
ECE560
Computer and Information Security

Fall 2023

Buffer Overflows

Tyler Bletsch

Duke University

3

What is a Buffer Overflow?

• Intent
▪ Arbitrary code execution

• Spawn a remote shell or infect with worm/virus

▪ Denial of service

• Steps
▪ Inject attack code into buffer

▪ Redirect control flow to attack code

▪ Execute attack code

4

Buffer Problem: Data overwrite

• passwd buffer overflowed, overwriting passwd_ok flag
▪ Any password accepted!

int main(int argc, char *argv[]) {

 char passwd_ok = 0;

 char passwd[8];

 strcpy(passwd, argv[1]);

 if (strcmp(passwd, "niklas")==0)

 passwd_ok = 1;

 if (passwd_ok) { ... }

}

longpassword1
Layout in memory:

5

Another Example:
Code injection via function pointer

• Problems?
▪ Overwrite function pointer

• Execute code arbitrary code in buffer

char buffer[100];

void (*func)(char*) = thisfunc;

strcpy(buffer, argv[1]);

func(buffer);

arbitrarycodeX

6

Stack Attacks:
Code injection via return address

• When a function is called…

▪ parameters are pushed on stack

▪ return address pushed on stack

▪ called function puts local variables on the stack

• Memory layout

• Problems?

▪ Return to address X which may execute arbitrary code

arbitrarystuffX

7

Demo

cool.c

#include <stdlib.h>

#include <stdio.h>

int main() {

 char name[1024];

 printf("What is your name? ");

 scanf("%s",name);

 printf("%s is cool.\n", name);

 return 0;

}

8

Demo – normal execution

9

Demo – exploit

10

Attack code

and filler

Local vars,

Frame

pointer

Return

address

How to write attacks

• Use NASM, an assembler:
▪ Great for machine code and specifying data fields

%define buffer_size 1024

%define buffer_ptr 0xbffff2e4

%define extra 20

<<< MACHINE CODE GOES HERE >>>

; Pad out to rest of buffer size

times buffer_size-($-$$) db 'x'

; Overwrite frame pointer (multiple times to be safe)

times extra/4 dd buffer_ptr + buffer_size + extra + 4

; Overwrite return address of main function!

dd buffer_location

1024

20

4

attack.asm

11

Attack code trickery

• Where to put strings? No data area!

• You often can't use certain bytes

▪ Overflowing a string copy? No nulls!

▪ Overflowing a scanf %s? No whitespace!

• Answer: use code!

• Example: make "ebx" point to string "hi folks":

push "olks" ; 0x736b6c6f="olks"

mov ebx, -"hi f" ; 0x99df9698

neg ebx ; 0x66206968="hi f"

push ebx

mov ebx, esp

Shellcode

• Code supplied by attacker
• Often saved in buffer being overflowed

• Traditionally transferred control to a user command-line interpreter
(shell)

• Machine code
• Specific to processor and operating system

• Traditionally needed good assembly language skills to create

• More recently a number of sites and tools have been developed that
automate this process

• Metasploit Project

• Provides useful information to people who perform

penetration, IDS signature development, and exploit
research

Process Control Block

Global Data

Heap

Process image in

main memory

Program

Machine

Code

Global Data

Program File

Program

Machine

Code

Stack

Spare

Memory

Kernel

Code

and

Data

Top of Memory

Bottom of Memory

Figure 10.4 Program Loading into Process Memory

14

Stack vs. Heap vs. Global attacks

• Book acts like they’re different; they are not

Stack overflows

• Data attacks, e.g.
“is_admin” variable

• Control attacks, e.g.
function pointers,
return addresses,
etc.

Non-stack overflows:
heap/static areas

• Data attacks, e.g.
“is_admin” variable

• Control attacks, e.g.
function pointers,
etc.

Table 10.2

Some Common Unsafe C
Standard Library Routines Table 10.2 Some Common Unsafe C Standard Library Routines

gets(char *str) read line from standard input into str

sprintf(char *str, char *format, ...) create str according to supplied format and variables

strcat(char *dest, char *src) append contents of string src to string dest

strcpy(char *dest, char *src) copy contents of string src to string dest

vsprintf(char *str, char *fmt, va_list ap) create str according to supplied format and variables

char *fgets(char *s, int size, FILE *stream)

snprintf(char *str, size_t size, const char *format, ...);

strncat(char *dest, const char *src, size_t n)

strncpy(char *dest, const char *src, size_t n)

vsnprintf(char *str, size_t size, const char *format, va_list ap)

Better:

Also dangerous: all forms of scanf when used with unbounded %s!

Buffer Overflow Defenses

• Buffer

overflows are

widely

exploited

Two broad defense
approaches

Compile-time

Aim to harden
programs to resist

attacks in new
programs

Run-time

Aim to detect and
abort attacks in

existing programs

Compile-Time Defenses:
Programming Language

• Use a modern

high-level

language
• Not vulnerable to

buffer overflow

attacks

• Compiler enforces

range checks and

permissible
operations on

variables

Disadvantages

•Additional code must be executed at run
time to impose checks

• Flexibility and safety comes at a cost in
resource use

•Distance from the underlying machine
language and architecture means that
access to some instructions and hardware
resources is lost

• Limits their usefulness in writing code, such as
device drivers, that must interact with such
resources

Compile-Time Defenses:
Safe Coding Techniques

• C designers placed much more emphasis on space

efficiency and performance considerations than on

type safety
• Assumed programmers would exercise due care in writing code

• Programmers need to inspect the code and rewrite

any unsafe coding
• An example of this is the OpenBSD project

• OpenBSD code base: audited for bad practices

(including the operating system, standard libraries,

and common utilities)
• This has resulted in what is widely regarded as one of the safest operating

systems in widespread use

int copy_buf(char *to, int pos, char *from, int len)

{

 int i;

 for (i=0; i<len; i++) {

 to[pos] = from[i];

 pos++;

 }

 return pos;

}

(a) Unsafe byte copy

short read_chunk(FILE fil, char *to)

{

 short len;

 fread(&len, 2, 1, fil); /* read length of binary data */
 fread(to, 1, len, fil); /* read len bytes of binary data

 return len;

}

(b) Unsafe byte input

Figure 10.10 Examples of Unsafe C Code

Compile-Time Defenses:

Language Extensions/Safe Libraries

• Handling dynamically allocated memory is more

problematic because the size information is not

available at compile time

o Requires an extension and the use of library routines

• Programs and libraries need to be recompiled

• Likely to have problems with third-party applications

• Concern with C is use of unsafe standard library

routines

o One approach has been to replace these with safer

variants

• Libsafe is an example

• Library is implemented as a dynamic library arranged to

load before the existing standard libraries

Compile-Time Defenses:
Stack Protection

• Add function entry and exit code to check

stack for signs of corruption

• Use random canary
o Value needs to be unpredictable

o Should be different on different systems

• Stackshield and Return Address Defender

(RAD)
o GCC extensions that include additional function entry and exit code

• Function entry writes a copy of the return address to a safe region of

memory

• Function exit code checks the return address in the stack frame

against the saved copy

• If change is found, aborts the program

22

Preventing Buffer Overflows

• Strategies
▪ Detect and remove vulnerabilities (best)

▪ Prevent code injection

▪ Detect code injection

▪ Prevent code execution

• Stages of intervention
▪ Analyzing and compiling code

▪ Linking objects into executable

▪ Loading executable into memory

▪ Running executable

Run-Time Defenses:
Guard Pages

• Place guard pages between critical

regions of memory
o Flagged in MMU as illegal addresses

o Any attempted access aborts process

• Further extension places guard pages

Between stack frames and heap

buffers
o Cost in execution time to support the large number

of page mappings necessary

24

W^X and ASLR

• W^X
▪ Make code read-only and executable

▪ Make data read-write and non-executable

• ASLR: Randomize memory region locations
▪ “Address Space Layout Randomization”

▪ Stack: subtract large value

▪ Heap: allocate large block

▪ DLLs: link with dummy lib

▪ Code/static data: convert to shared lib, or re-link at
different address

▪ Makes absolute address-dependent attacks harder

code

static data

bss

heap

shared library

stack

kernel space

25

Doesn't that solve everything?

• PaX: Linux implementation of ASLR & W^X

• Actual title slide from a PaX talk in 2003:

?

26

Negating ASLR

• ASLR is a probabilistic approach, merely increases attacker’s
expected work
▪ Each failed attempt results in crash; at restart, randomization is different

• Counters:
▪ Information leakage

• Program reveals a pointer? Game over.

▪ Derandomization attack [1]

• Just keep trying!

• 32-bit ASLR defeated in 216 seconds

[1] Shacham et al. On the Effectiveness of Address-Space Randomization. CCS 2004.

27

Negating W^X

• Question: do we need malicious code to have malicious behavior?

argument 2

argument 1

RA
frame pointer

locals

buffer

Attack code

(launch a shell)

Address of

attack code

argument 2

argument 1

RA
frame pointer

locals

buffer

Padding

Address of system()

"/bin/sh"

Code injection Code reuse (!)

No.

"Return-into-libc" attack

28

Return-into-libc

• Return-into-libc attack
▪ Execute entire libc functions

▪ Can chain using “esp lifters”

▪ Attacker may:

• Use system/exec to run a shell

• Use mprotect/mmap to disable W^X

• Anything else you can do with libc

▪ Straight-line code only?

• Shown to be false by us, but that's another talk...

29

Arbitrary behavior with W^X?

• Question: do we need malicious code to have arbitrary
malicious behavior?

• Return-oriented programming (ROP)

• Chain together gadgets: tiny snippets of code ending in
ret

• Achieves Turing completeness

• Demonstrated on x86, SPARC, ARM, z80, ...
▪ Including on a deployed voting machine,

which has a non-modifiable ROM

▪ Recently! New remote exploit on Apple Quicktime1

No.

1 http://threatpost.com/en_us/blogs/new-remote-flaw-apple-quicktime-bypasses-aslr-and-dep-083010

30

Return-oriented programming (ROP)

• Normal software:

• Return-oriented program:

Figures taken from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.

31

Some common ROP operations

• Loading constants

• Arithmetic

• Control flow

•Memory

add eax, ebx ; ret

stack

pointer

pop eax ; ret

stack

pointer

0x55555555

pop esp ; ret

stack

pointer

mov ebx, [eax] ; ret

stack pointer

0x8070abcd
(address)

pop eax ; ret

...

Figures adapted from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.

32

Bringing it all together

• Shellcode

▪ Zeroes part of memory

▪ Sets registers

▪ Does execve syscall

Figure taken from "The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)" by Shacham

33

Example: First a syscall review in MIPS and x86

• Let’s say we want to launch a shell process in MIPS legitimately
 (not an attack)

• Necessary steps:

.text

myfunc:

 la $a0, shell # 1. Set $a0 to the address of the string “/bin/sh”

 li $v0, 55 # 2. Set $v0 to the syscall number for 'exec'

 syscall # 3. Ask the OS to do the syscall

MIPS

myfunc:

 mov ebx, shell # 1. Set $a0 to the address of the string “/bin/sh”

 mov eax, 55 # 2. Set $v0 to the syscall number for 'exec'

 int 0x80 # 3. Ask the OS to do the syscall

x86

.data

shell: .asciiz "/bin/bash"

34

Example ROP in MIPS (1)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

(Read a string from

 the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable

function’s rasp

$pc

Buffer overflow occurs

buffer

(Function’s caller)

35

$ra

Example ROP in MIPS (2)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

(Read a string from

 the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable

function’s $ra

$sp
$pc

$ra controlled by attacker now

buffer

(Function’s caller)

36

rapc
0x1200

Example ROP in MIPS (3)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

(Read a string from

 the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable

function’s $ra

$sp

We go where attacker says

buffer

(Function’s caller)

37

$ra

Example ROP in MIPS (4)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

(Read a string from

 the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable

function’s $ra

$sp

We change $a0 and $ra

buffer

(Function’s caller)

$pc

Regs
$a0 = 0x3506

38

rapc

Example ROP in MIPS (5)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

(Read a string from

 the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable

function’s $ra

$sp

Now we execute another gadget

buffer

(Function’s caller)

Regs
$a0 = 0x3506

39

$ra

Example ROP in MIPS (6)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

(Read a string from

 the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable

function’s $ra

$sp

It sets $a1 and $ra

buffer

(Function’s caller)

$pc

Regs
$a0 = 0x3506

$a1 = 55

40

rapc

Example ROP in MIPS (7)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

(Read a string from

 the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable

function’s $ra

$sp

We execute the final gadget

buffer

(Function’s caller)

Regs
$a0 = 0x3506

$a1 = 55

41

rapc

Example ROP in MIPS (8)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

(Read a string from

 the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable

function’s $ra

$sp

Boom: shell

buffer

(Function’s caller)

Regs
$a0 = 0x3506

$a1 = 55

42

Defenses against ROP

• ROP attacks rely on the stack in a unique way
• Researchers built defenses based on this:

▪ ROPdefender[1] and others: maintain a shadow stack

▪ DROP[2] and DynIMA[3]: detect high frequency rets

▪ Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?
• No: code-reuse attacks need not be limited to the stack and
ret!
▪ See “Jump-oriented programming: a new

class of code-reuse attack” by Bletsch et al.
(covered in this deck if you’re curious)

43

Sidebar: “Weird machines”

• Using ROP gives a computer with “weird” opcodes (gadget
addresses) and “weird” semantics (specific effects on specific
registers/memory).

• This is an example of a “weird machine” – common idiom in security
▪ Unexpected inputs result in unexpected forms of computation

• Key insight: If you can do computation in ANY way, it’s a computer

• Tagline of popular exploit YouTuber “LiveOverflow” is
 “explore weird machines”

https://www.youtube.com/watch?v=8Dcj19KGKWM

44

Backup slides:
My past research on code reuse attacks

“Jump-oriented Programming” (JOP)

Defenses against ROP
• ROP attacks rely on the stack in a unique way

• Researchers built defenses based on this:

– ROPdefender[1] and others: maintain a shadow stack

– DROP[2] and DynIMA[3]: detect high frequency rets

– Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?

• No: code-reuse attacks need not be limited to the
stack and ret!
– My research follows...

Jump-oriented programming (JOP)
• Instead of ret, use indirect jumps, e.g., jmp eax

• How to maintain control flow?

(insns) ; jmp eax (insns) ; jmp ebx (insns) ; jmp ecx ?
Gadget Gadget Gadget

(choose next gadget) ; jmp eax (insns) ; jmp ebx

(insns) ; jmp ebx

(insns) ; jmp ebx

Gadget

Gadget

Gadget

Dispatcher gadget

The dispatcher in depth

• Dispatcher gadget implements:
 pc = f(pc)
 goto *pc

• f can be anything that evolves pc predictably

– Arithmetic: f(pc) = pc+4

– Memory based: f(pc) = *(pc+4)

Availability of indirect jumps (1)
• Can use jmp or call (don't care about the stack)

• When would we expect to see indirect jumps?

– Function pointers, some switch/case blocks, ...?

• That's not many...

Frequency of control flow

transfers instructions in glibc

Availability of indirect jumps (2)

• However: x86 instructions are unaligned

• We can find unintended code by jumping into the
middle of a regular instruction!

• Very common, since
they start with 0xFF, e.g.
-1 = 0xFFFFFFFF

-1000000 = 0xFFF0BDC0

add ebx, 0x10ff2a

call [eax]

81 c3 2a ff 10 00

Finding gadgets

• Cannot use traditional disassembly,
– Instead, as in ROP, scan & walk backwards

– We find 31,136 potential gadgets in libc!

• Apply heuristics to find certain kinds of gadget

• Pick one that meets these requirements:
– Internal integrity:

• Gadget must not destroy its own jump target.

– Composability:
• Gadgets must not destroy subsequent gadgets' jump targets.

Finding dispatcher gadgets
• Dispatcher heuristic:

– The gadget must act upon its own jump target register

– Opcode can't be useless, e.g.: inc, xchg, xor, etc.

– Opcodes that overwrite the register (e.g. mov) instead of
modifying it (e.g. add) must be self-referential
• lea edx, [eax+ebx] isn't going to advance anything

• lea edx, [edx+esi] could work

• Find a dispatcher that uses uncommon registers
 add ebp, edi

 jmp [ebp-0x39]

• Functional gadgets found with similar heuristics

pc = f(pc)

goto *pc

Developing a practical attack

• Built on Debian Linux 5.0.4 32-bit x86

– Relies solely on the included libc

• Availability of gadgets (31,136 total): PLENTY

– Dispatcher: 35 candidates

– Load constant: 60 pop gadgets

– Math/logic: 221 add, 129 sub, 112 or, 1191 xor, etc.

– Memory: 150 mov loaders, 33 mov storers (and more)

– Conditional branch: 333 short adc/sbb gadgets

– Syscall: multiple gadget sequences

The vulnerable program

• Vulnerabilities

– String overflow

– Other buffer overflow

– String format bug

• Targets

– Return address

– Function pointer

– C++ Vtable

– Setjmp buffer

•Used for non-local gotos

•Sets several registers,

including esp and eip

The exploit code (high level)
• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 10 gadgets which will:

– Write null bytes into the attack buffer where needed

– Prepare and execute an execve syscall

• Get a shell without exploiting a single ret:

The full exploit (1)
C

o
n

s
ta

n
ts

Im
m

e
d

ia
te

 v
a

lu
e

s
 o

n
 th

e
 s

ta
c
k

The full exploit (2)
D

a
ta

D
is

p
a

tc
h

 ta
b

le
O

v
e

rflo
w

Discussion

• Can we automate building of JOP attacks?

– Must solve problem of complex interdependencies
between gadget requirements

• Is this attack applicable to non-x86 platforms?

• What defense measures can be developed
which counter this attack?

A: Yes

The MIPS architecture

• MIPS: very different from x86

– Fixed size, aligned instructions

• No unintended code!

– Position-independent code via indirect jumps

– Delay slots

• Instruction after a jump will always be executed

• We can deploy JOP on MIPS!

– Use intended indirect jumps

• Functionality bolstered by the effects of delay slots

– Supports hypothesis that JOP is a general threat

MIPS exploit code (high level overview)

• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 6 gadgets which will:

– Insert a null-containing value into the attack buffer

– Prepare and execute an execve syscall

• Get a shell without exploiting a single jr ra:

Click for full

exploit code

MIPS full exploit code (1)

MIPS full exploit code (2)

References

[1] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to
defend against return-oriented programming attacks. Technical Report HGI-
TR-2010-001, Horst Gortz Institute for IT Security, March 2010.

[2] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting return-
oriented programming malicious code. In 5th ACM ICISS, 2009

[3] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic Integrity Measurement and
Attestation: Towards Defense against Return-oriented Programming Attacks.
In 4th ACM STC, 2009.

[4] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented
rootkits with return-less kernels. In 5th ACM SIGOPS EuroSys Conference, Apr.
2010.

[5] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In 14th ACM CCS, 2007.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M.
Winandy. Return-Oriented Programming Without Returns. In 17th ACM CCS,
October 2010.

	Slide 1: ECE560 Computer and Information Security Fall 2023
	Slide 3: What is a Buffer Overflow?
	Slide 4: Buffer Problem: Data overwrite
	Slide 5: Another Example: Code injection via function pointer
	Slide 6: Stack Attacks: Code injection via return address
	Slide 7: Demo
	Slide 8: Demo – normal execution
	Slide 9: Demo – exploit
	Slide 10: How to write attacks
	Slide 11: Attack code trickery
	Slide 12: Shellcode
	Slide 13
	Slide 14: Stack vs. Heap vs. Global attacks
	Slide 15: Table 10.2 Some Common Unsafe C Standard Library Routines
	Slide 16: Buffer Overflow Defenses
	Slide 17: Compile-Time Defenses: Programming Language
	Slide 18: Compile-Time Defenses: Safe Coding Techniques
	Slide 19
	Slide 20: Compile-Time Defenses: Language Extensions/Safe Libraries
	Slide 21: Compile-Time Defenses: Stack Protection
	Slide 22: Preventing Buffer Overflows
	Slide 23: Run-Time Defenses: Guard Pages
	Slide 24: W^X and ASLR
	Slide 25: Doesn't that solve everything?
	Slide 26: Negating ASLR
	Slide 27: Negating W^X
	Slide 28: Return-into-libc
	Slide 29: Arbitrary behavior with W^X?
	Slide 30: Return-oriented programming (ROP)
	Slide 31: Some common ROP operations
	Slide 32: Bringing it all together
	Slide 33: Example: First a syscall review in MIPS and x86
	Slide 34: Example ROP in MIPS (1)
	Slide 35: Example ROP in MIPS (2)
	Slide 36: Example ROP in MIPS (3)
	Slide 37: Example ROP in MIPS (4)
	Slide 38: Example ROP in MIPS (5)
	Slide 39: Example ROP in MIPS (6)
	Slide 40: Example ROP in MIPS (7)
	Slide 41: Example ROP in MIPS (8)
	Slide 42: Defenses against ROP
	Slide 43: Sidebar: “Weird machines”
	Slide 44: Backup slides: My past research on code reuse attacks
	Slide 45: Defenses against ROP
	Slide 46: Jump-oriented programming (JOP)
	Slide 47: The dispatcher in depth
	Slide 48: Availability of indirect jumps (1)
	Slide 49: Availability of indirect jumps (2)
	Slide 50: Finding gadgets
	Slide 51: Finding dispatcher gadgets
	Slide 52: Developing a practical attack
	Slide 53: The vulnerable program
	Slide 54: The exploit code (high level)
	Slide 55: The full exploit (1)
	Slide 56: The full exploit (2)
	Slide 57: Discussion
	Slide 58: The MIPS architecture
	Slide 59: MIPS exploit code (high level overview)
	Slide 60: MIPS full exploit code (1)
	Slide 61: MIPS full exploit code (2)
	Slide 62: References

