
ECE560
Computer and Information Security

Fall 2023

Cryptography

Tyler Bletsch

Duke University

Some slides adapted from slideware accompanying
“Computer Security: Principles and Practice” by William Stallings and Lawrie Brown

2

REAL advice for using cryptography

• I’m about to teach cryptography basics, which you should know

• However, you should not reach for these functions in most real-
world programming scenarios!!

• Repeat after me:

Don’t roll your own crypto!

Don’t roll your own crypto!

Don’t roll your own crypto!

I’ll provide more detailed advice after we understand the theory...

3

Crypto basics summary

• Symmetric (secret key) cryptography
▪ c = Es(p,k)

▪ p = Ds(c,k)

• Asymmetric (public key) cryptography
▪ c = Ea(p,kpub)

▪ p = Da(c,kpriv)

▪ kpub and kpriv generated together, mathematically related

• Message Authentication Codes (MAC)
▪ Generate and append: H(p+k), E(H(p),k), or tail of E(p,k)

▪ Check: A match proves sender knew k

• Digital signatures
▪ Generate and append: s = Ea(H(p),kpriv)

▪ Check: Da(s,kpub)==H(p) proves sender knew kpriv

c = ciphertext
p = plaintext
k = secret key
Es = Encryption function (symmetric)
Ds = Decryption function (symmetric)

H = Hash function

Ea = Encryption function (asymmetric)
Da = Decryption function (asymmetric)
kpub = public key
kpriv = private key

s = signature

4

Symmetric (Secret Key) Encryption

5

Symmetric cryptography

• The primary method for providing confidentiality of data
transmitted (“in-flight”) or stored (“at-rest encryption”)

• Uses one key for both encryption and decryption.
▪ Sender/receiver must already have copies of this key.

Given:

Plaintext p (arbitrary size)

Secret key k (fixed size)

Encryption function E

Decryption function D

Can produce ciphertext c:

c = E(p,k)

Can recover plaintext:

p = D(c,k)

6

How to attack cryptography

• Cryptanalysis – apply cleverness
▪ Exploit weaknesses in algorithm or manner of its use

▪ May leverage existing plaintext, ciphertext, or
pairs of each

▪ KEY ISSUE: Even if algorithm is “perfect” (unprovable),
you might use the algorithm incorrectly.

(This is why you don’t roll your own crypto)

• Brute-force attack – apply money
▪ Try all possible keys, stop when decrypted result seems

readable

• Need to try half of all keys on average

▪ Can be done in parallel (i.e., using compute cluster)

▪ Always possible, but if the number of possible keys is
large enough, cost to crack > value of info obtained

• This is called being computationally secure

7

Hypothetical bad symmetric encryption algorithm:
XOR

• A lot of encryption algorithms rely on properties of XOR
▪ Can think of A^B as “Flip a bit in A if corresponding bit in B is 1”

▪ If you XOR by same thing twice, you get the data back

▪ XORing by a random bit string yields NO info about original data

• Each bit has a 50% chance of having been flipped

• Could consider XOR itself to be a symmetric encryption
algorithm (but it sucks at it!) – can be illustrative to explore

• Simple XOR encryption algorithm:
▪ E(p,k) = p ^ k (keep repeating k as often as needed to cover p)

▪ D(c,k) = c ^ k (same algorithm both ways!)

A B A^B

0 0 0

0 1 1

1 0 1

1 1 0

>>> a=501
>>> b=199
>>> a ^= b
>>> print a
306
>>> a ^= b
>>> print a
501

8

XOR “encryption” demo

Plaintext: 'Hello'

Key : 'key'

 H e l l o

Plaintext : 01001000 01100101 01101100 01101100 01101111

 k e y k e

Key : 01101011 01100101 01111001 01101011 01100101

Ciphertext: 00100011 00000000 00010101 00000111 00001010

Ciphertext: 00100011 00000000 00010101 00000111 00001010

Key : 01101011 01100101 01111001 01101011 01100101

Decrypted : 01001000 01100101 01101100 01101100 01101111

 H e l l o

Key repeats>

^ XOR result

^ XOR result

9

Types of cryptanalysis attacks

Type of attack Things known to cryptanalyst

Ciphertext only (just the ciphertext under attack)

Known plaintext • One or more plaintext-ciphertext pairs using same key

Chosen plaintext • Plaintext chosen by attacker + ciphertext encrypted with same key

Chosen ciphertext • Ciphertext chosen by attacker + “plaintext” decrypted with same key

Chosen text • Plaintext chosen by attacker + ciphertext encrypted with same key
• Ciphertext chosen by attacker + “plaintext” decrypted with same key

• Given the encryption algorithm and ciphertext under attack, attacks we can do:

10

Attacking XOR (1)

• Known plaintext attack:
▪ Given plaintext : 01001000 01100101 01101100 01101100 01101111

▪ Given ciphertext : 00100011 00000000 00010101 00000111 00001010

▪ XOR result : 01101011 01100101 01111001 01101011 01100101

 ^^ it's the key!!!

• Chosen plaintext attack:
▪ Chosen plaintext : 00000000 00000000 00000000 00000000 00000000

▪ Given ciphertext : 01101011 01100101 01111001 01101011 01100101

▪ XOR result : 01101011 01100101 01111001 01101011 01100101

 ^^ it's the key!!!

• Chosen ciphertext attack:
▪ Chosen ciphertext: 00000000 00000000 00000000 00000000 00000000

▪ Result plaintext : 01101011 01100101 01111001 01101011 01100101

▪ XOR result : 01101011 01100101 01111001 01101011 01100101

 ^^ it's the key!!!

11

Attacking XOR (2)

• Ciphertext only attack:
▪ Ciphertext: 00100011 00000000 00010101 00000111 00001010

▪ "I assume the plaintext had ASCII text with lowercase letters, and in all such letters bit
6 is 1, but none of the ciphertext has bit 6 set, so I bet the key is most/all lower case
letters"

▪ "The second byte is all zeroes, which means the second byte of the key and plaintext
are equal"

▪ etc....

• Conclusion: XOR is a sucky encryption algorithm

12

Symmetric ciphers in common use

Cipher Key size Block size Year introduced

DES 56 64 1975

3DES 112/168 64 1995

Twofish 128/192/256 128 1998

Serpent 128/192/256 128 1998

Rijndael 128/192/256 128 1998

(1975) Now ATMs can exist thanks to
this Data Encryption Standard (DES)!

(1995) Ahh, the DES key is too small! It
can be brute forced really fast! Hurry,

duct tape three of them together!

(1998) Crap, now it’s too slow! Lets
have a bunch of algorithms come fight
to become the American Encryption

Standard (AES)!

(2001) This guy won and is now called AES.

• Triple DES (3DES) still around in legacy stuff like in financial systems (ATMs)
• AES dominates everywhere else.

• Implemented in hardware in modern CPUs – way faster than software
versions of other algorithms (by 5x or more!)

• Not sure what to use? Use AES
• Some people like to use the other AES finalists (Twofish, Serpent) or other

symmetric ciphers not listed here. That’s fine.

13

Okay, but what about that “block size” thing?

• These are block ciphers – they
just encrypt a block of bits.

• How do you apply the cipher
to data that’s bigger than just
one block?

• Answer: modes of operation

• Simplest mode of operation: Electronic Code Book (ECB)
• Each block of plaintext is encrypted with the same key

Problem?

14

Demonstrating the danger of ECB

• Electronic Codebook (ECB) is what you’d come up with naively:
 “Just apply the key to each block”

• But this means that identical blocks give identical ciphertext, which
can be informative to an attacker...

Figures from Wikipedia “Block cipher mode of operation”☺

See PoC||GTFO 4:13

for a poem about this

15

Solution to the “ECB problem”

• Develop more sophisticated modes of operation for use with our
block cipher.
▪ We’ll see several of these – there’s tradeoffs to different techniques

• Some will convert our block cipher to a stream cipher
▪ Stream cipher: A cipher where the plaintext is XOR’d with a pseudorandom

bit stream derived from the key

Figure from https://www.researchgate.net/figure/Stream-cipher-diagram_fig2_318517979

https://www.researchgate.net/figure/Stream-cipher-diagram_fig2_318517979

16

Modes of operation: CBC

• Cipher Block Chaining (CBC):
▪ Each block of plaintext is XOR’d with previous block ciphertext

▪ Prevents patterns from being visible even in regular data

Figures from Wikipedia “Block cipher mode of operation”

Encryption parallelizable? No

Decryption parallelizable? Yes

Random read access? Yes

Initialization Vector (IV)
• Random
• Not secret

(transmitted in clear)
• Prevents cryptanalysis,

e.g. by preventing a
past-seen plaintext
from producing the
same ciphertext in the
first block

17

More about the Initialization Vector

• The previous slide showed an “IV” (Initialization Vector”) used to
start the chain (it’s XORed with the first block of plaintext).
Something like this is used in many modes.
▪ IV is random per-message; ensures first block of two ciphertexts don’t match

just because plaintexts match.

• The IV must be known to both the sender and receiver, typically not
a secret (often included in the communication).

• IV integrity is important: If an opponent is able to fool the receiver
into using a different value for IV, then the opponent is able to
invert selected bits in the first block of plaintext. Other attacks,
too...
▪ A more detailed discussion can be found here.

https://stackoverflow.com/questions/3008139/why-is-using-a-non-random-iv-with-cbc-mode-a-vulnerability

18

Modes of operation: CTR

• Counter (CTR):
▪ Encrypt an incrementing list of integers to make a keystream:

turns a block cipher into a stream cipher!

▪ Allows full parallelization and random access

Figures from Wikipedia “Block cipher mode of operation”

Encryption parallelizable? Yes

Decryption parallelizable? Yes

Random read access? Yes

Note: A nonce is basically like

an initialization vector.

19

Further modes of operation

• Cipher feedback (CFB): Chained encryption similar to CBC, but just
used to produce a keystream – works as a stream cipher

• Output feedback (OFB): Very similar to CBC. Neat property: Bitflips
in ciphertext become bitflips in plaintext, so error correcting codes
work transparently.

• Galois/counter mode (GCM): Applies lessons from finite field
theory (out of scope for us). This mode performs authentication as
well as providing confidentiality. Very common on the modern web.

• Many more! See “Block Cipher Modes of Operation” on Wikipedia.

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

20

Asymmetric (Public Key) Cryptography

21

The problem

• Problem with symmetric crypto:

• Want to be able to send a message without having pre-shared a key

• Solution:
 What if the key to decrypt was different than the one to encrypt?

I need to
transmit a

secret

The recipient
needs the
secret key

22

Asymmetric (Public Key) Cryptography

• Proposed by Diffie and Hellman in 1976

• Based on math; asymmetric:
▪ Uses two separate keys

▪ Public key and private key

▪ Public key is made public for others to use,
private key must be kept secret

• I just need to distribute my public key to anyone
who wants to send me stuff.
▪ And prove that it’s my key (covered later)

Whitfield Diffie

Martin Hellman

23

Asymmetric cryptography

• Public and private keys mathematically related,
but one cannot be determined from the other

• Far slower than symmetric encryption
 (but there’s tricks to get around that – covered later)

Sender has:

Plaintext p (arbitrary size)

Recipient’s public kpub (fixed size)

Encryption function E

Decryption function D

Can produce ciphertext c:

c = E(p,kpub)

Can recover plaintext:

Need recipient private key kpriv

p = D(c,kpriv)

Also works if you reverse the keys:

D(E(p,kpriv),kpub) == p

24

Asymmetric crypto can also authenticate…

• Bob encrypts data using his own private key

• Anyone who knows the corresponding public key will be able to
decrypt the message
▪ Proves it was encrypted with Bob’s private key → Bob produced this!

Plaintext

input

Bobs's

public key

ring

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Joy

Mike

Mike Bob

Ted

Alice

Alice's public

key

Alice 's private

key

(a) Encryption with public key

Plaintext

input

Transmitted

ciphertext

Plaintext

output
Encryption algorithm

(e.g., RSA)

Decryption algorithm

Bob's private

key

Bob

Bob's public

key

Alice's

public key

ring

Joy
Ted

(b) Encryption with private key

X

X

PUa

PUb

PRa

PRb

Y = E[PUa, X]

Y = E[PRb, X]

X =

D[PRa, Y]

X =

D[PUb, Y]

Figure 2.6 Public-Key Cryptography

Alice

Bob Alice

25

Properties of asymmetric crypto systems

• It must be computationally easy:
▪ To create key pairs

▪ For a sender knowing the public key to encrypt messages

▪ For a receiver knowing the private key to decrypt ciphertext

• It must be computationally infeasible:
▪ To determine the private key from the public key (or vice versa)

▪ To otherwise recover original message (duh)

26

Asymmetric crypto algorithms

• In symmetric crypto, the list of algorithms just differed in bit sizes
and implementation details

• Asymmetric algorithms differ in fundamental method of use

• Key algorithms:
▪ Diffie-Hellman: Just solves the problem of agreeing to a secret symmetric key

over an open communication channel. Doesn’t encrypt/decrypt or
authenticate on its own.

▪ DSS: Digital Signature Standard – Just able to provide authentication. Doesn’t
encrypt/decrypt on its own.

▪ RSA: The original general purpose asymmetric algorithm – able to do
encryption/decryption (shown 3 slides ago) and signatures (2 slides ago)

▪ Elliptic Curve (e.g., X25519): Uses different fundamental math than the above
(smaller keys, more efficient) but achieves the same goals
(encryption/decryption and signatures)

27

RSA Public-Key Encryption

• Developed by Rivest, Shamir & Adleman in 1977
▪ Best known and widely used public-key algorithm

• Uses exponentiation of integers modulo a prime

• Given integers:
▪ Plaintext p

▪ Public key kpub = {e, n} (Known to sender)

▪ Private key kpriv = {d, n} (Known to receiver)

• Encrypt: 𝒄 = 𝒑𝑒 % 𝑛

• Decrypt: 𝒑 = 𝒄𝑑 % 𝑛

28

Where do you get the numbers:
Key generation

• Choose two distinct prime numbers p and q.
▪ Secret, random, similar in magnitude, chosen to make factoring hard.

• Get product n = pq

▪ Used in modulus in decrypt/encrypt. Length in bits is the “key length”. Part of
both keys.

• Compute φ = (p − 1)(q − 1)

• Choose an integer e that’s coprime with φ (no common factors)
▪ gcd(e, φ) = 1 and 1 < e < φ

▪ e being not very secret is okay; it’s often 216 + 1 = 65537

▪ e is part of the public key

• Determine d by solving de % φ = 1

▪ There’s an efficient algorithm for this, since we know φ
(but φ will be discarded later, and it’s not efficient to solve without it)

▪ d is part of the private key
Q: Hey this is a lot of math. Do I have to care?
A: Nah

29

RSA example

• See? It works.

• In practice, all the numbers are muuuuuuuuch bigger.

Encryption

plaintext

88

plaintext

88

ciphertext

11
88 mod 187 = 11

PU = 7, 187

Decryption

Figure 21.8 Example of RSA Algorithm

7
11 mod 187 = 88

PR = 23, 187

23

kpub kpriv

30

How long of a key do you need?
Or, How good are we at factoring RSA keys?

• RSA Factoring Challenge – cash prizes for factoring big n values

• Computing gets faster/cheaper, and algorithms are getting better
▪ 1024-bit keys are out there…

▪ 2048-bit keys are the default now

• The RSA algorithm is cool, but slow,
and uses giant keys

• Waning in popularity, being replaced
by Elliptic Curve algorithms
(covered later)

RSA number Decimal digits Binary digits Factored on

RSA-100 100 330 Apr 1991

RSA-110 110 364 Apr 1992

RSA-120 120 397 Jul 1993

RSA-129 129 426 Apr 1994

RSA-130 130 430 Apr 1996

RSA-140 140 463 Feb 1999

RSA-150 150 496 Apr 2004

RSA-155 155 512 Aug 1999

RSA-160 160 530 Apr 2003

RSA-170 170 563 Dec 2009

RSA-576 174 576 Dec 2003

RSA-180 180 596 May 2010

RSA-190 190 629 Nov 2010

RSA-640 193 640 Nov 2005

RSA-200 200 663 May 2005

RSA-210 210 696 Sep 2013

RSA-704 212 704 Jul 2012

RSA-220 220 729 May 2016

RSA-230 230 762 Aug 2018

RSA-232 232 768 Feb 2020

RSA-768 232 768 Dec 2009

RSA-240 240 795 Dec 2019

RSA-250 250 829 Feb 2020

RSA-260 260 862

RSA-270 270 895

RSA-896 270 896

RSA-280 280 928

RSA-290 290 962

RSA-300 300 995

RSA-309 309 1024

RSA-1024 309 1024

From https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

31

Timing: Another avenue of attack…

• In crypto, must also be concerned with side-channel attacks:
Looking at “side info” or “meta info” to cheat and learn secrets

• Example: If you have accurate time measurement of decryption in a
naïve RSA implementation, you can determine the private key!
▪ This is a timing attack, a form of side-channel attack

▪ Applicable not just to RSA, but also to other public-key crypto systems

• Countermeasures:
▪ Constant exponentiation time: Ensure that all exponentiations take the same

amount of time before returning a result – simple but slows things down

▪ Random delay: Better performance, but attacker could do many
measurements and statistically tease out actual delay

▪ Blinding: Multiply the ciphertext by a random number before performing
exponentiation then divide out - prevents attacker from knowing the actual
ciphertext bits

32

Diffie-Hellman Key Exchange

• RSA is so slow! I want to use fast symmetric crypto…
▪ Could use RSA to send a random secret key, but we can do better!

Introducing Diffie-Hellman Key Exchange!

• Uses similar mathematical foundations as RSA,
but just for efficient key exchange.
▪ Actually the first published public-key algorithm (1976)

• Two parties on an open channel can agree on a secret! Wow!!!

• Used lots of places (including the web in HTTPS – except it’s being
replaced by an Elliptic Curve equivalent now)

• Relies on difficulty of computing discrete logarithms

33

Diffie-Hellman in operation

Eavesdropping attacker would need to solve 6x mod 13 = 2 or 6x mod 13 = 9, which is hard.

Figure from here.

https://www.practicalnetworking.net/series/cryptography/diffie-hellman/

34

Elliptic Curve (EC) cryptography

• RSA and Diffie-Hellman both rely on basic discrete math
▪ Relatively large key sizes, relatively slow operation

• Enter: Elliptic Curve (EC) cryptography
▪ Equal security for smaller bit size than RSA

▪ Seen in standards such as Elliptic Curve Diffie-Hellman (ECDH),
Elliptic Curve Digital Signature Algorithm (ECDSA), IEEE P1363, and more

▪ Based on a math of an elliptic curve (beyond our scope)

▪ Need a specific curve equation to use

▪ Various competing ones, including some
weakened by the NSA and/or covered by
patents – we don’t like those

▪ Resulting favorite: Curve25519 aka X25519

35

• Asymmetric crypto is more
expensive then symmetric

• Want best of both worlds?

• Just use asymmetric
on a random secret
key (small) and use that key
to symmetrically encrypt
the whole message (big)

Random

symmetric

key

Receiver's

public

key

Encrypted

symmetric

key

Encrypted

message

Encrypted

message

Digital

envelope

Figure 2.9 Digital Envelopes

(a) Creation of a digital envelope

E

E

Message

Random

symmetric

key

Receiver's

private

key

Encrypted

symmetric

key

(b) Opening a digital envelope

D

D
Digital

envelope

Message

“Digital Envelopes”: Reducing the amount of
asymmetric crypto you need to do

36

• We can use symmetric or asymmetric cryptography to get
confidentiality even if there’s an eavesdropper. Yay!

• But what if the attacker is a man in the middle?
▪ Can intercept/alter communications

• Need to authenticate endpoints!

Alice

So where are we now?

Crypto’d with key k

Alice Bob

Curse you,
cryptography!

Crypto’d with k1

Bob

Hi Bob, it’s Alice. Let’s
agree on a key k1.

Crypto’d with k2

Ok: k1

Hi Bob, it’s Alice. Let’s
agree on a key k2.

Ok: k2

Hears all! Can change anything!

Hi Bob, it’s Alice. Let’s
agree on a key k.

Ok: k

37

Establishing Authenticity

Secure Hash Functions,
Message Authentication Codes (MAC), and

Digital Signatures

38

The Authenticity Problem

• Problem: who sent this message?

• Best solution: the actual person appears to confirm it
▪ Not feasible.

• Best practical solution: Sender includes some data that only they
could have created
▪ But how could only they have created it?

Because only they had the key to do so!

▪ Attacker: Get that key! Or fool you into validating against the wrong key!

Hey bro this email’s for real

39

Techniques to authenticate

Two broad approaches similar to crypto:

• Message Authentication Codes (MACs) – based on a secret key
(symmetric)
▪ Sender and receiver need to agree on a shared secret to authenticate

• Digital signatures – based on asymmetric crypto
▪ Sender uses their private key;

Receiver uses sender’s public key to authenticate

• Either way, confidentiality (from crypto) and authenticity (from the above)
are separate things.
▪ Confidentiality without authenticity? Secrets sent anonymously

▪ Authenticity without confidentiality? Public info from a trusted source

▪ Confidentiality + authenticity? Secure communication

40

Message

MAC

K

K

Transmit

MAC

algorithm

MAC

algorithm

Compare

Figure 2.3 Message Authentication Using a Message

Authentication Code (MAC).

MAC concept

41

Methods of implementing a MAC

• Can use symmetric encryption:
▪ Include last block of E(message,key) in CBC mode – sender could only

generate that data if they had the key and message at the same time

▪ Kinda expensive – we can do better

• Can use hash functions:
▪ Non-reversible, arbitrary size input to fixed size output

▪ Various schemes for how to use a hash function for this

▪ Hash functions used for this have more requirements than ones used for data
structures like a hash table – they’re called cryptographic hash functions

42

Cryptographic Hash Functions

A cryptographic hash function H(x) must:

• Eat data of any size and give fixed-length output

• Be easy to compute for any given input

• Be one-way (a.k.a. pre-image resistant):
Computationally infeasible to find x from H(x)

• Have weak collision resistance:
Given x, computationally infeasible to find y ≠ x such that H(x) = H(y)

• Have strong collision resistance:
Computationally infeasible to find any pair (x, y) such that H(x) = H(y)

• Have the avalanche effect:
A small change to the input should totally change the output

43

Common cryptographic hash functions

• MD5: Published 1992, compromised several ways, but it’s in enough
“how do i program webz” tutorials that novices keep using it
▪ Output size: 128 bits

• SHA-1: NIST standard published in 1995, minor weaknesses
published throughout the 2000s, broken in general in 2017.
Sometimes just called “SHA” which can be misleading. Don’t use.
▪ Output size: 160 bits

• SHA-2: NIST standard published in 2001. Still considered secure.
• Output size: a few choices between 224-512 bits

• SHA-3: NIST standard published in 2015. Radically different design;
thought of as a “fallback” if SHA-2 vulnerabilities are discovered.
▪ Output size: a few choices between 224-512 bits, plus “arbitrary size” option

• RIPEMD-160: From 1994, but not broken. Sometimes used for
performance reasons.
▪ Output size: 160 bits

44

Ways of using a hash to authenticate

M
es

sa
g

e

M
es

sa
g

e

M
es

sa
g

e

K

E

K

(a) Using symmetric encryption

Compare

D

H

H

H

H

H

M
es

sa
g

e

M
es

sa
g

e

M
es

sa
g

e
PRa

E

PUa

(b) Using public-key encryption

Compare

D

M
es

sa
g

e

M
es

sa
g

e

M
es

sa
g

e

(c) Using secret value

Compare

K

K

K

K

Source A Destination B

Figure 2.5 Message Authentication Using a One-Way Hash Function.

H

Uses hash + symmetric crypto.
Gives a MAC – sender and

receiver need same key.

Uses just a hash. Neat!
Gives a MAC – sender and

receiver need same key.

Uses hash + asymmetric crypto.
Gives a Digital Signature!

So important we’re going to dig deeper…

45

Digital Signatures

46

Digital Signatures

• Digital signature provides (per NIST FIPS PUB 186-4):
▪ origin authentication,

▪ data integrity, and

▪ signatory non-repudiation

• Common algorithms:
▪ Digital Signature Algorithm (DSA)

▪ RSA Digital Signature Algorithm

▪ Elliptic Curve Digital Signature Algorithm (ECDSA)

(All based on asymmetric cryptography – public and private keys!)

• Advantage over MAC:
▪ We don’t have to pre-share the key!

 (same advantage as asymmetric crypto)

The notion that you can’t deny it was you that sent the message.

47

Digital Signature overview

48

The recursive problem of signatures

Alice can’t remotely prove to you that a given key is hers on her own.

We want to
validate a
message

signed by Alice.

We just need
to apply Alice’s

public key.

Alice sends us
her public key

as a signed
message!

We want to
validate a
message

signed by Alice.

49

Recurse! (1)

Proposed solution:

We have someone ELSE sign a message containing Alice’s key.

We want to
validate a
message

signed by Alice.

We just need
to apply Alice’s

public key.

Bob sends us
Alice’s public

key as a signed
message!

We want to
validate a
message

signed by Bob.

50

Recurse (2)

Proposed solution:

We have someone ELSE sign a message containing Bob’s key.

We want to
validate a
message

signed by Alice.

We just need
to apply Alice’s

public key.

Bob sends us
Alice’s public

key as a signed
message!

We want to
validate a
message

signed by Alice.

We want to
validate a
message

signed by Bob.

We just need
to apply Bob’s

public key.

Clara sends us
Bob’s public

key as a signed
message!

We want to
validate a
message

signed by Clara.

51

Recurse (3)

Proposed solution:

We have someone ELSE sign a message containing Clara’s key.

We want to
validate a
message

signed by Alice.

We just need
to apply Alice’s

public key.

Bob sends us
Alice’s public

key as a signed
message!

We want to
validate a
message

signed by Alice.

We want to
validate a
message

signed by Bob.

We just need
to apply Bob’s

public key.

Clara sends us
Bob’s public

key as a signed
message!

We want to
validate a
message

signed by Clara.

We want to
validate a
message

signed by Clara.

We just need
to apply Clara’s

public key.

Don sends us
Clara’s public
key as a signed

message!

We want to
validate a
message

signed by Don.

The tiny
text says
“Don” is
the next

guy.

52

Recurse (4)
The base case

What about Don’s key?
We got it shipped to us just for this. We trust it implicitly.

We want to
validate a
message

signed by Alice.

We just need
to apply Alice’s

public key.

Bob sends us
Alice’s public

key as a signed
message!

We want to
validate a
message

signed by Alice.

We want to
validate a
message

signed by Bob.

We just need
to apply Bob’s

public key.

Clara sends us
Bob’s public

key as a signed
message!

We want to
validate a
message

signed by Clara.

We want to
validate a
message

signed by Clara.

We just need
to apply Clara’s

public key.

Don sends us
Clara’s public
key as a signed

message!

We want to
validate a
message

signed by Don.

53

Certificates and the chain of trust

• A certificate is a message that:
▪ Contains someone’s identity and their public key, and

▪ Is signed by someone else (usually*).

• Each message on the previous slide was a certificate, and everyone
signing a certificate was a certificate authority (CA).

• The entity that we trust implicitly is a root certificate authority.

• Together, they had this chain of trust:

* It is possible to sign your own certificate. This is called a “self-signed certificate”,
and is used when you want to manually import or approve the key without using
the chain of trust.

Alice Bob Clara Don
“Root CA”“CA”“CA”

Zach

55

How to get a certificate

1. Generate a public/private key pair.
 Keep the private key secret forever!!

2. In a secure manner, present your public key to the CA in the form
of a certificate signing request (CSR) – basically everything of the
certificate except the signature. Provide some proof of identity.

3. The CA verifies your identity and signs the CSR, thus creating the
certificate, which you are given.

You can now show the certificate to anyone who asks, and as long as
they trust your CA (either directly or recursively), they trust that the
key shown is yours.

Now we can advertise public keys with confidence!

56

Certificates in practice: X.509

• Most certificates are in X.509 format specified in RFC 5280.

• Used in many contexts, including:
▪ IP security (IPSEC): Used in Virtual Private Networks (VPNs)

▪ S/MIME: Encrypted/authenticated email

▪ Secure sockets layer (SSL) and its successor Transport Layer Security (TLS)

• This includes HTTPS!

57

Public-Key Infrastructure (PKI)

• All of this certificate and chain-of-trust stuff is part called
Public-Key Infrastructure (PKI)
▪ “The set of hardware, software, people, policies, and procedures needed to

create, manage, store, distribute, and revoke digital certificates based on
asymmetric cryptography.” -- RFC 4949

• Includes a trust store: A list of CA’s and their public keys
▪ But how do Root CA certificates make it into the trust store?

58

Trust stores in practice

• Most chosen by OS or app vendor – major decision!

• Organization can change this – many companies add a private root
CA to all their machines so they can sign certificates internally

• If malware can add a root CA, they can have that CA sign *any*
malicious certificate, allowing man-in-the-middle attacks

• Some security software does this too so it can “inspect” encrypted
traffic for “bad stuff” (I think this is stupid and dangerous)

59

Random number generation

60

Wait, how do we make keys again?

• Symmetric crypto:

• Generate random bits.

• Randoms also used for nonces, initialization vectors,
and more!

• Asymmetric crypto:

• Choose two random
prime numbers p and q,
then do more stuff

Fundamental problem

Computers are deterministic,

true randomness is almost impossible for them

So we fake it with Pseudo-Random Number Generators (PRNGs)

or

Add hardware True Random Number Generators (TRNGs)

61

Requirements for random number generator

• PRNG: Algorithm to do a bunch of math, update
internal state, and kick out a random. Requirements:
▪ Uniform distribution: Frequency of occurrence of each of

the numbers should be approximately the same

• In binary, 0’s and 1’s occur with equal chance.

▪ Independence: Different sequences are entirely distinct
(no patterns)

▪ Uninformative sequences: Impossible to tell from a given
sequence any previous or future values or any inner state of
the generator.

▪ Uninformative state: Impossible to tell, if given the inner
state of the generator, any previous numbers in the
sequence.

U.S. FIPS publication 140-1 specifies precise tests of the above

Plain PRNG
Good enough for games.

Cryptographically-
secure PRNG
(CPRNG)
Good enough to make keys!

62

Dangers when seeding the PRNG

• All PRNGs take in a seed (initial state)
▪ Given the same seed, it will generate the same sequence

▪ For basic randomness (video game junk), you can seed with the current time

• Guaranteed unique sequence ☺

• For crypto purposes, current time is a super bad choice:
If I know when you made your keys, then I can figure out your keys

▪ Instead, feed in a large amount of external entropy (true randomness)

• IO device delays, mouse movements, keyboard timing

• Modern kernels are always recording that stuff into an entropy pool

• Read from /dev/random: pull from this pool and it’s used up (rate limit)
Read from /dev/urandom: not crypto-secure, but not rate limited

• Given the initial state, the PRNG’s full sequence is predictable,
so don’t leak the initial state!

63

Random versus Pseudorandom

• What’s better than a Pseudo-Random Number Generator?

• A True Random Number Generator (TRNG)!
▪ Uses a nondeterministic source to produce randomness (e.g. via external

natural processes like temperature, radiation, leaky capacitors, etc.)

• Increasingly provided on modern processors
▪ Intel x86: The RDRAND instruction uses onboard TRNG. Available on Intel and

AMD chips since 2015.

▪ Similar features available in many other architectures.

▪ You can even get a USB one if you really need it

64

The quantum computing threat
to cryptography

• Quantum computing uses quantum mechanical properties like
superposition and entanglement to do computing
▪ Can perform algorithms in entirely better time domains!

 O(2n) might become O(n2)!

• A problem for cryptography!
▪ Asymmetric encryption breaks: Shor’s Algorithm can factor integers in

polynomial time! RSA and Elliptic Curve will be dead.

• Standardization underway now for replacements (link)

• NIST just picked their fourth round candidates in July 2022

• New standards expected in 2022-2024 timeframe

▪ Symmetric encryption is weakened: Grover’s Algorithm makes a brute-force
search for a key 𝑛 faster, so:

• 128-bit keys are like 64-bit keys (broken)

• 256-bit keys are like 128-bit keys (still okay!)

• So AES-256 will survive. ☺

https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://csrc.nist.gov/projects/post-quantum-cryptography
https://en.wikipedia.org/wiki/Grover%27s_algorithm

65

The current state of quantum-proof crypto

• We are currently living through cryptography standards history!

• NIST is currently running a competition for the first standard
quantum-resistant public key cryptography algorithm
▪ December 2016: Contest started (link to request for proposals)

• Researchers from around the world submit proposed algorithms

• Multiple rounds of evaluation and elimination occur

▪ July 2022: Four candidate winners selected (announcement)

• General encryption: CRYSTALS-Kyber

• Digital signatures: CRYSTALS-Dilithium, FALCON and SPHINCS+

• Four separate runners up also selected as backups

▪ August 2022: One of the runner up algorithms, SIKE, is defeated (article)

• This algorithm survived scrutiny since 2017 before being defeated!

• Shows why the selection process is long and methodical…

https://www.federalregister.gov/documents/2016/12/20/2016-30615/announcing-request-for-nominations-for-public-key-post-quantum-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://falcon-sign.info/
https://sphincs.org/
https://sike.org/
https://www.securityweek.com/nist-post-quantum-algorithm-finalist-cracked-using-classical-pc

66

Practical crypto rules

he is sitting backwards in a chair so you know it’s time for REALTALK

67

Application note: “In-flight” vs “at-rest” encryption

• “In-flight” encryption: secure communication
▪ Examples: HTTPS, SSH, etc.

▪ Very common

▪ Commonly use asymmetric crypto to authenticate and agree on secret keys,
then symmetric crypto for the bulk of communications

• “At-rest” encryption: secure storage
▪ Examples: VeraCrypt, dm-crypt, BitLocker, passworded ZIPs, etc.

▪ Somewhat common

▪ Key management is harder: how to input the key? How to store it safely
enough to use it but ‘forget’ it at the right time to stop attacker?

▪ Worst case: the “LOL DRM” issue: Systems that store key with encrypted data

68

Good idea / Bad idea

• Which of the following are okay?

▪ Use AES-256 ECB with a fixed, well-chosen IV

• WRONG: ECB reveals patterns in plaintext (penguin!), use CBC or other

• WRONG: The IV should be random else a chosen plaintext can reveal key; also,
ECB mode doesn’t use an IV!

▪ Expand a 17-character passphrase into a 256-bit AES key through repetition

• WRONG: Human-derived passwords are highly non-random and could allow for
cryptanalysis; use a key-derivation algorithm instead

▪ Use RSA to encrypt network communications

• WRONG: RSA is horribly slow, instead use RSA to encrypt (or Diffie-Hellman to
generate) a random secret key for symmetric crypto

▪ Use an MD5 to store a password

• WRONG: MD5 is broken

• WRONG: Use a salt to prevent pre-computed dictionaries

▪ Use a 256-bit SHA-2 hash with salt to store a password

• WRONG: Use a password key derivation function with a configurable iteration
count to dial in computation effort for attackers to infeasibility

Adapted from here.

Note: We’ll cover password storage at
length later when we cover Authentication.

https://softwareengineering.stackexchange.com/questions/51403/what-should-web-programmers-know-about-cryptography

69

“Top 10 Developer Crypto Mistakes”

1. Hard-coded keys (need proper key management)

2. Improperly chosen IV (should be random per message)

3. ECB penguin problem (use CBC or another)

4. Wrong primitive used (e.g. using plain SHA-2 for password hash
instead of something like PBKDF2)

5. Using MD5 or SHA-1 (use SHA-2, SHA-3, or another)

6. Using password as crypto key (use a key derivation function)

7. Assuming encryption = message integrity (it doesn’t; add a MAC)

8. Keys too small (256+ bits for symmetric, 2048+ bits asymmetric)

9. Insecure randomness (need a well-seeded PRNG or ideally a TRNG)

10. “Crypto soup”: applying crypto without clear goal or threat model

Adapted from a post by Scott Contini here.

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

70

How to avoid problems like the above

Two choices:
1. Become a cryptography expert, deeply versed in every algorithm and every

caveat to its use. Hire auditors or fund and operate bug bounty programs to
inspect every use of cryptography you produce until your level of expertise
exceeds that of your opponents. Live in constant fear.

or

2. Use higher-level libraries!

• Vetted, analyzed, attacked, and patched over time

• Can subscribe to news of new vulnerabilities and updates

(NOTE: Some one-off garbage on github with 3 downloads doesn’t count)

71

Examples of higher level libraries

Low-level High level

Password hashing with salt, iteration count,
etc. (e.g., iterated SHA-2 with secure RNG-
generated salt)

At minimum, use something like PBKDF2.
Even better, use a user management library
that does this for you (for example, many web
frameworks like Django and Meteor handle
user authentication for you)

Secure a synchronous communication
channel from eavesdropping (e.g., X.509 for
authentication, DH for key exchange, AES for
encryption)

Use Transport Layer Security (TLS), or even
better, put your communication over HTTPS if
possible.

Secure asynchronous communications like
email from eavesdropping (e.g., RSA with a
public key infrastructure including X.509 for
key distribution and authentication, AES for
encryption)

Use OpenPGP (or similar) via email or another
transport. See also commercial solutions like
Signal.

Store content on disk in encrypted form (e.g.,
AES-256 CBC with key derived from password
using PBKDF2).

Use VeraCrypt, dm-crypt, BitLocker, etc. Even
a passworded ZIP is better than doing it
yourself.

If you find yourself needing to use crypto primitives yourself, check out “Crypto 101”.

https://www.crypto101.io/Crypto101.pdf

72

Conclusion

73

Crypto basics summary

• Symmetric (secret key) cryptography
▪ c = Es(p,k)

▪ p = Ds(c,k)

• Asymmetric (public key) cryptography
▪ c = Ea(p,kpub)

▪ p = Da(c,kpriv)

▪ kpub and kpriv generated together, mathematically related

• Message Authentication Codes (MAC)
▪ Generate and append: H(p+k), E(H(p),k), or tail of E(p,k)

▪ Check: A match proves sender knew k

• Digital signatures
▪ Generate and append: s = Ea(H(p),kpriv)

▪ Check: Da(s,kpub)==H(p) proves sender knew kpriv

c = ciphertext
p = plaintext
k = secret key
Es = Encryption function (symmetric)
Ds = Decryption function (symmetric)

H = Hash function

Ea = Encryption function (asymmetric)
Da = Decryption function (asymmetric)
kpub = public key
kpriv = private key

s = signature

74

Crypto applications summary

• Most common algorithms:
▪ Symmetric crypto: AES

▪ Asymmetric crypto: classic RSA, modern Elliptic Curve

▪ Secret key generation: classic Diffie-Hellman,
 modern Elliptic Curve Diffie-Hellman (ECDH)

▪ Signature: classic RSA or DSA, modern ECDSA

▪ Hash: obsolete MD5 and SHA-1, modern SHA-2 and SHA-3

• Encryption provides confidentiality,
MACs/Signatures provide integrity & authenticity

• Public Key Infrastructure:
▪ Certificates are signatures on a public key (asserts key owner)

▪ CAs offer certificates, are part of a chain of trust from root CAs

▪ Trust store is the set of certificates you take on “faith”: root CAs

• Digital envelope is when you asymmetrically encrypt a secret key,
then symmetrically encrypt the actual payload

75

Crypto applications summary

• Most common algorithms:
▪ Symmetric crypto: AES

▪ Asymmetric crypto: classic RSA, modern Elliptic Curve

▪ Secret key generation: classic Diffie-Hellman,
 modern Elliptic Curve Diffie-Hellman (ECDH)

▪ Signature: classic RSA or DSA, modern ECDSA

▪ Hash: obsolete MD5, modern SHA-2 and SHA-3

• Encryption provides confidentiality,
MACs/Signatures provide integrity & authenticity

• Public Key Infrastructure:
▪ Certificates are signatures on a public key (asserts key owner)

▪ CAs offer certificates, are part of a chain of trust from root CAs

▪ Trust store is the set of certificates you take on “faith”: root CAs

• Digital envelope is when you asymmetrically encrypt a secret key,
then symmetrically encrypt the actual payload

	Slide 1: ECE560 Computer and Information Security Fall 2023
	Slide 2: REAL advice for using cryptography
	Slide 3: Crypto basics summary
	Slide 4: Symmetric (Secret Key) Encryption
	Slide 5: Symmetric cryptography
	Slide 6: How to attack cryptography
	Slide 7: Hypothetical bad symmetric encryption algorithm: XOR
	Slide 8: XOR “encryption” demo
	Slide 9: Types of cryptanalysis attacks
	Slide 10: Attacking XOR (1)
	Slide 11: Attacking XOR (2)
	Slide 12: Symmetric ciphers in common use
	Slide 13: Okay, but what about that “block size” thing?
	Slide 14: Demonstrating the danger of ECB
	Slide 15: Solution to the “ECB problem”
	Slide 16: Modes of operation: CBC
	Slide 17: More about the Initialization Vector
	Slide 18: Modes of operation: CTR
	Slide 19: Further modes of operation
	Slide 20: Asymmetric (Public Key) Cryptography
	Slide 21: The problem
	Slide 22: Asymmetric (Public Key) Cryptography
	Slide 23: Asymmetric cryptography
	Slide 24: Asymmetric crypto can also authenticate…
	Slide 25: Properties of asymmetric crypto systems
	Slide 26: Asymmetric crypto algorithms
	Slide 27: RSA Public-Key Encryption
	Slide 28: Where do you get the numbers: Key generation
	Slide 29: RSA example
	Slide 30: How long of a key do you need? Or, How good are we at factoring RSA keys?
	Slide 31: Timing: Another avenue of attack…
	Slide 32: Diffie-Hellman Key Exchange
	Slide 33: Diffie-Hellman in operation
	Slide 34: Elliptic Curve (EC) cryptography
	Slide 35: “Digital Envelopes”: Reducing the amount of asymmetric crypto you need to do
	Slide 36: So where are we now?
	Slide 37: Establishing Authenticity
	Slide 38: The Authenticity Problem
	Slide 39: Techniques to authenticate
	Slide 40: MAC concept
	Slide 41: Methods of implementing a MAC
	Slide 42: Cryptographic Hash Functions
	Slide 43: Common cryptographic hash functions
	Slide 44: Ways of using a hash to authenticate
	Slide 45: Digital Signatures
	Slide 46: Digital Signatures
	Slide 47: Digital Signature overview
	Slide 48: The recursive problem of signatures
	Slide 49: Recurse! (1)
	Slide 50: Recurse (2)
	Slide 51: Recurse (3)
	Slide 52: Recurse (4) The base case
	Slide 53: Certificates and the chain of trust
	Slide 55: How to get a certificate
	Slide 56: Certificates in practice: X.509
	Slide 57: Public-Key Infrastructure (PKI)
	Slide 58: Trust stores in practice
	Slide 59: Random number generation
	Slide 60: Wait, how do we make keys again?
	Slide 61: Requirements for random number generator
	Slide 62: Dangers when seeding the PRNG
	Slide 63: Random versus Pseudorandom
	Slide 64: The quantum computing threat to cryptography
	Slide 65: The current state of quantum-proof crypto
	Slide 66: Practical crypto rules
	Slide 67: Application note: “In-flight” vs “at-rest” encryption
	Slide 68: Good idea / Bad idea
	Slide 69: “Top 10 Developer Crypto Mistakes”
	Slide 70: How to avoid problems like the above
	Slide 71: Examples of higher level libraries
	Slide 72: Conclusion
	Slide 73: Crypto basics summary
	Slide 74: Crypto applications summary
	Slide 75: Crypto applications summary

