
ECE560
Computer and Information Security

Fall 2024

Networking Overview

Tyler Bletsch

Duke University

Some slides adapted from Brian Rogers (Duke)

2

Network fundamentals

This course isn’t a networking course, so we’ll just hit the highlights

• We want to hook computers together

• There’s a near-infinite number of ways to do this

• We’ll skip the theory and show you the common case

• Average person’s networking understanding

“Gateway where I get cat pics”
Network

3

Network organization

4

Connectivity on the Internet

• A point-to-point mesh?

• Clearly not sustainable for large networks
▪ N2 links required

▪ Add new endpoint: new link added to all existing endpoints

5

Network Structure

• Need to share infrastructure!

• Routers and switches (intermediate nodes) allow sharing

Regional ISP

e.g., corporate

network

Home

network
Mobile

network

Global ISP

6

Internet Backbone

• From Wikipedia:

• Due to sharing, we get a
structure that looks like
this

• Localized “stars”
connected to others

7

Usage Models

• Network endpoints run application programs
▪ Web browser, email client, ssh, etc.

• Client / Server model
▪ Client endpoints requests a service from a server

▪ E.g. client / server web page service

• Peer-to-peer (P2P)
▪ Direct client communication (e.g. Skype, BitTorrent)

8

Packet Switched Routers

• Multiplex w/ queue(s) in the router

• Demultiplex with packet header info:
▪ Destination endpoint

Router

9

Managing Complexity

• Very large number of computers

• Incredible variety of technologies
▪ Each with very different constraints

• No single administrative entity

• Evolving demands, protocols, applications
▪ Each with very different requirements!

• How do we make sense of all this?

10

Networking layers

11

Layering

• We see layers of abstraction

• Separation of concerns
▪ Break problem into separate parts

▪ Solve each one independently

▪ Tie together through common interfaces: abstraction

▪ Encapsulate data from layer above inside data from layer below

▪ Allow independent evolution

12

Layering

• We see layers of abstraction

• Separation of concerns
▪ Break problem into separate parts

▪ Solve each one independently

▪ Tie together through common interfaces: abstraction

▪ Encapsulate data from layer above inside data from layer below

▪ Allow independent evolution

13

Layering done wrong invites
security vulnerabilities!

• Layering is a form of modularity; modularity is good
 IF and ONLY IF
you don’t make any dangerous assumptions!

• Networking stack is good, common, but has had lots of
vulnerabilities
▪ Many vulnerabilities of the form “layer X makes an implicit assumption about

data from layer Y”

▪ Example: Receiving a packet with an Ethernet frame size in conflict with TCP
packet size -> Buggy network code segfaults

• Rule of thumb:
 Be strict in what you send and check carefully what you receive

14

OSI Reference Model

15

TCP/IP Model

16

Layer 1 & 2

• Layer 1: Physical Layer
▪ Encoding of bits to send over a single physical link

• Layer 2: Link Layer
▪ Framing and transmission of a collection of bits into individual messages sent

across a single subnetwork (one physical topology)

▪ Provides local addressing (MAC)

▪ May involve multiple physical links

▪ Often the technology supports broadcast: every “node” connected to the
subnet receives

Examples: Ethernet, 802.11 WiFi
(the part of the spec that says how to send bits)

Examples: Ethernet, 802.11 WiFi
(the part of the spec that how to send packets to a host on this network)

17

Ethernet/WiFi and MAC addresses

• Each network interface has a MAC address (“Media Access
Control”): a 48-bit value burned into network card; globally unique
▪ First 3 bytes tell the manufacturer (OUI: Organizationally Unique Identifier)

▪ Last 3 bytes are made to be unique by that manufacturer

• Usually written as colon-delimited hex: BC:5F:F4:2B:E9:68

• Only meaningful on a single local area network (wired or wireless)

• Not transmitted across internet

Windows

Linux

18

Layer 1/2 demo: ARP

• Address Resolution Protocol (ARP): how we figure out the layer 2
address (MAC address) for a given layer 3 address (IP address)
▪ Can inquire to see known MAC addresses

▪ Can use OUI (first 3 bytes) to check manufacturer of devices!

http://www.whatsmyip.org/mac-address-lookup/

Left: ARP listing for my home server

Below: Lookup of manufacturer of the “TB-Galaxy-S7” device

http://www.whatsmyip.org/mac-address-lookup/

19

Layer 3

• Bridges multiple “subnets” to provide end-to-end connectivity
between nodes

• Provides global addressing (IP addresses)

• Only provides best-effort delivery of data
▪ No retransmissions, etc.

• Works across different link technologies

Example: Internet Protocol (IP)
(how to send packets between networks)

Below: Diagnostic tool showing the IP addresses passed on the way from my home to duke.edu

20

IPv4 addresses

• IPv4 address is 32-bit address that is (theroetically) globally unique;
identifies interface on the internet.

• Written as “dotted decimal” of the four bytes, e.g. “141.9.68.24”.
▪ So each number (“octet”) can be 0-255.

• Subnets
▪ An address can have its bits divided into network and host.

▪ We describe a network in dotted decimal with a suffix saying how many bits
are in the network part, e.g.: 181.41.0.0/18 – this is a subnet.

▪ A mask of one bits covering the network portion is called the netmask;
for 181.41.0.0/18, the netmask would be 255.255.192.0

▪ The number of hosts that fit in a subnet is 232-n – 2
(Minus two is because the all-zeroes host and all-ones host are special)

▪ IP address assignment is hierarchical: Countries get IP ranges and assign to
registrars who then divide them among customers (ISPs, companies, etc.).

▪ The country of Aruba has 181.41.0.0/18 and a few others.
For a long time, IBM had 9.0.0.0/8.

https://www.calculator.net/ip-subnet-calculator.html

21

Modern caveats (1)

• Some IP addresses are special:
▪ Loopback: 127.0.0.1 always refers the machine you’re on

(actually, it’s all of 127.0.0.0/8)

▪ Private: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16 – not allowed on internet

▪ Link-local: 169.254.0.0/16 – auto-assigned when no network services are up

▪ Others (see IANA IPv4 Special-Purpose Address Registry)

• We’re running out of 32-bit IP addresses, so
NAT (Network Address Translation) was invented
▪ Have just one “real” public IP address at network boundary,

assign private IP addresses internally and translate at border

▪ Extremely common – real direct internet connections are rare
(this is good, as NAT doubles as a firewall)

NAT router

Internet

Host

Host

Host

54.2.3.9

192.168.0.1

192.168.0.10

192.168.0.11

192.168.0.12

22

Modern caveats (2)

• IP-to-interface mapping is actually more flexible:
▪ For performance/reliability, an IP may be span multiple interfaces

▪ For manageability reasons, an interface may have >1 IP address

• All of the above refers to IP version 4 (“IPv4”)

• IPv6 is being deployed now (and has been for the past 25 years)
▪ IPv6 addresses are 128 bits (16 bytes) instead of 32 bits (4 bytes)

▪ Written as colon-delimited 16-bit hex words:

Figure from Wikipedia “IPv6”

23

Looking at real configs: Windows

• MAC address
• IPv6 address (link local – not routed to

internet in this config)
• IPv4 address (NAT routed private IP)
• Subnet mask (shows this is a /24 network)
• DHCP lease info
• Gateway: IP address we sent stuff to go

get to the internet (NAT router in this
case)

• DNS server: IP address we look up names
with (my router does this too in this case)

24

Looking at real configs: Linux

• MAC address
• Subnet mask (show this is a /24 network)
• IPv4 address (NAT routed private IP)
• IPv6 address (link local – not routed to

internet in this config)
• DNS server: IP address we look up names

with (my router does this too in this case)
• Gateway: IP address we sent stuff to go

get to the internet (NAT router in this
case)

25

Layer 4

• End-to-end communication between processes

• Different types of services provided:
▪ UDP: unreliable datagrams

▪ TCP: reliable byte stream

• “Reliable” = keeps track of what data were received properly and
retransmits as necessary

• This is the layer that applications talk with

Example: TCP/UDP
(how to establish a logical channel, maybe even a reliable channel)

Below: Sending data between two computers via a raw TCP socket using the ‘netcat’ (nc) tool.

26

Connectionless vs. Connection

• Connectionless transport layer
– Very similar to plain layer 3 (IP)

– Not much additional service provided on top

– But less networking stack software overheads as a result

– Standard example: User Datagram Protocol (UDP)

• Connection-oriented transport layer
– Provides error-free, reliable communication

– Like having a UNIX pipe between processes on two different machines

– Standard example: Transmission Control Protocol (TCP)

27

UDP – Connectionless service

• User Datagram Protocol
– Essentially allows applications to send IP datagrams

– With just slightly more encapsulation

• UDP transmits segments
– Simply 8 byte header followed by payload

28

Ports

• Allows application-level multiplexing of network services

• Processes attach to ports to use network services
– Port attachment is done with “BIND” operation

• Destination port
– When a UDP packet arrives, its payload is handed to process attached to the

destination port specified

• Source port
– Mainly used when some reply is needed

– Receiver can use the source port as the dest port in reply msg

29

UDP – What it does NOT do

• NO Flow control

• NO Error control

• NO Retransmission on receipt of bad segment

• User processes must handle this

• For apps needing precise control over packet flow, error control, or
timing, UDP is a great fit

– E.g. client-server situations where client sends short request and expects
short reply back; client can timeout & retry easily

– DNS (Domain Name System): For looking up IP addr of host name

• Client sends host name, receives IP address response

30

TCP – Connection-oriented Service

• Transmission Control Protocol
▪ Designed for end-to-end byte stream over unreliable network

▪ Robust against failures and changing network properties

• TCP interface to user programs
▪ Manages TCP streams and interfaces to the IP layer

▪ Accepts user data streams from processes

▪ Breaks up into pieces not larger than 64 KB

• Often 1460 data bytes to fit in 1 Ethernet frame w/ IP + TCP headers

▪ Sends each piece separately as IP datagram

▪ Destination machine reconstructs original byte stream

▪ Handles retransmissions & re-ordering

▪ Provides error-free, reliable communication

• Result:
▪ Can think of link like a pipe: Put data in one end, other side takes it out

31

TCP Service Model

• TCP service setup as follows:
– Two endpoint processes create endpoints called sockets

– Each socket has an address: IP address of host + 16-bit port

– API functions used to create & communicate on sockets

• Ports
– Numbers below 1024 called “well-known ports”

• Reserved for standard services, like FTP, HTTP, SMTP
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

32

TCP Service Model (2)

• TCP connections are full-duplex & point-to-point
– Simultaneous traffic in both directions

– Exactly 2 endpoints (no multicast or broadcast)

• TCP connection is a byte stream, not message stream
– Receiver has no way to know what granularity bytes were sent

– E.g. 4 x 512 byte writes vs. 1 x 2048 byte write

– It can just receive some # of bytes at a time

– Just like UNIX files!

• TCP may buffer data or send it immediately
– PUSH flag indicates to TCP not to delay transmission

– TCP tries to make a latency vs. bandwidth tradeoff

33

TCP Protocol

• TCP sequence number underlies much of the protocol
– Every byte sent has its own 32-bit sequence number

• TCP exchanges data in segments
– 20-byte fixed header (w/ optional part)

– Followed by 0 or more data bytes

– TCP can merge writes into one segment or split a write up

– Segment size limitations:

• Must fit (including header) inside 65,515 byte IP payload

• Networks have a MTU (max transfer unit)
– e.g. 1500 bytes for Ethernet payload size

• Uses a sliding window protocol (acks + timeout + seq #)
– Ack indicates the next seq # the receiver expects to get

– May be piggy-backed with data going in the other direction

We’re skipping this sort of stuff. If this were a networking course,
we’d spend a looooong time on how TCP works.

34

TCP Header

We’re skipping this sort of stuff. If this were a networking course,
we’d spend a looooong time on how TCP works.

35

Layers 5+

• Communication of whatever you want

• Can use whatever transport(s) is(are) convenient/appropriate

• Freely structured

• Examples:
▪ Skype (UDP)

▪ SMTP = email (TCP)

▪ HTTP = web (TCP)

▪ Online games (TCP and/or UDP)

Example: HTTP, lots more
(fulfill the actual use case)

Below: Manually speaking HTTP to request
http://google.com/ using the ‘netcat’ (nc) tool.

36

Demo: Wireshark

• Can observe packets in transit with network sniffer, e.g. Wireshark

Below: Trace of a Firefox request for http://www.gnu.org/

37

Network layer summary

Get http://pics.com/dog.jpg
(overall goal)

Transport dog.jpg data stream reliably

Send packets of data stream across world to
pics.com

Put electrical pulses on wire that represent the
packet

Send packet to router on my network;
I assume it can eventually reach pics.com

38

One more thing...
VLANs

• Everyone on the same layer 2 network is in one “broadcast domain”
▪ Equals one IP subnet (e.g. 192.168.0.0/24 would be one network)

▪ No IP routing to go point-to-point; a network switch delivers directly

• What if we WANT a layer 2 boundary?
▪ Just buy a physical switch for each network!

• But we don’t want to buy a different physical switch for each one!!

Host Host Host Host Host Host Host Host Host Host

switch switch

One switch = one network Two switches = two networks

switch

39

One more thing...
VLANs

• Logically separate layer 2 networks

• Switch ports can be:
▪ Access ports: can only see one VLAN, aren’t aware of VLAN concept

▪ Trunk ports: end point includes a VLAN tag in packet header to indicate which
VLAN it wants to talk to; interprets such headers on incoming packets

http://www.examcollection.com/certification-training/ccnp-configure-and-verify-vlans-and-trunking.html

40

Dynamic Host Configuration Protocol
(DHCP)

(It’s just one slide)

41

Dynamic Host Configuration Protocol (DHCP)

• DHCP: Allow hosts to enter a network and ask “what IP should I use
for myself?”

• How it works:
1. Client sends an IP broadcast “DISCOVERY” request

(destination 255.255.255.255 UDP port 67)

2. DHCP server on network sends an “OFFER” with
IP address and other config (gateway router,
DNS servers, maybe other stuff)

• Note: multiple offers might be provided by multiple
DHCP servers (but usually it’s just one)

3. Client sends a broadcast REQUEST for one of the offers

4. DHCP server sends ACKNOWLEDGE back

5. Client now has an IP address and basic config info

• DHCP can also be used to start network-boot (PXE), commonly used
for diskless clusters, OS auto-install, etc.

42

Domain Name System (DNS)

(Many slides)

43

Purpose of DNS

• Map an easy-to-remember name to an IP address

• Implications
▪ Without DNS, to send IP packet, must remember IP addresses manually!

...and they could change!

▪ With DNS, we can use the name directly:

• www.google.com or www.cnn.com

• DNS also provides inverse look-up that maps IP address to name

http://www.google.com/
http://www.cnn.com/

44

Before there was DNS...

• There was the HOSTS.TXT file (on Linux today as /etc/hosts)

• Maintained at SRI Network Information Center (NIC)

• Before DNS (1985), the name-to-IP address was done by
downloading this single file from a central server with FTP
▪ No hierarchical structure to the file

▪ Still works on most OSes; can be used to define local names

Wait, there’s a file that we can change on a computer to make it
think a certain DNS name points to whatever IP we say it does?

Security implications...
(Do the hosts + netcat demo)

45

.(root)

org edu com gov

Top-level domains

duke mit

ece cs

www smtp

Domain Namespace

• Domain namespace is a hierarchical and logical tree structure

• Label from a node to root in the DNS tree represents a DNS name

• Each subtree below a node is a DNS domain
▪ DNS domain can contain hosts or other domains (subdomains)

• Examples of DNS domains: .edu, duke.edu, ece.duke.edu

46

.(root)

org edu com gov

Top-level domains

duke mit

ece cs

www smtp

Domain Namespace

• Red is managed by Duke

• Green is managed by ECE

• Below top-level domain, administration of name space is delegated
to organizations
▪ Each organization can further delegate

47

.(root)

org edu com gov

Top-level domains

duke mit

ece cs

www smtp

Fully Qualified Domain Names

• Every node in the DNS domain tree can be identified by a FQDN

▪ Fully Qualified Domain Name

• FDQN (from right to left) consists of labels (“ece”, “duke”, “edu”) separated by a
period from the root to the node

• Each label can be up to 63 characters; full DNS name <= 255 chars

• FDQN contains characters, digits, dashes; not case-sensitive

48

Top-Level Domains

• Three types of top-level domains:
▪ Generic Top Level Domains (gTLD)

• 3 char code indicates the function of the organization

• Use primarily within the US (e.g. gov, mil, edu, org, com, net)

▪ Country Code Top Level Domain (ccTLD)

• 2 char country or region code (e.g. us, jp, uk)

▪ Reverse Domain

• Special domain used for IP address-to-name mapping

• in-addr.arpa

• More than 200 top-level domains

49

DNS Architecture

• Domain name space
▪ Domain namespace is a hierarchical tree structure, a domain can be

delegated to an organization

• Name servers
▪ Domain name hierarchy exists only in the abstract

▪ A host's name servers are specified in /etc/resolv.conf

• Resource records: (Name, Value, Type, Class, TTL)
▪ Name (“duke.edu”) and Value (“152.3.72.104”)

▪ Type specifies how the “Value” should be interpreted. Examples:

• “NS” = Name Server: name is a domain and value is name of authoritative
name server for this domain

• “A” = Address: machine name and IP address

▪ Class: record type (usually “IN” for Internet)

▪ TTL: how long should the record be cached

50

$TTL 86400

mylab.com. IN SOA PC4.mylab.com. admin@mylab.com. (

 1 ; serial

 28800 ; refresh

 7200 ; retry

 604800 ; expire

 86400 ; minimum ttl

)

;

mylab.com. IN NS PC4.mylab.com.

;

localhost A 127.0.0.1

PC4.mylab.com. A 10.0.1.41

PC3.mylab.com. A 10.0.1.31

PC2.mylab.com. A 10.0.1.21

PC1.mylab.com. A 10.0.1.11

• Address (A) records:

one entry for each host address

Resource Records

• Max age of cached data in

seconds

• Start of authority (SOA)

record.

Means: “This name server is

authoritative for the zone

Mylab.com”

• PC4.mylab.com is the

name server

• admin@mylab.com is the

email address of the person

in charge

• Name server (NS) record:

one entry for each authoritative

name server

51

root server

com servergov serveredu serverorg server

uci.edu

server

.virginia.edu

 server

cs.virginia.edu

 server

Hierarchy of Name Servers

• Resolution of the hierarchical
namespace is done by
hierarchy of name servers

• Namespace is partitioned into
zones. A zone is a contiguous
portion of the DNS namespace

• Each server is responsible
(authoritative for a zone)

• DNS server answers queries
about host names in its zone

52

Name Servers

• Each zone has a primary and secondary name server
▪ For reliability

▪ Primary server maintains a zone file with zone info

• Updates made to the primary server

▪ Secondary server copies data stored at the primary server

• Adding a new host:
▪ When new host is added (e.g. “newmachine.ece.duke.edu”)

▪ Administrator adds the IP info on the host (IP address, name) to a
configuration file on the primary server

53

Root Name Servers

• Root name servers know how to find authoritative name servers for
all top-level zones

• There are 13 (virtual) root name servers

• Root servers are critical for proper functioning of name resolution

54

HTTP Resolver

Hostname (neon.tcpip-lab.edu)

IP address (128.143.71.21)

Name

server

H
o

s
tn

a
m

e

(n
e

o
n

.tc
p

ip
-la

b
.e

d
u

)

IP
 a

d
d

re
s
s
 (1

2
8

.1
4

3
.7

1
.2

1
)

Domain Name Resolution

1. User program issues a request for
the IP address of a hostname
gethostbyname()

2. Local resolver formulates a DNS
query to the name server of the host

3. Name server checks if it is
authorized to answer the query.
▪ If yes, it responds.
▪ Otherwise, it will query other name

servers, starting at the root tree

4. When the name server has the
answer it sends it to the resolver.

55

.(root)

org edu com gov

duke mit

ece cs

www smtp

arpa

in-addr

150.45.38.128

Inverse Query

• What is the host name for IP address 150.45.38.128?
▪ IP address is converted to domain name:

128.38.45.150.in-addr.arpa

▪ Resolver sends query for this address

56

Caching

• To reduce DNS traffic, name servers cache info
▪ e.g. Domain name / IP address mappings

• When entry for a query is cached, the server does not contact other
servers

• Note: if an entry is sent from a cache, the reply from the server is
marked as “unauthoritative”

• Caching-only servers
▪ Only purpose is to cache results

▪ Do not contain zone info or a zone database file

• Negative responses will be cached too:
▪ Caching “name in question does not exist”

▪ Caching “Name in record exists, but requested data does not”

57

Modern follow-ons

• DNS with DHCP integration
▪ When a new host uses DHCP to get on the network, the DHCP server can tell

the DNS server about it, then the DNS server can answer requests for that
host by name

• Multicast DNS (mDNS) and Link-Local Multicast Name Resolution
(LLMNR)
▪ Resolve hostnames when there’s no local DNS server

▪ Allows “automagic” host discovery on individual networks

▪ Zero configuration – they’re self-organizing protocols

• DNSSEC: DNS security (next slides)
▪ Provides integrity, not confidentiality

• DNS over HTTPS (DoH): Very new standard, also provides encryption
▪ Provides integrity and confidentiality

58

DNSSEC

• Problem: how do I know this DNS record I got is authentic?

• DNSSEC: A commonly deployed protocol to provide DNS integrity
▪ “Sign” the record with asymmetric cryptography,

use a “chain of trust” to show that the signature is valid.

▪ (We haven’t covered these concepts yet – we’ll see it when we cover crypto)

• DNSSEC doesn’t encrypt requests
(eavesdropping attacker can still see requests)

Adapted from “High-Level Awareness of DNSSEC” by Phil Regnauld and Joe Abley, KENIC/NSRC Workshop, 2011

59

DNS security issues covered by DNSSEC

Adapted from “High-Level Awareness of DNSSEC” by Phil Regnauld and Joe Abley, KENIC/NSRC Workshop, 2011

60

Quick intro to socket programming

61

Sockets

• How do user programs request to interact with networks?

• We can program using network sockets
▪ For creating connections and sending / receiving messages

▪ Often follows a client / server pattern

62

Client-Server Model

• Common communication model in networked systems
▪ Client typically communicates with a server

▪ Server may connect to multiple clients at a time

• Client needs to know:
▪ Existence of a server providing the desired service

▪ Address (commonly IP address) of the server

• Server does not need to know either about the client

63

Client-Server Overview

• Client and Server communicating across Ethernet using TCP/IP

Client app

Ethernet Driver

Ethernet Network

TCP

IP

Server app

Ethernet Driver

Socket API

IP

Application Layer

Kernel

Transport Layer

Network Layer

Data Link Layer

Socket API

TCP

Client side Server side

User process

64

Networking concept reminders

• Network interface is identified by an IP address
▪ Or a hostname, which translates into an IP address

▪ E.g. 127.0.0.1, localhost or login.oit.duke.edu

• Interface has 65536 ports (0-65535)

• Processes attach to ports to use network services
▪ Port attachment is done with bind() operation

• Allows application-level multiplexing of network services
▪ E.g. SSH vs. Web vs. Email may all use different ports

▪ Many ports are standard (e.g. 80 for web server, 22 for SSH)

▪ You may have seen URLs like http://127.0.0.1:4444

• 127.0.0.1 is the IP, 4444 is the port

65

TCP Socket API

socket()

connect()

write()

read()

close()

socket()

bind()

listen()

accept()

read()

write()

read()

close()

TCP Client

TCP Server

Blocks until

connection from client

Do work

Establish TCP connection

Data (request)

Data (response)

EOF notification

66

Example – UNIX TCP sockets

• Let’s look at example code…

• Here is a great reference for use of socket-related calls
▪ http://beej.us/guide/bgnet/

Primitive Meaning

socket() Create a new communication end point

bind() Attach a local address to a socket

listen() Announce willingness to accept connections; give queue size

accept() Block the caller until a connection attempt arrives

connect() Actively attempt to establish a connection

send() Send some data over the connection

recv() Receive some data from the connection

close() Release the connection

http://beej.us/guide/bgnet/

67

Server-Side Structure

• Often follows a common pattern to serve incoming requests

pid_t pid;

int listenfd, connfd;

listenfd = socket(...);

/***fill the socket address with server’s well known port***/

bind(listenfd, ...);

listen(listenfd, ...);

for (; ;) {

 connfd = accept(listenfd, ...); // blocking call

 if ((pid = fork()) == 0) { // create a child process to service

 close(listenfd); // child closes listening socket

 /***process the request doing something using connfd ***/

 /* */

 close(connfd);

 exit(0); // child terminates

 }

 close(connfd); // parent closes connected socket

}

	Slide 1: ECE560 Computer and Information Security Fall 2024
	Slide 2: Network fundamentals
	Slide 3: Network organization
	Slide 4: Connectivity on the Internet
	Slide 5: Network Structure
	Slide 6: Internet Backbone
	Slide 7: Usage Models
	Slide 8: Packet Switched Routers
	Slide 9: Managing Complexity
	Slide 10: Networking layers
	Slide 11: Layering
	Slide 12: Layering
	Slide 13: Layering done wrong invites security vulnerabilities!
	Slide 14: OSI Reference Model
	Slide 15: TCP/IP Model
	Slide 16: Layer 1 & 2
	Slide 17: Ethernet/WiFi and MAC addresses
	Slide 18: Layer 1/2 demo: ARP
	Slide 19: Layer 3
	Slide 20: IPv4 addresses
	Slide 21: Modern caveats (1)
	Slide 22: Modern caveats (2)
	Slide 23: Looking at real configs: Windows
	Slide 24: Looking at real configs: Linux
	Slide 25: Layer 4
	Slide 26: Connectionless vs. Connection
	Slide 27: UDP – Connectionless service
	Slide 28: Ports
	Slide 29: UDP – What it does NOT do
	Slide 30: TCP – Connection-oriented Service
	Slide 31: TCP Service Model
	Slide 32: TCP Service Model (2)
	Slide 33: TCP Protocol
	Slide 34: TCP Header
	Slide 35: Layers 5+
	Slide 36: Demo: Wireshark
	Slide 37: Network layer summary
	Slide 38: One more thing... VLANs
	Slide 39: One more thing... VLANs
	Slide 40: Dynamic Host Configuration Protocol (DHCP)
	Slide 41: Dynamic Host Configuration Protocol (DHCP)
	Slide 42: Domain Name System (DNS)
	Slide 43: Purpose of DNS
	Slide 44: Before there was DNS...
	Slide 45: Domain Namespace
	Slide 46: Domain Namespace
	Slide 47: Fully Qualified Domain Names
	Slide 48: Top-Level Domains
	Slide 49: DNS Architecture
	Slide 50: Resource Records
	Slide 51: Hierarchy of Name Servers
	Slide 52: Name Servers
	Slide 53: Root Name Servers
	Slide 54: Domain Name Resolution
	Slide 55: Inverse Query
	Slide 56: Caching
	Slide 57: Modern follow-ons
	Slide 58: DNSSEC
	Slide 59: DNS security issues covered by DNSSEC
	Slide 60: Quick intro to socket programming
	Slide 61: Sockets
	Slide 62: Client-Server Model
	Slide 63: Client-Server Overview
	Slide 64: Networking concept reminders
	Slide 65: TCP Socket API
	Slide 66: Example – UNIX TCP sockets
	Slide 67: Server-Side Structure

