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What is a Buffer Overflow?

• Intent
▪ Arbitrary code execution

• Spawn a remote shell or infect with worm/virus

▪ Denial of service

• Steps
▪ Inject attack code into buffer

▪ Redirect control flow to attack code

▪ Execute attack code
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Buffer Problem: Data overwrite

• passwd buffer overflowed, overwriting passwd_ok flag
▪ Any password accepted!

int main(int argc, char *argv[]) { 

    char passwd_ok = 0; 

    char passwd[8]; 

    strcpy(passwd, argv[1]); 

    if (strcmp(passwd, "niklas")==0) 

        passwd_ok = 1; 

    if (passwd_ok) { ... } 

} 

longpassword1
Layout in  memory:
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Another Example: 
Code injection via function pointer

• Problems?
▪ Overwrite function pointer

• Execute code arbitrary code in buffer

char buffer[100];

void (*func)(char*) = thisfunc;    

strcpy(buffer, argv[1]);

func(buffer); 

arbitrarycodeX
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Stack Attacks:
Code injection via return address

• When a function is called…

▪ parameters are pushed on stack

▪ return address pushed on stack

▪ called function puts local variables on the stack

• Memory layout

• Problems?

▪ Return to address X which may execute arbitrary code

arbitrarystuffX



7

Demo

cool.c

#include <stdlib.h>

#include <stdio.h>

int main() {

 char name[1024];

 printf("What is your name? ");

 scanf("%s",name);

 printf("%s is cool.\n", name);

 

 return 0;

}
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Demo – normal execution
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Demo – exploit
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Attack code 

and filler

Local vars,

Frame 

pointer

Return 

address

How to write attacks

• Use NASM, an assembler:
▪ Great for machine code and specifying data fields

%define buffer_size 1024

%define buffer_ptr 0xbffff2e4

%define extra 20

<<< MACHINE CODE GOES HERE >>>

; Pad out to rest of buffer size

times buffer_size-($-$$) db 'x'

; Overwrite frame pointer (multiple times to be safe)

times extra/4   dd buffer_ptr + buffer_size + extra + 4

; Overwrite return address of main function!

dd buffer_location

1024

20

4

attack.asm
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Attack code trickery

• Where to put strings?  No data area!

• You often can't use certain bytes

▪ Overflowing a string copy?  No nulls!

▪ Overflowing a scanf %s?  No whitespace!

• Answer: use code!

• Example: make "ebx" point to string "hi folks":

push "olks"      ; 0x736b6c6f="olks"

mov ebx, -"hi f" ; 0x99df9698

neg ebx          ; 0x66206968="hi f"

push ebx

mov ebx, esp



Shellcode

• Code supplied by attacker
• Often saved in buffer being overflowed

• Traditionally transferred control to a user command-line interpreter 
(shell)

• Machine code
• Specific to processor and operating system

• Traditionally needed good assembly language skills to create

• More recently a number of sites and tools have been developed that 
automate this process

• Metasploit Project

• Provides useful information to people who perform 

penetration, IDS signature development, and exploit 
research
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Stack vs. Heap vs. Global attacks

• Book acts like they’re different; they are not

Stack overflows

• Data attacks, e.g. 
“is_admin” variable

• Control attacks, e.g. 
function pointers, 
return addresses, 
etc.

Non-stack overflows: 
heap/static areas

• Data attacks, e.g. 
“is_admin” variable

• Control attacks, e.g. 
function pointers, 
etc.



Table 10.2 

Some Common Unsafe C 
Standard Library Routines Table 10.2 Some Common Unsafe C Standard Library Routines 

 

gets(char *str) read line from standard input into str 

sprintf(char *str, char *format, ...) create str according to supplied format and variables 

strcat(char *dest, char *src) append contents of string src to string dest 

strcpy(char *dest, char *src) copy contents of string src to string dest 

vsprintf(char *str, char *fmt, va_list ap) create str according to supplied format and variables 

 
char *fgets(char *s, int size, FILE *stream)

snprintf(char *str, size_t size, const char *format, ...);

strncat(char *dest, const char *src, size_t n)

strncpy(char *dest, const char *src, size_t n)

vsnprintf(char *str, size_t size, const char *format, va_list ap)

Better:

Also dangerous: all forms of scanf when used with unbounded %s!



Buffer Overflow Defenses

• Buffer 

overflows are 

widely 

exploited

Two broad defense 
approaches

Compile-time

Aim to harden 
programs to resist 

attacks in new 
programs

Run-time

Aim to detect and 
abort attacks in 

existing programs



Compile-Time Defenses:
Programming Language

• Use a modern 

high-level 

language
• Not vulnerable to 

buffer overflow 

attacks

• Compiler enforces 

range checks and 

permissible 
operations on 

variables

Disadvantages

•Additional code must be executed at run 
time to impose checks

• Flexibility and safety comes at a cost in 
resource use

•Distance from the underlying machine 
language and architecture means that 
access to some instructions and hardware 
resources is lost

• Limits their usefulness in writing code, such as 
device drivers, that must interact with such 
resources



Compile-Time Defenses:
Safe Coding Techniques

• C designers placed much more emphasis on space 

efficiency and performance considerations than on 

type safety
• Assumed programmers would exercise due care in writing code

• Programmers need to inspect the code and rewrite 

any unsafe coding
• An example of this is the OpenBSD project

• OpenBSD code base: audited for bad practices 

(including the operating system, standard libraries, 

and common utilities)
• This has resulted in what is widely regarded as one of the safest operating 

systems in widespread use



 

int copy_buf(char *to, int pos, char *from, int len) 

{ 

    int i; 
 

    for (i=0; i<len; i++) { 

        to[pos] = from[i]; 

        pos++; 

    } 

    return pos; 

} 
 

(a)  Unsafe byte copy 

 

short read_chunk(FILE fil, char *to) 

{ 

    short len; 

    fread(&len, 2, 1, fil); ................................ ..................  /* read length of binary data */ 
    fread(to, 1, len, fil); ................................ ....................  /* read len bytes of binary data 

    return len; 

} 

 

(b) Unsafe byte input 

 
 

Figure 10.10 Examples of Unsafe C Code 
 



Compile-Time Defenses:

Language Extensions/Safe Libraries

• Handling dynamically allocated memory is more 

problematic because the size information is not 

available at compile time

o Requires an extension and the use of library routines

• Programs and libraries need to be recompiled

• Likely to have problems with third-party applications

• Concern with C is use of unsafe standard library 

routines

o One approach has been to replace these with safer 

variants

• Libsafe is an example

• Library is implemented as a dynamic library arranged to 

load before the existing standard libraries



Compile-Time Defenses:
Stack Protection

• Add function entry and exit code to check 

stack for signs of corruption

• Use random canary
o Value needs to be unpredictable

o Should be different on different systems

• Stackshield and Return Address Defender 

(RAD)
o GCC extensions that include additional function entry and exit code

• Function entry writes a copy of the return address to a safe region of 

memory

• Function exit code checks the return address in the stack frame 

against the saved copy

• If change is found, aborts the program
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Preventing Buffer Overflows

• Strategies
▪ Detect and remove vulnerabilities (best)

▪ Prevent code injection

▪ Detect code injection

▪ Prevent code execution

• Stages of intervention
▪ Analyzing and compiling code

▪ Linking objects into executable

▪ Loading executable into memory

▪ Running executable



Run-Time Defenses:
Guard Pages

• Place guard pages between critical 

regions of memory
o Flagged in MMU as illegal addresses

o Any attempted access aborts process

• Further extension places guard pages 

Between stack frames and heap 

buffers
o Cost in execution time to support the large number 

of page mappings necessary
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W^X and ASLR

• W^X
▪ Make code read-only and executable

▪ Make data read-write and non-executable

• ASLR: Randomize memory region locations
▪ “Address Space Layout Randomization”

▪ Stack: subtract large value

▪ Heap: allocate large block

▪ DLLs: link with dummy lib

▪ Code/static data: convert to shared lib, or re-link at 
different address

▪ Makes absolute address-dependent attacks harder

code

static data

bss

heap

shared library

stack

kernel space
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Doesn't that solve everything?

• PaX: Linux implementation of ASLR & W^X

• Actual title slide from a PaX talk in 2003:

?
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Negating ASLR

• ASLR is a probabilistic approach, merely increases attacker’s 
expected work
▪ Each failed attempt results in crash; at restart, randomization is different

• Counters:
▪ Information leakage

• Program reveals a pointer?  Game over.

▪ Derandomization attack [1]

• Just keep trying!  

• 32-bit ASLR defeated in 216 seconds

[1] Shacham et al. On the Effectiveness of Address-Space Randomization.  CCS 2004.
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Negating W^X

• Question: do we need malicious code to have malicious behavior?

argument 2

argument 1

RA
frame pointer

locals

buffer

Attack code

(launch a shell)

Address of 

attack code

argument 2

argument 1

RA
frame pointer

locals

buffer

Padding

Address of system()

"/bin/sh"

Code injection Code reuse (!)

No.

"Return-into-libc" attack
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Return-into-libc

• Return-into-libc attack
▪ Execute entire libc functions

▪ Can chain using “esp lifters”

▪ Attacker may:

• Use system/exec to run a shell

• Use mprotect/mmap to disable W^X

• Anything else you can do with libc

▪ Straight-line code only?

• Shown to be false by us, but that's another talk...
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Arbitrary behavior with W^X?

• Question: do we need malicious code to have arbitrary 
malicious behavior?

• Return-oriented programming (ROP)

• Chain together gadgets: tiny snippets of code ending in 
ret

• Achieves Turing completeness

• Demonstrated on x86, SPARC, ARM, z80, ...
▪ Including on a deployed voting machine,

which has a non-modifiable ROM

▪ Recently! New remote exploit on Apple Quicktime1

No.

1 http://threatpost.com/en_us/blogs/new-remote-flaw-apple-quicktime-bypasses-aslr-and-dep-083010
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Return-oriented programming (ROP)

• Normal software:

• Return-oriented program:

Figures taken from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.
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Some common ROP operations

• Loading constants

• Arithmetic

• Control flow

•Memory

add eax, ebx ; ret

stack 

pointer

pop eax ; ret

stack 

pointer

0x55555555

pop esp ; ret

stack 

pointer

mov ebx, [eax] ; ret

stack pointer

0x8070abcd
(address)

pop eax ; ret

...

Figures adapted from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.
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Bringing it all together

• Shellcode

▪ Zeroes part of memory

▪ Sets registers

▪ Does execve syscall

Figure taken from "The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)" by Shacham
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Example: First a syscall review in MIPS and x86

• Let’s say we want to launch a shell process in MIPS legitimately
 (not an attack)

• Necessary steps:

.text

myfunc:

 la $a0, shell # 1. Set $a0 to the address of the string “/bin/sh”

 li $v0, 55 # 2. Set $v0 to the syscall number for 'exec'

 syscall # 3. Ask the OS to do the syscall

MIPS

myfunc:

 mov ebx, shell # 1. Set $a0 to the address of the string “/bin/sh”

 mov eax, 55 # 2. Set $v0 to the syscall number for 'exec'

 int 0x80 # 3. Ask the OS to do the syscall

x86

.data

shell: .asciiz "/bin/bash"
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Example ROP in MIPS (1)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

# (Read a string from 

    the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable 

function’s $ra$sp

$pc

Buffer overflow occurs

buffer

(Function’s caller)
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$ra

Example ROP in MIPS (2)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

# (Read a string from 

    the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable 

function’s $ra

$sp
$pc

$ra controlled by attacker now

buffer

(Function’s caller)
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$ra$pc
0x1200

Example ROP in MIPS (3)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

# (Read a string from 

    the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable 

function’s $ra

$sp

We go where attacker says

buffer

(Function’s caller)
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$ra

Example ROP in MIPS (4)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

# (Read a string from 

    the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable 

function’s $ra

$sp

We change $a0 and $ra

buffer

(Function’s caller)

$pc

Regs
$a0 = 0x3506
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$ra$pc

Example ROP in MIPS (5)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

# (Read a string from 

    the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable 

function’s $ra

$sp

Now we execute another gadget

buffer

(Function’s caller)

Regs
$a0 = 0x3506
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$ra

Example ROP in MIPS (6)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

# (Read a string from 

    the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable 

function’s $ra

$sp

It sets $a1 and $ra

buffer

(Function’s caller)

$pc

Regs
$a0 = 0x3506

$a1 = 55
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$ra$pc

Example ROP in MIPS (7)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

# (Read a string from 

    the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable 

function’s $ra

$sp

We execute the final gadget

buffer

(Function’s caller)

Regs
$a0 = 0x3506

$a1 = 55
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$ra$pc

Example ROP in MIPS (8)

• Now let’s do it via ROP. Steps:
1. Set $a0 to the address of the string “/bin/sh”

2. Set $v0 to the syscall number for 'exec'

3. Ask the OS to do the syscall

PS1=bash$

SHELL=/bin/bash

LSCOLOR=...

...

lw $a0, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 8

jr $ra

...

0x3506

0x3500

0x1200

...

lw $a0, 8($sp)

lw $a1, 4($sp)

lw $ra, 0($sp)

addi $sp, $sp, 12

jr $ra

...

0x1800

0x1804

...

syscall

...

0x4880

0x0000

0x0000

0x0000

0x0000

0x9800

...

# (Read a string from 

    the user into a buffer)
...

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

...

Stack

(junk)

(junk)

(junk)

(junk)

0x1200

0x1804

0x3506

0x4880

55

Vulnerable 

function’s $ra

$sp

Boom: shell

buffer

(Function’s caller)

Regs
$a0 = 0x3506

$a1 = 55
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Defenses against ROP

• ROP attacks rely on the stack in a unique way
• Researchers built defenses based on this:

▪ ROPdefender[1] and others: maintain a shadow stack

▪ DROP[2] and DynIMA[3]: detect high frequency rets

▪ Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?
• No: code-reuse attacks need not be limited to the stack and 
ret!
▪ See “Jump-oriented programming: a new 

class of code-reuse attack” by Bletsch et al.
(covered in this deck if you’re curious)
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Sidebar: “Weird machines”

• Using ROP gives a computer with “weird” opcodes (gadget 
addresses) and “weird” semantics (specific effects on specific 
registers/memory).

• This is an example of a “weird machine” – common idiom in security
▪ Unexpected inputs result in unexpected forms of computation

• Key insight: If you can do computation in ANY way, it’s a computer

• Tagline of popular exploit YouTuber “LiveOverflow” is 
  “explore weird machines”

https://www.youtube.com/watch?v=8Dcj19KGKWM
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Backup slides:
My past research on code reuse attacks

“Jump-oriented Programming” (JOP)



Defenses against ROP
• ROP attacks rely on the stack in a unique way

• Researchers built defenses based on this:

– ROPdefender[1] and others: maintain a shadow stack

– DROP[2] and DynIMA[3]: detect high frequency rets

– Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?

• No: code-reuse attacks need not be limited to the 
stack and ret!
– My research follows...



Jump-oriented programming (JOP)
• Instead of ret, use indirect jumps, e.g., jmp eax

• How to maintain control flow?

(insns) ; jmp eax (insns) ; jmp ebx (insns) ; jmp ecx ?
Gadget Gadget Gadget

(choose next gadget) ; jmp eax (insns) ; jmp ebx

(insns) ; jmp ebx

(insns) ; jmp ebx

Gadget

Gadget

Gadget

Dispatcher gadget



The dispatcher in depth

• Dispatcher gadget implements:
 pc = f(pc)
 goto *pc

• f can be anything that evolves pc predictably

– Arithmetic: f(pc) = pc+4

– Memory based: f(pc) = *(pc+4)



Availability of indirect jumps (1)
• Can use jmp or call (don't care about the stack)

• When would we expect to see indirect jumps?

– Function pointers, some switch/case blocks, ...?

• That's not many...

Frequency of control flow 

transfers instructions in glibc



Availability of indirect jumps (2)

• However: x86 instructions are unaligned

• We can find unintended code by jumping into the 
middle of a regular instruction!

• Very common, since
they start with 0xFF, e.g.
-1               = 0xFFFFFFFF

-1000000 = 0xFFF0BDC0

add ebx, 0x10ff2a

call [eax]

81 c3 2a ff 10 00



Finding gadgets

• Cannot use traditional disassembly, 
– Instead, as in ROP, scan & walk backwards

– We find 31,136 potential gadgets in libc!

• Apply heuristics to find certain kinds of gadget

• Pick one that meets these requirements:
– Internal integrity: 

• Gadget must not destroy its own jump target.  

– Composability:
• Gadgets must not destroy subsequent gadgets' jump targets.



Finding dispatcher gadgets
• Dispatcher heuristic:

– The gadget must act upon its own jump target register

– Opcode can't be useless, e.g.: inc, xchg, xor, etc.

– Opcodes that overwrite the register (e.g. mov) instead of 
modifying it (e.g. add) must be self-referential
• lea edx, [eax+ebx] isn't going to advance anything

• lea edx, [edx+esi] could work

• Find a dispatcher that uses uncommon registers
 add ebp, edi

 jmp [ebp-0x39]

• Functional gadgets found with similar heuristics

pc = f(pc)

goto *pc



Developing a practical attack

• Built on Debian Linux 5.0.4 32-bit x86

– Relies solely on the included libc

• Availability of gadgets (31,136 total): PLENTY

– Dispatcher: 35 candidates

– Load constant: 60 pop gadgets

– Math/logic: 221 add, 129 sub, 112 or, 1191 xor, etc.

– Memory: 150 mov loaders, 33 mov storers (and more)

– Conditional branch: 333 short adc/sbb gadgets

– Syscall: multiple gadget sequences



The vulnerable program

• Vulnerabilities

– String overflow

– Other buffer overflow

– String format bug

• Targets

– Return address

– Function pointer

– C++ Vtable

– Setjmp buffer

•Used for non-local gotos

•Sets several registers, 

including esp and eip



The exploit code (high level)
• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 10 gadgets which will:

– Write null bytes into the attack buffer where needed

– Prepare and execute an execve syscall

• Get a shell without exploiting a single ret:



The full exploit (1)
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The full exploit (2)
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Discussion

• Can we automate building of JOP attacks?

– Must solve problem of complex interdependencies 
between gadget requirements

• Is this attack applicable to non-x86 platforms?

• What defense measures can be developed 
which counter this attack?

A: Yes



The MIPS architecture

• MIPS: very different from x86

– Fixed size, aligned instructions

• No unintended code!

– Position-independent code via indirect jumps

– Delay slots

• Instruction after a jump will always be executed

• We can deploy JOP on MIPS!

– Use intended indirect jumps

• Functionality bolstered by the effects of delay slots

– Supports hypothesis that JOP is a general threat



MIPS exploit code (high level overview)

• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 6 gadgets which will:

– Insert a null-containing value into the attack buffer

– Prepare and execute an execve syscall

• Get a shell without exploiting a single jr ra:

Click for full 

exploit code



MIPS full exploit code (1)



MIPS full exploit code (2)
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