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User Authentication

Determining if a user is who they say they are 
before giving them access.
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Four means of authentication

• Password, PIN, answers to 
prearranged questions

Something you know

• Smartcard, electronic keycard, 
physical key

Something you have
(token)

• Fingerprint, retina, face
Something you are
(static biometrics)

• Voice pattern, handwriting
Something you do

(dynamic biometrics) 
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Passwords

• Most common authentication mechanism
▪ User provides username and password, must match server records

(For reference, see every computer thing ever)

• The hard parts:
▪ How to store passwords?

▪ How to communicate passwords?
 (covered later on)
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Storing passwords: Hashing

• Given setup: store passwords in plaintext

• Threat model:
▪ Database of user info is compromised (happens a LOT)

▪ Attacker wants to figure out password

• Attack:
▪ Attacker just looks at the database and sees the passwords

• Improvement: Hashing
▪ Don’t store the plaintext password, store a hash

▪ Compare hashes
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Storing passwords: Salting

• Given setup: store hashed passwords

• Threat model:

▪ Database of password hashes is compromised (happens a LOT)

▪ Attacker wants to figure out password for a given hash

• Attack:

▪ Attacker hashes many possible passwords and finds that “c00ldude” hashes to 
a53d677656e7bcb216b9ef6e38bb7ab1. Anyone with that hash must have that 
password!

• Can also see users with the same password, even if it’s unknown!

• Improvement: Salting

▪ Add a bit of random stuff (“salt”) to password before hashing

▪ Random stuff differs per record

▪ Store the salt with the hash so we can use it when verifying given passwords

• Result: I need to brute-force search per user instead of once for everyone
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Storing passwords: Iteration count

• Given setup: Store salted hashed passwords

• Threat model:

▪ Database of password hashes is compromised (happens a LOT)

▪ Attacker wants to figure out password for a given hash

▪ Attacker has lots of fast computers

• Attack

▪ Okay, given the salt for a specific user, I do hash a billion possibilities; still often likely 
to find a match!

• Improvement: Iteration count

▪ Instead of just using H(data), do H(H(H( … H( data ) … )))

▪ Increase iteration count to make it very hard for attacker while still being feasible for 
login checks

▪ Makes our hash function “slow” (configurably so!)

• Why?

▪ If default hashing has speed of X, then an iteration count of 1000 gives a speed of 
X/1000. Login is a tiny amount of time in normal use, but it makes the attacker’s job 
1000x harder for very little cost.
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Password Vulnerabilities

• Offline dictionary attack: Crack a hashed password

▪ Defense: Make harder by salting, iteration count

• Online dictionary attack: Try dictionary logins to actual live system

▪ Defense: Max attempt counter, password complexity requirements

• Password spraying: Try few common passwords on many accounts/systems

▪ Defense: Password complexity requirements

• Credential stuffing: Try the same user+password many places
 (often the creds are leaked from a prior breach)

▪ Defense for individual: Password managers with strong crypto

▪ Defense for organization: ?????

• Password guessing: Do research then guess

▪ Defense: User training, password complexity requirements

• Exploiting user mistakes: Post-It notes, sharing, unchanged defaults, etc.

▪ Defense: Training, single-use expiring passwords for new accounts

• Electronic monitoring: Sniffing network, installing keylogger, etc.

▪ Defense: Encryption, challenge-response schemes, training

E.g.: Trump’s Twitter password was guessed. It was “maga2020!” 

https://www.vox.com/2020/12/16/22179065/trump-twitter-password-maga2020-dutch-gevers
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UNIX password scheme

• Originally: hash stored in public-readable /etc/passwd file
▪ Hashes were public; relied entirely on them being hard to crack

▪ People slowly figured out in the 80s this was feasible
(god what an awesome/lazy time to be an attacker…)

• Now: hash stored in separate root-readable /etc/shadow file

• Originally: small hash, few iterations

• Later: MD5 hash, more iterations

• Now: SHA 512 hash, configurable iterations

Passwords normally changed with passwd tool
Can generate shadow-compatible hash strings with mkpasswd
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Password Cracking

• Dictionary attacks
▪ Develop a large dictionary of possible passwords and try each against the 

password file

▪ Each password must be hashed using each salt value and then compared to 
stored hash values

• Rainbow table attacks
▪ Pre-compute tables of hash values for all salts

▪ A mammoth table of hash values 

▪ Can be countered by using a sufficiently large salt value and a sufficiently 
large hash length

• Password crackers exploit the fact that people choose easily 
guessable passwords
▪ Shorter password lengths are also easier to crack
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Storing passwords correctly

• Storing password plaintext (or encrypted)

• Storing hashed password

• Storing salted hash of password

• Hash function has iteration count

• Just use PBKDF2, scrypt, bcrypt, etc.

• Have a user management library handle it

Link

Link

Link

Link

Link

Link

Link

Link

I couldn’t find anyone who 
bothered to do this yet 

didn’t just use one of the 
functions below

https://motherboard.vice.com/en_us/article/7xdeby/t-mobile-stores-part-of-customers-passwords-in-plaintext-says-it-has-amazingly-good-security
https://www.troyhunt.com/brief-sony-password-analysis/
https://www.theverge.com/2012/6/6/3067523/linkedin-password-leak-online
https://www.csoonline.com/article/2134124/network-security/adobe-confirms-stolen-passwords-were-encrypted-not-hashed.html
https://thehackernews.com/2017/10/disqus-comment-system-hacked.html
http://fortune.com/2016/08/31/dropbox-breach-passwords/
https://en.wikipedia.org/wiki/NT_LAN_Manager
https://en.wikipedia.org/wiki/Bcrypt
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Where do stolen hashes go?

• Attacker uses directly, sells on black market, or they leak

• Often, eventually, they hit the public internet:
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Importance of password storage illustrated (1)

• Plaintext passwords: 100% are “recovered” by attacker (obviously)

• Sorted hashes.org by “percent recovered” – all are unsalted!

• Scroll to lower percent – almost all are salted.
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Importance of password storage illustrated (2)

• Scroll to very low percentages...most use bcrypt or similar, which 
has an iteration count

• Conclusion: How you store password has HUGE effect on what 
happens if (when) they are breached!
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Password Selection Strategies

• User education
▪ Users can be told the importance of using hard to guess passwords and can 

be provided with guidelines for selecting strong passwords

• Computer generated passwords
▪ Users have trouble remembering them 

(good for single-use, bad for long-term)

• Reactive password checking
▪ System periodically runs its own password cracker to find guessable 

passwords

• Complex password policy
▪ User is allowed to select their own password, however the system checks to 

see if the password is allowable, and if  not, rejects it

▪ Goal is to  eliminate guessable passwords while allowing the user to select a 
password that is memorable
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Four means of authentication

• Password, PIN, answers to 
prearranged questions

Something you know

• Smartcard, electronic keycard, 
physical key

Something you have
(token)

• Fingerprint, retina, face
Something you are
(static biometrics)

• Voice pattern, handwriting
Something you do

(dynamic biometrics) 
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Types of tokens (1)

• Cards (or card-like things)
▪ Magnetic stripe (read-only, clear communication)

▪ Memory card (read-only/read-write, no processor, clear communication)

▪ Smart card (read-only/read-write, has processor, encrypted communication)

• May be contact (e.g., this bank card) or contactless (e.g., your DukeCard)

• Cryptographic token (AKA one-time passwords)
▪ Holds crypto key that can’t (easily) be extracted

▪ Uses it to generate a time-sync’d key stream

(Smart card interface)
(something you know)

Mag stripe (Dumb interface)
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Types of tokens (2)

• Communication device (i.e., your phone)
▪ Relies on real-time and secure communication

▪ Good: Dedicated app with cryptographic secrets (e.g. Duo)

▪ Bad: Using SMS (text messaging)

• Many examples of SMS hijacking:
  Every helpdesk employee at your mobile provider can 
  do it (either because they were fooled or they’re evil)!

• Better than nothing, though…

• Authentication token
▪ Similar to cryptographic token from before, but communicates digitally rather 

than with displayed one-time passwords

▪ The “cool” version of multi-factor authentication

A common model made by Yubikey
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Types of tokens (3)

• Physical keys (they’re made of metal and you have some)
▪ Many different types, same idea: mechanically unbind a lock

▪ Turns out you can attack physical locks many different ways
(covered later when we get to physical security)

• Fallback passwords
▪ Long, random single use passwords that are written down or stored

▪ Kept in a secure location for exception situations 
(e.g. in response to an account hijack)
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More on contactless communication

• Recall: smart cards may be contactless
▪ Has CPU, memory, ROM, maybe even non-volatile storage (EEPROM/flash)

• Terminology and standards:
▪ RFID: Radio Frequency Identification

• Broad category

• Usually powered wirelessly (inductively or via RF pulse)

• May be very short range (like DukeCard) or longer (Duke parking pass)

• May be very dumb (“just transmit this string”) or more advanced 
(“execute this encrypted read/write command”)

▪ NFC: Near Field Communication

• A collection of standards for two-way communication based on RFID

• Generally on the smarter side in terms of protocol

• Supported by modern mobile phones

▪ Powers things like “ApplePay”, “GooglePay”, etc.

▪ Your DukeCard is NFC, 
and your phone can act as a DukeCard using NFC
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Four means of authentication

• Password, PIN, answers to 
prearranged questions

Something you know

• Smartcard, electronic keycard, 
physical key

Something you have
(token)

• Fingerprint, retina, face
Something you are
(static biometrics)

• Voice pattern, handwriting
Something you do

(dynamic biometrics) 
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Biometric basics

• Authenticate based on unique physical characteristics 
(pattern recognition)

• More complex/expensive than previous techniques

• Common characteristics:
▪ Fingerprint

▪ Face

• Less common:
▪ Hand geometry

▪ Retinal pattern 

▪ Iris 

▪ Signature 

▪ Voice
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Processes of biometric authentication

• Enrollment: Add new 
people

• Verification: User 
asserts identity and 
proves it

• Identification: Pick out 
which user the given 
biometric corresponds 
to (harder)
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Analyzing biometric accuracy

• Biometric is pattern matching; naturally imprecise (probabilistic)
▪ Will get a match score, system accepts when score > threshold

• Metrics to evaluate a biometric system:
▪ False Accept Rate (FAR): Probability it allows the wrong person

  = False positive (FP) rate

▪ False Reject Rate (FRR): Probability it disallows the right person
 = False negative (FN) rate

▪ Receiver Operating Characteristic (ROC): Comparison of the FAR+FRR with 
respect to threshold (a general concept for any classifier)

Figures from here

Threshold adjustment

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Remote authentication
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What about the network?

• Authentication over a network is more complex – more to worry 
about
▪ Eavesdropping: 

• Capturing a credential (allowing attacker to login)

• Capturing a session cookie (evidence of authentication, allows attacker to 
act as user)

▪ Replay attacks: Even if attacker doesn’t know credential, can they blindly 
replay the packets to login?

• Example: a “pass the hash” attack

• Solution: Various challenge-response schemes



27

A basic challenge-response scheme

• Assume we have some authentication secret S
▪ Password, token value, biometric signature, etc...

• Don’t want to send it (or even its hash!)

• Instead, server issues a challenge (random value R) to client that can 
only be answered if it has S, but which doesn’t reveal S.

Client Server

I’m user Bob

Oh yeah? Assume R=5248, so
compute h(R + h(S)) for me,

where S is Bob’s secret.

Here’s h(R + h(S))

oh ok cool
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Challenge-Response: What about passwords?

• In the scheme shown, if the password hash is leaked, it’s equivalent to having the 
actual password, since we only need h(S)!

• Other challenge-response schemes 
avoid this issue, e.g.  Salted Challenge 
Response Authentication Mechanism (SCRAM)

For more, see Wikipedia or this article

SaltedPassword = {salted hash of password}

ClientKey = HMAC(SaltedPassword, "Client Key")

StoredKey = H(ClientKey)

ServerKey = HMAC(SaltedPassword, "Server Key")

Auth = {username, salt, iteration, CombinedNonce}

ClientProof = ClientKey ^ HMAC(StoredKey, Auth)
ServerProof = HMAC(ServerKey, Auth)

SaltedPassword

ClientKey

StoredKey

ServerKey

ClientProof

Auth

ServerProof

Auth

Black = computed by server when account is created
 Underline = stored by server
Red = computed by client during auth
Blue = computed by server during auth

Mutations done to the salted password

(ClientNonce+ServerNonce)

source

Communications sequence

https://en.wikipedia.org/wiki/Salted_Challenge_Response_Authentication_Mechanism
https://www.mongodb.com/blog/post/improved-password-based-authentication-mongodb-30-scram-explained-part-1
https://www.mongodb.com/blog/post/improved-password-based-authentication-mongodb-30-scram-explained-part-1
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Identity Federation

• Identity Federation: System to allow an organization to trust 
identities/credentials managed by another organization

▪ Allows you to provide access to users from external orgs (and vice versa)

• Translation:

• Allow one entity to manage the concept of “logging in” (credentials, etc.), and 
communicate that to another entity on behalf of the user

• Want a standard to support federation from any provider? OAuth

• Duke has an authentication system: Duke NetID

▪ You can write apps that use OAuth to allow login via Duke NetID!

Corporate providers: Google/Facebook Open provider framework: OpenID
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Multifactor Authentication (MFA)
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Multifactor authentication (MFA)

• Now that we’ve covered the modes of authentication (something 
you know/have/are/do), definition is easy:
▪ Multifactor Authentication: Require more than one of those categories. 

(that’s all)

• In practice, today it usually means password + token.
▪ Lame: Password + SMS

▪ Better: Password + actual token or app

• Looking forward:
▪ Trusted Platform Modules (TPMs) are hardware chips that can securely hold 

cryptographic secrets without leaking them (unless there’s a flaw…)

▪ Modern standard: WebAuthn – use TPM to make MFA easy
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• WebAuthn incorporates FIDO authentication (an open standard)
▪ Web app: Implements WebAuthn standard to ask for a login

▪ Browser: Needs WebAuthn support, hooks into support from OS

▪ OS: Provides a Client-To-Authenticator Protocol (CTAP). May use:

• Internal authenticator (using TPM chip), or

• External token (phone, watch, USB security token)

These store cryptographic keys,
never divulge them, 

give proof via signature

WebAuthn: Practical MFA of the future

Figure from https://fidoalliance.org/fido2/ 

https://fidoalliance.org/fido2/
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Access control

So you’ve proven who you are, but what are you 
allowed to do?
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Topics

• Core concepts

• Access control policies:

▪ DAC

• UNIX file system

▪MAC

▪ RBAC



35

Subjects, Objects, Actions, and Rights

Subject
(initiator)

• The thing 
making the 
request (e.g. 
the user)

Verb
(request)

• The 
operation to 
perform 
(e.g., read, 
delete, etc.)

Right
(permission)

• A specific 
ability for 
the subject 
to do the 
action to the 
object.

Object
(target)

• The thing 
that’s being 
hit by the 
request (e.g., 
a file).
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Categories of Access Control Policies

• Discretionary AC (DAC): There’s a list of permissions attached to the 
subject or object (or possibly a giant heap of global rules).

• Mandatory AC (MAC): Objects have classifications, subjects have 
clearances, subjects cannot give additional permissions.
▪ An overused/abused term

• Role-Based AC (RBAC): Subjects belong to roles, and roles have all 
the permissions.
▪ The current Enterprise IT buzzword meaning “good” security

• Attribute-Based AC (ABAC): Subjects and objects have attributes, 
rules engine applies predicates to these to determine access
▪ Allows fine-grained expression

▪ Usually complex, seldom implemented

▪ We’re gonna skip this, since I’ve never seen anyone care about it IRL
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Topics

• Core concepts

• Access control policies:

▪ DAC

• UNIX file system

▪MAC

▪ RBAC
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Discretionary Access Control (DAC) 

• Discretionary Access Control (DAC): Scheme in which an entity may 
enable another entity to access some resource
▪ Often provided using an access matrix: subjects × objects

▪ Each entry shows the access rights of that subject to that object

Pseudocode
bool IsActionAllowed(subject, object, action) {
  if (action ∈ get_permissions(subject,object))
    return true
}
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Implementation

• Can use various data structures, 
none of which should surprise you

Own
Read
Write

Read

Write

Own
Read
Write

Own
R
W

AFile 1

•

Read

Read

Write Read

Own
Read
Write

Own
Read
Write

User A

User BSUBJECTS

OBJECTS

User C

File 2File 1

(a) Access matrix

Figure 4.2  Example of Access Control Structures

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)
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(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)
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Subject Access 
Mode 

Object 

A Own File 1 

A Read File 1 

A Write File 1 

A Own File 3 

A Read File 3 

A Write File 3 

B Read File 1 

B Own File 2 

B Read File 2 

B Write File 2 

B Write File 3 

B Read File 4 

C Read File 1 

C Write File 1 

C Read File 2 

C Own File 4 

C Read File 4 

C Write File 4 

 

Matrix

Linked list

Flat list
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UNIX Philosophy

• “UNIX” here includes Linux, MacOSX, and traditional UNIX

• Major tenet of UNIX philosophy: everything is a file
▪ Why?

▪ Flexibility: If you build an API to access files, 
  you can use it for everything ☺

▪ Security: If you build a permission system for files, 
  you can use it for everything ☺

• How everything is a file:
▪ Hardware devices show up as files under /dev

▪ Info and controls for the running kernel are simulated in /proc and /sys

▪ You can attach (“mount”) storage devices to directories all under one global 
hierarchy

▪ You can even turn a pipe or socket into a named file!
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UNIX File Access Control

• Your disk is a dumb flat array of blocks that can be read/written

• A filesystem organizes this, handles allocation of disk regions to 
files, lets you organize these files into hierarchical directories.

• (Most) UNIX filesystems store file metadata in inodes (index nodes)
▪ Inodes store metadata about a file/directory, 

including ownership/permissions

▪ They live on disk in an inode table; in memory in a kernel inode cache

• Directories are special files that list names + inode numbers

• There are a few other special file types:
▪ Symbolic links (also known as symlinks or soft links)

▪ Device files (character or block)

▪ Named pipes (also known as fifos)

▪ Named sockets (like two-way fifos)
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UNIX File Access Control Basics

Figure 4.5   UNIX File Access Control

(a) Traditional UNIX approach (minimal access control list)
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• Users have numbers called User ID numbers (“uid”)

• Users can belong to one or more groups;
groups have numbers called Group ID numbers (“gid”)

• A file is owned by a user (uid) and a group (gid)
▪ The reference is numeric; ls translates numbers to names for you; can turn off with -n

• Twelve permission bits applied to file (file “mode”)
▪ Lower 9 bits: user/group/others  :  read/write/execute

▪ Upper 3 bits: “Weird” ones (covered next)
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UNIX File Access Control Basics

• Change a file’s owner with chown (changes uid)

• Change a file’s group with chgrp (changes gid)

• Change a file’s mode (permissions) with chmod (changes mode bits)

▪ Can express in base-8 octal: chmod 750 yields   rwxr-x---

▪ Can express symbolically: chmod u+rw  turns on owner’s read/write

• The other three bits:

▪ SetUID (u+s) and SetGID (g+s): 

• Executables run that have this bit run as the user/group that owns it

• A way to allow privilege escalation, either
  legitimately, like for sudo, or
  illegitimately, as in a backdoor created by attackers

▪ Sticky bit (+t):

• Applied to directories; when set, only the owner of any file in the directory can 
rename, move, or delete that file – used for e.g. /tmp

• The root user (uid 0) is immune from permission bit limitations.
▪ Hence using sudo to carry out chown/chgrp/chmod commands when you otherwise couldn’t.

user/group/others      read/write/execute
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Sidebar: Hard vs soft links

• Directories are special files that list file names and inode numbers

• Hard link: When multiple directory entries refer to the same inode
▪ Such “files” are actually the same content; change one = change all

▪ Useful for creating cheap “clones” of files, no extra storage

• Soft link: A special file that refers to another path
▪ Also called symbolic link or symlink.

▪ Path can be relative or absolute

▪ Can traverse file systems or even point to nonexistent things

▪ Can be used as file system organization “duct tape”

• Example: Symlink a long, complex path to a simpler place, e.g.:
$ ln -s /remote/codebase/projectX/beta/current/build ~/mybuild

$ cd ~/mybuild

Figure from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ)
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File system access control lists (ACLs)

• Issue: UNIX model can’t represent all permission situations (e.g. multiple 
groups or users having access); use Access Control Lists (ACLs)

• Arbitrary list of rules governing access per-file/directory

• More flexible than classic UNIX permissions, but more metadata to store/check

Windows ACL UI Examples of Linux ACL commands

From Arch Wiki

Figure 4.5   UNIX File Access Control

(a) Traditional UNIX approach (minimal access control list)
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https://wiki.archlinux.org/index.php/Access_Control_Lists
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Topics

• Core concepts

• Access control policies:

▪ DAC

• UNIX file system

▪MAC

▪ RBAC
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MAC example: SELinux

• Developed by U.S. Dept of Defense

• General deployment starting 2003

• Can apply rules to virtually every user/process/hardware pair

• Rules are governed by system administrator only
▪ No such thing as “selinux_chmod” for users

Pseudocode
bool IsActionAllowed(subject, object, action) {
  for each rule in rules:
    if rule allows (subject,object,action) return true
  return false
}
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MAC example: SELinux
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Topics

• Core concepts

• Access control policies:

▪ DAC

• UNIX file system

▪MAC

▪ RBAC
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RBAC: The thing you invent if you spend enough 
time doing access control

• Scenario:
▪ Frank: “Bob just got hired, please given him access.”

▪ Admin: “What permissions does he need?”

▪ Frank : “Same as me.”

• Later, a new system is added
▪ Bob: “Why can’t I access the new system?!”

▪ Admin: “Oh, I didn’t know you needed it too…”

▪ Bob: “I need everything Frank has!”

• Later, Frank is promoted to CTO
▪ Admin: “Welp, looks like Bob also needs access to our private earnings, since 

this post-it says he gets everything Frank has…”

• The admin is later fired amidst allegations of conspiracy to commit 
insider trading with Bob. He dies in prison. 
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RBAC

• Decide what KINDS of users you have 
(roles)

• Assign permission to roles.

• Assign users to roles.

• When a role changes, everyone gets 
the change.

• When a user’s role changes, that user 
gets a whole new set of permissions.

• No more special unique snowflakes.

• Roles may be partially ordered, e.g. 
“Production developer” inherits from 
“Developer” and adds access to the 
production servers
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RBAC implementation

• Unsurprisingly, you can represent this using various data structures.
▪ Anything that can 

represent two matrices:
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Figure 4.7  Access Control Matrix Representation of RBAC
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Pseudocode
bool IsActionAllowed(subject, object, action) {
  if (action ∈ get_permissions(subject.role,object))
    return true
}
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