SHA-2 rather than a replacement. The relatively compact 

nature of SHA-3 may make it useful for so-called “embedded” or smart 

devices that connect to electronic networks but are not themselves full-

fledged computers. Examples include sensors in a building-wide security 

system and home appliances that can be controlled remotely. 

 

K.2  EVALUATION CRITERIA FOR SHA-3 
 

It is worth examining the criteria used by NIST to evaluate potential 

candidates. These criteria span the range of concerns for the practical 

application of modern cryptographic hash functions. When NIST issued its 

original request for candidate algorithm nominations in 2007 [NIST07], the 

request stated that candidate algorithms would be compared based on the 

factors shown in Table K.1 (ranked in descending order of relative 

importance). The three categories of criteria were: 
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Table K.1  NIST Evaluation Criteria for SHA-3 
 

SECURITY 
 
•Applications of the hash function: Algorithms having the same hash length will be compared for the 

security that may be provided in a wide variety of cryptographic applications, including digital 
signatures (FIPS 186–2), key derivation (NIST SP 800–56A), hash-based message authentication codes 
(FIPS 198), and deterministic random bit generators (SP 800–90). 

•Specific requirements when hash functions are used to support HMAC, pseudorandom functions 
(PRFs), and randomized hashing: The criteria list specific security requirements for these 
applications. 

•Addition security requirements: Specific collision and preimage resistant criteria. 
•Evaluations relating to attack resistance: Hash algorithms will be evaluated against attacks or 

observations that may threaten existing or proposed applications, or demonstrate some fundamental 
flaw in the design, such as exhibiting nonrandom behavior and failing statistical tests. 

•Other consideration factors: The quality of the security arguments/proofs, the clarity of the 
documentation of the algorithm, the quality of the analysis on the algorithm performed by the 
submitters, the simplicity of the algorithm, and the confidence of NIST and the cryptographic 
community in the algorithm’s long-term security may all be considered. 

 
COST 

 
•Computational efficiency: Computational efficiency refers to the execution speed of the algorithm. The 
evaluation of the computational efficiency of the candidate algorithms will be applicable to both 
hardware and software implementations. The Round 1 analysis by NIST will focus primarily on software 
implementations; hardware implementations will be addressed more thoroughly during the Round 2 
analysis. 

•Memory requirements: Memory requirements include such factors as gate counts for hardware 
implementations, and code size and RAM requirements for software implementations. The memory 
required to implement a candidate algorithm—for both hardware and software implementations of the 
algorithm—will be considered during the evaluation process. The Round 1 analysis will focus primarily 
on software implementations; hardware implementations will be addressed more thoroughly during 
Round 2.  

•Flexibility: Candidate algorithms with greater flexibility will meet the needs of more users than less 
flexible algorithms, and therefore, are preferable. However, some extremes of functionality are of little 
practical use (e.g., extremely short message digest lengths)—for those cases, preference will not be 
given. Some examples of ‘‘flexibility’’ may include (but are not limited to) the following: 

 a. The algorithm has a tunable parameter, which allows the selection of a range of possible 
security/performance tradeoffs. 

 b. The algorithm can be implemented securely and efficiently on a wide variety of platforms, including 
constrained environments, such as smart cards. 

 c. Implementations of the algorithm can be parallelized to achieve higher performance efficiency. 
 

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS 
 
•Simplicity: A candidate algorithm shall be judged according to relative simplicity of design. 
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• Security: The evaluation considered the relative security of the 

candidates compared to each other and to SHA-2. In addition, specific 

security requirements related to various applications and resistance to 

attacks are included in this category. 

• Cost: NIST intends SHA-3 to be practical in a wide range of 

applications. Accordingly, SHA-3 must have high computational 

efficiency, so as to be usable in high-speed applications, such as 

broadband links, and low memory requirements. 

• Algorithm and implementation characteristics: This category 

includes a variety of considerations, including flexibility; suitability for a 

variety of hardware and software implementations; and simplicity, 

which will make an analysis of security more straightforward. 

 

K.3  THE SPONGE CONSTRUCTION 
 

The underlying structure of SHA-3 is a scheme referred to by its designers 

as a sponge construction [BERT07, BERT11]. The sponge construction has 

the same general structure as other iterated hash functions. The sponge 

function takes an input message and partitions it into fixed-size blocks. Each 

block is processed in turn with the output of each iteration fed into the next 

iteration, finally producing an output block. 

 The sponge function is defined by three parameters: 

 

 f the internal function used to process each input block2 

 r the size in bits of the input blocks, called the bitrate 

                                   
2  The Keccak documentation refers to f as a permutation. As we shall see, 

it involves both permutations and substitutions. We refer to f as the 
iteration function, because it is the function that is executed once for 
each iteration, that is, once for each block of the message that is 
processed. 
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 pad the padding algorithm 

 

 A sponge function allows both variable length input and output, making 

it a flexible structure that can be used for a hash function (fixed length 

output), a pseudorandom number generator (fixed length input), and other 

cryptographic functions. Figure K.1 illustrates this point. An input message 

of n bits is partitioned into k fixed-size blocks of r bits each. If necessary, 

the message is padded to achieve a length that is an integer multiple of r 

bits. The resulting partition is the sequence of blocks P0, P1, …, Pk–1, with n 

= k × r. For uniformity, padding is always added, so that if n mod r = 0, a 

padding block of r bits is added. The actual padding algorithm is a parameter 

of the function. The sponge specification proposes [BERT11] proposes two 

padding schemes: 

 

• Simple padding: Denoted by pad10*, appends a single bit 1 followed 

by the minimum number of bits 0 such that the length of the result is a 

multiple of the block length. 

• Multirate padding: denoted by pad10∗1, appends a single bit 1 

followed by the minimum number of bits 0 followed by a single bit 1 

such that the length of the result is a multiple of the block length. This 

is the simplest padding scheme that allows secure use of the same f 

with different rates r. 
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k    r bits

Figure K.1  Sponge Function Input and Output
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 After processing all of the blocks, the sponge function generates a 

sequence of output blocks Z0, Z1, …, Zj–1, The number of output blocks 

generated is determined by the number of output bits desired. If the desired 

output is ℓ bits, then j blocks are produced, such that (j – 1) × r < ℓ ≤ j × r. 

 Figure K.2 shows the iterated structure of the sponge function. The 

sponge construction operates on a state variable s of b = r + c bits, which is 

initialized to all zeros and modified at each iteration. The value r is called the 

bitrate. This value is the block size used to partition the input message. The 

term bitrate reflects that fact that r is the number of bits processed at each  
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Figure K.2  Sponge Construction

(a) Absorbing phase
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iteration: the larger the value of r, the greater the rate at which message 

bits are processed by the sponge construction. The value c is referred to as 

the capacity. A discussion of the security implications of the capacity is 

beyond our scope. In essence, the capacity is a measure of the achievable 

complexity of the sponge construction and therefore the achievable level of 

security. A given implementation can trade claimed security for speed by 

increasing the capacity c and decreasing the bitrate r accordingly, or vice-

versa. The default values for Keccak are c = 1024 bits, r = 576 bits, and 

therefore b = 1600 bits. 

 The sponge construction consists of two phases. The absorbing phase 

proceeds as follows: For each iteration, the input block to be processed is 

padded with zeroes to extend its length from r bits to b bits. Then, the 

bitwise XOR of the extended message block and s is formed to create a b-bit 

input to the iteration function f. The output of f is the value of s for the next 

iteration. 

 If the desired output length ℓ satisfies ℓ ≤ b, then at the completion of 

the absorbing phase, the first ℓ bits of s are returned and the sponge 

construction terminates. Otherwise, the sponge construction enters the 

squeezing phase. To begin, the first ℓ bits of s are retained as block Z0. 

Then, the value of s is updated with repeated executions of f, and at each 

iteration, the first ℓ bits of s are retained as block Zi and concatenated with 

previously generated blocks. The process continues through (j – 1) iterations 

until we have (j – 1) × r < ℓ ≤ j × r. At this point the first ℓ bits of the 

concatenated block Y are returned. 

 Note that the absorbing phase has the structure of a typical hash 

function. A common case will be one in which the desired hash length is 

equal to the input block length; that is ℓ = r. In that case, the sponge 

construction terminates after the absorbing phase. If a longer output than b 

bits is required, then the squeezing phase is employed. Thus the sponge 
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construction is quite flexible. For example, a short message with a length r 

could be used as a seed and the sponge construction would function as a 

pseudorandom number generator. 

 To summarize, the sponge construction is a simple iterated construction 

for building a function F with variable-length input and arbitrary output 

length based on a fixed-length transformation or permutation f operating on 

a fixed number b of bits. The sponge construction is defined formally in 

[BERT11] as follows: 

 

Algorithm  The  sponge  construction  SPONGE[  f  ,  pad,  r]  
Require:  r  <  b  

   Interface:  Z  =  sponge(M,  ℓ)  with  M  ∈  Z
2
* ,  integer  ℓ  >  0  and  Y  ∈  Z

2

  

   P  =  M||pad[r](|M|)  
   s  =  0b  
   for  i  =  0  to  |P|r  −  1  do  

      s  =  s  ⊕  (Pi||0b−r)  
      s  =  f  (s)  
   end  for  
   Z  =  ⌊s⌋r  
   while  |Z|rr  <  ℓ  do  
      s  =  f  (s)  
      Z  =  Z||⌊s⌋r  

   end  while  
   return  ⌊Z⌋ℓ 

 

 In the algorithm definition, the following notation is used: |M| is the 

length in bits of a bit string M. A bit string M can be considered as a 

sequence of blocks of some fixed length x, where the last block may be 

shorter. The number of blocks of M is denoted by |M|x. The blocks of M are 

denoted by Mi and the index ranges from 0 to |M|x −1. The expression ⎣M⎦ℓ 

denotes the truncation of M to its first ℓ bits. 
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Table K.2  SHA-3 Parameters 
 
Message Digest 
Size 

224 256 384 512 

Message Size no maximum no maximum no maximum no maximum 

Block Size 
(bitrate r) 

1152 1088 832 576 

Word Size 64 64 64 64 

Number of 
Rounds 

24 24 24 24 

Capacity c 448 512 768 1024 

Collision 
resistance 

2112 2128 2192 2256 

Second 
preimage 
resistance 

2224 2256 2384 2512 

 
Note: All sizes and security levels are measured in bits. 
 

 The overall structure of SHA-3 is expressed as Keccak[r, c]. Table K.2 

shows the supported values of r and c. SHA-3 makes use of the iteration 

function f, labeled Keccak-f, which is described in the next section. The 

overall SHA-3 function is a sponge function expressed as Keccak[r, c] to 

reflect that SHA-3 has two operational parameters, r, the message block 

size, and c, the capacity, with the default of r + c = 1600 bits. As Table K.2 

indicates, the hash function security associated with the sponge construction 

is a function of the capacity c. 

 In terms of the sponge algorithm defined above, Keccak[r, c] is defined 

as 

Keccak[r, c] Δ  SPONGE[Keccak-f[r + c], pad10*1, r]  

 

 We now turn to a discussion of the iteration function Keccak-f. 
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K.4  THE SHA-3 ITERATION FUNCTION f 
 

We now examine the iteration function Keccak-f used to process each 

successive block of the input message. Recall that f takes as input a 1600 bit 

variable s consisting of r bits, corresponding to the message block size 

followed by c bits, referred to as the capacity. For internal processing within 

f, the input state variable s is organized as a 5 × 5 × 64 array a. The 64-bit 

units are referred to as lanes. For our purposes, we generally use the 

notation a[x, y, z] to refer to an individual bit with the state array. When we 

are more concerned with operations that affect entire lanes, we designate 

the 5 × 5 matrix as L[x, y], where each entry in L is a 64-bit lane. The use of 

indices within this matrix is shown in Figure K.3.3 Thus, the columns are 

labeled x = 0 through x = 4, the rows are labeled y = 0 through y = 4, and 

the individual bits within a lane are labeled z = 0 through z = 63. The 

mapping between the bits of s and those of a is 

 

s[64(5y + x) + z] = a[x, y, z]. 

  

 We can visualize this with respect to the matrix in Figure K.3. When 

treating the state as a matrix of lanes, the first lane in the lower left corner, 

L[0, 0], corresponds to the first 64 bits of s. The lane in the second column, 

lowest row, L[1, 0], corresponds to the next 64 bits of s. Thus, the array a is 

filled with the bits of s starting with row y = 0 and proceeding row by row. 

 

 
                                   
3  Note that the first index (x) designates a column and the second index 

(y) designates a row. This is in conflict with the convention used in most 
mathematics sources, where the first index designates a row and the 
second index designates a column. (e.g., Knuth, D. The Art of Computing 
Programming, Volume 1, Fundamental Algorithms; and Korn, G, and 
Korn, T. Mathematical Handbook for Scientists and Engineers) 
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Figure K.3  SHA-3 State Matrix

L[0, 4]

x = 0 x = 1 x = 2 x = 3 x = 4

L[0, 3]

L[0, 2]

L[0, 1]

L[0, 0]

a[x, y, 0] a[x, y, 1] a[x, y, 2]

y = 1

y = 0

y = 2

y = 3

y = 4 L[1, 4]

L[1, 3]

L[1, 2]

L[1, 1]

L[1, 0]

L[2, 4]

L[2, 3]

L[2, 2]

L[2, 1]

L[2, 0]

(a) State variable as 5    5 matrix A of 64-bit words

(b) Bit labeling of 64-bit words

L[3, 4]

L[3, 3]

L[3, 2]

L[4, 1]

L[3, 0]

L[4, 4]

L[4, 3]

L[4, 2]

L[4, 1]

L[4, 0]

a[x, y, 63]a[x, y, 62]a[x, y, z]

 
 

Structure of f 
The function f is executed once for each input block of the message to be 

hashed. The function takes as input the 1600-bit state variable and converts 

it into a 5 × 5 matrix of 64-bit lanes. This matrix then passes through 24 

rounds of processing. Each round consists of 5 steps, and each step updates 

the state matrix by permutation or substitution operations. As shown in 

Figure K.4, the rounds are identical with the exception of the final step in 

each round, which is modified by a round constant that differs for each 

round. 
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TableK.3  Step Functions in SHA-3 
 

Function Type Description 

θ Substitution 
New value of each bit in each word depends its current 
value and on one bit in each word of preceding column 
and one bit of each word in succeeding column. 

ρ  Permutation The bits of each word are permuted using a circular bit 
shift. W[0, 0] is not affected. 

π  Permutation Words are permuted in the 5×5 matrix. W[0, 0] is not 
affected. 

χ  Substitution 

New value of each bit in each word depends on its 
current value and on one bit in next word in the same 
row and one bit in the second next word in the same 
row. 

ι Substitution W[0, 0] is updated by XOR with a round constant. 
 

 The application of the five steps can be expressed as the composition4 

of functions: 

 

R = ι  ο χ ο π ο ρ ο θ 

 

 Table K.3 summarizes the operation of the five steps. The steps have a 

simple description leading to a specification that is compact and in which no 

trapdoor can be hidden. The operations on lanes in the specification are 

limited to bitwise Boolean operations (XOR, AND, NOT) and rotations. There 

is no need for table-lookups, arithmetic operations, or data-dependent 

rotations. Thus, SHA-3 is easily and efficiently implemented in either 

hardware or software. 

 We examine each of the step functions in turn. 

 

                                   
4  If f and g are two functions, then the function F with the equation y = 

F(x) = g[f(x)] is called the composition of f and g and is denoted as F = 
g ο f. 
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Theta Step Function 
The Keccak reference defines the θ function as follows. For bit z in column x, 

row y: 

 

θ:"""a x,y,z!
"

#
$← a x,y,z!

"
#
$⊕ a x−1( ) ,y,z!

"(
#
$)

*y =0

4

∑ ⊕ a x+1( ) ,y, z−1( )!
"(

#
$)

*y =0

4

∑  (K.1) 

 

where the summations are XOR operations. We can see more clearly what 

this operation accomplishes with reference to Figure K.5a. First, define the 

bitwise XOR of the lanes in column x as: 

 

C[x] = L[x, 0] ⊕ L[x, 1] ⊕ L[x, 2] ⊕ L[x, 3] ⊕ L[x, 4] 

 

 Consider lane L[x, y] in column x, row y. The first summation in 

Equation K.1 performs a bitwise XOR of the lanes in column (x – 1) mod 4 to 

form the 64-bit lane C[x – 1]. The second summation performs a bitwise 

XOR of the lanes in column (x + 1) mod 4, and then rotates the bits within 

the 64-bit lane so that the bit in position z is mapped into position z + 1 

mod 64. This forms the lane ROT(C[x + 1], 1). These two lanes and L[x, y] 

are combined by bitwise XOR to form the updated value of L[x, y]. This can 

be expressed as: 

 

L[x, y] ← L[x, y] ⊕ C[x – 1] ⊕ ROT(C[x + 1], 1) 

 

 Figure K.5.a illustrates the operation on L[3,2]. The same operation is 

performed on all of the other lanes in the matrix. 
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Figure K.5  Theta and Chi Step Functions
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 Several observations are in order. Each bit in a lane is updated using 

the bit itself and one bit in the same bit position from each lane in the 

preceding column and one bit in the adjacent bit position from each lane in 

the succeeding column. Thus the updated value of each bit depends on 11 

bits. This provides good mixing. Also, the theta step provides good diffusion, 
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as that term was defined in Chapter 3. The designers of Keccak state that 

the theta step provides a high level of diffusion on average and that without 

theta, the round function would not provide diffusion of any significance. 

 

Rho Step Function 
The ρ function is defined as follows: 

 

 

ρ:"""a x,y,z!
"

#
$← a x,y,z!

"
#
$ if x = y = 0  

otherwise, 

 ρ:"""a x,y,z!
"

#
$← a x,y, z−

t+1( ) t+ 2( )
2

'

(

)
))

*

+

,
,,

!

"

-
-
-

#

$

.

.

.

 (K.2) 

 

 with t satisfying 0 ≤ t < 24 and 0 1
2 3

!

"
#

$

%
&

t

1
0

!

"
#

$

%
&= x

y

!

"
##

$

%
&& in GF 5( )

2×2
 

 

 It is not immediately obvious what this step performs, so let us look at 

the process in detail. 

 

 1. The lane in position (x, y) = (0, 0), that is L[0, 0], is unaffected. For 

all other words, a circular bit shift within the lane is performed. 

 2. The variable t, with 0 ≤ t < 24, is used to determine both the amount 

of the circular bit shift and which lane is assigned which shift value. 

 3. The 24 individual bit shifts that are performed have the respective 

values 
t+1( ) t+ 2( )

2
mod 64 . 
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 4. The shift determined by the value of t is performed on the lane in 

position (x, y) in the 5×5 matrix of lanes. Specifically, for each value of 

t, the corresponding matrix position is defined by 

x
y

!

"
##

$

%
&&=

0 1
2 3

!

"
#

$

%
&

t
1
0

!

"
#

$

%
& . For example, for t = 3, we have: 
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"
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!

"
#
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%
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!

"
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 Table K.4a shows the calculations that are performed to determine the 

amount of the bit shift and the location of each bit shift value. Note that all 

of the rotation amounts are different. Table K.4b shows the rotation values 

for each lane in the matrix. 

 The ρ function thus consists of a simple permutation (circular shift) 

within each lane. The intent is to provide diffusion within each lane. Without 

this function diffusion between lanes would be very slow. 
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Table K.4a  Rotation Values Used in SHA-3 
 

(a) Calculation of values and positions 
 

T g(t) g(t) mod 
64 

x, y  t g(t) g(t) mod 
64 

x, y 

0 1 1 1, 0  12 91 27 4, 0 
1 3 3 0, 2  13 105 41 0, 3 
2 6 6 2, 1  14 120 56 3, 4 
3 10 10 1, 2  15 136 8 4, 3 
4 15 15 2, 3  16 153 25 3, 2 
5 21 21 3, 3  17 171 43 2, 2 
6 28 28 3, 0  18 190 62 2, 0 
7 36 36 0, 1  19 210 18 0, 4 
8 45 45 1, 3  20 231 39 4, 2 
9 55 55 3, 1  21 253 61 2, 4 
10 66 2 1, 4  22 276 20 4, 1 
11 78 14 4, 4  23 300 44 1, 1 

 
Note: g(t) = (t + 1)(t + 2)/2 

 x
y
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"
##

$

%
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(b) Rotation values by lane position in matrix 

 
 x = 0 x = 1 x = 2 x = 3 x = 4 

y = 4 18 2 61 56 14 
y = 3 41 45 15 21 8 
y = 2 3 10 43 25 39 
y = 1 36 44 6 55 20 
y = 0 0 1 62 28 27 

 

 

Pi Step Function 
The π function is defined as follows: 
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 π :"""a x,y!
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 This can be rewritten as (x, y) × (y, (2x + 3y)). Thus, the lanes within 

the 5×5 matrix are moved so that the new x position equals the old y 

position and the new y position is determined by (2x + 3y) mod 5. Figure 

K.6 helps in visualizing this permutation. Lanes that are along the same 

diagonal (increasing in y value going from left to right) prior to π are 

arranged on the same row in the matrix after π is executed. Note that the 

position of L[0, 0], is unchanged. 

 Thus the π step is a permutation of lanes: the lanes move position 

within the 5×5 matrix. The ρ step is a permutation of bits: bits within a lane 

are rotated. Note that the π step matrix positions are calculated in the same 

way that, for the ρ step, the one-dimensional sequence of rotation constants 

is mapped to the lanes of the matrix. 
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Z[0, 4]

x = 0 x = 1 x = 2

(a) Lane position at start of step

(b) Lane position after permutation

Figure K.6  Pi Step Function
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Chi Step Function 
The χ function is defined as follows: 

 

 χ :"""a x!"
#
$← a x!"

#
$⊕ a x+1!

"
#
$⊕1( )"AND"a x+ 2!

"
#
$( )  (K.4) 

 

 This function operates to update each bit based on its current value and 

the value of the corresponding bit position in the next two lanes in the same 

row. The operation is more clearly seen if we consider a single bit a[x, y, z] 

and write out the Boolean expression: 

 

a x,y,z!
"

#
$← a x,y,z!

"
#
$⊕ NOT a x+1,y,z!

"
#
$( )( )AND a x+ 2,y,z!

"
#
$( )  

 

 Figure K.5b illustrates the operation of the χ function on the bits of the 

lane L[3, 2]. This is the only one of the step functions that is a nonlinear 

mapping. Without it, the SHA-3 round function would be linear. 

 

Iota Step Function 
The ι function is defined as follows: 

 

 ι:"""a← a⊕ RC ir
#
$
%
&  (K.5) 

  

 This function combines each array element with a round constant that 

differs for each round. It breaks up any symmetry induced by the other four 

routines. In fact, Equation K.5 is somewhat misleading. The round constant 

is applied only to the first lane of the internal state array. We express this is 

as follows: 
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Table K.5  Round Constants in SHA-3 
 

Roun
d 

Constant 
(hexadecimal) 

Numb
er of 1 

bits 

 Round Constant 
(hexadecimal) 

Numb
er of 1 

bits 
0 0000000000000001 1  12 000000008000808B 6 
1 0000000000008082 3  13 800000000000008B 5 
2 800000000000808A 5  14 8000000000008089 5 
3 8000000080008000 3  15 8000000000008003 4 
4 000000000000808B 5  16 8000000000008002 3 
5 0000000080000001 2  17 8000000000000080 2 
6 8000000080008081 5  18 000000000000800A 3 
7 8000000000008009 4  19 800000008000000A 4 
8 000000000000008A 3  20 8000000080008081 5 
9 0000000000000088 2  21 8000000000008080 3 
10 0000000080008009 4  22 0000000080000001 2 
11 000000008000000A 3  23 8000000080008008 4 

 

L[0, 0] ← L[0, 0] ⊕ RC[ir]         0 ≤ ir ≤ 24 

 

 Table K.5 lists the 24 64-bit round constants. Note that the Hamming 

weight, or number of 1 bits, in the round constants ranges from 1 to 6. Most 

of the bit positions are zero and thus do not change the corresponding bits in 

L[0, 0]. If we take the cumulative OR of all 24 round constants, we get 

 

RC[0] OR RC[1] OR … OR RC[23] = 800000008000808B 

 

 Thus, only 7 bit positions are active and can affect the value of L[0, 0]. 

Of course, from round to round, the permutations and substitutions 

propagate the effects of the ι function to all of the lanes and all of the bit 

positions in the matrix. It is easily seen that the disruption diffuses through 

θ and χ to all lanes of the state after a single round. 
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