
ECE560
Computer and Information Security

Fall 2024

Reverse Engineering

Tyler Bletsch

Duke University

With additional content by Jiaming Li, NC State University, 2015

2

What is software reverse engineering?

• Determine and possibly change program logic
▪ “Logic” ≠ Just observed behavior

• Ethics
▪ Useful for good:

• Analyze malware

• Understand undocumented legacy code

• Watch/read/play the stuff you paid for

▪ Useful for evil

• “Crack” software
(remove restrictions)

• Find exploits

• Cheat at games

3

Types of tools

Static analysis

• Disassembler

• Turn compiled program into
assembly

• Usually good, but can get
confused: can’t discern code from
data if binary is weirdly laid out

• Decompiler

• Attempts to turn assembly back
into source code.

• Usually awful at machine code
(though they’re getting better),
but managed code (e.g. Java,
Python) often produces decent
results.

• Hex editor

• Understand binary data;
make changes to binaries

Dynamic analysis

• Debugger

• Step through running program

• Very powerful: Gives control over
time, order of execution, and
content of data

• Environment sometimes differs
from normal execution in subtle
ways

• Monitoring tools

• Watch system calls, library calls,
etc.

4

Examples of tools

• Linux:
▪ Disassember: objdump (free), IDA Pro (free and paid versions),

Ghidra (free, from NSA!)

▪ Debugger: gdb and its front-ends

▪ Hex editor: okteta, bless, lots more…

▪ Monitoring: strace, ltrace

• Windows:
▪ Disassembler: IDA Pro (free and paid versions),

Ghidra (free, from NSA!)

▪ Debugger: WinDBG (basic), OllyDbg (shareware), SoftICE ($1000+)

▪ Hex editor: XVI32, Notepad++ with plugin, etc.

▪ Monitoring tools: Process Monitor, Explorer, and more.

• X86 in general: A hypervisor (VMware, KVM, etc.)

IDA Pro eats basically anything

5

Debug or disassemble? Both.

• Disassembler gives static results

▪ Good overview of program logic

▪ But need to “mentally execute” program

▪ Difficult to jump to specific functionality in the code

• Debugger is dynamic

▪ Can set break points; fast forward to code for relevant functionality

▪ Can treat complex code as “black box”

▪ Not all code disassembles correctly

• Disassembler and debugger both required for any serious reverse engineering
task

From "Computer Science 654 Lecture 5: Software Reverse Engineering" by Wayne Patterson, Howard Univ. 2009.

6

Example 1: HW2 auto-grader

• Python decompiles very easily

7

Example 2: Minecraft

• Minecraft is a Java program, no mod support

• All mods use something like the Mod Coder Pack (MCP):

“Use MCP to decompile the Minecraft client and server jar files.

Use the decompiled source code to create mods for Minecraft.

Recompile modified versions of Minecraft.

Reobfuscate the classes of your mod for Minecraft.”

• Entire mod community is built on reverse engineering!

8

Examining multi-component systems

• Weaknesses often at the seams – where parts of system come
together
▪ Most visible, often exploitable

▪ Example: SQL inspection (program/database boundary)

• If not the seams, at least focus on the least protected part

• Most common example: user code and the kernel
▪ Known interface (system calls)

▪ Inescapable – user code MUST use kernel to do stuff!

Thing A Thing B

Aim here if possible

9

Example 3: ‘do_thing’

• You have a program that mysteriously says you’re not authorized:

• Could debug, disassemble, etc., but here’s something cheap:
strace: find out what system calls it’s doing to check authorization!

10

Example 3: reading strace

• You learn to see through the noise with practice
execve("./do_thing", ["./do_thing"], 0x7fffdaa953d0 /* 28 vars */) = 0

brk(NULL) = 0x7fffcd6a3000

arch_prctl(0x3001 /* ARCH_??? */, 0x7fffd4efd730) = -1 EINVAL (Invalid argument)

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=47823, ...}) = 0

mmap(NULL, 47823, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fb596204000

close(3) = 0

openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\360q\2\0\0\0\0\0"..., 832) = 832

pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64) = 784

pread64(3, "\4\0\0\0\20\0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\0\0\3\0\0\0\0\0\0\0", 32, 848) = 32

pread64(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\0\t\233\222%\274\260\320\31\331\326\10\204\276X>\263"..., 68, 880) = 68

fstat(3, {st_mode=S_IFREG|0755, st_size=2029224, ...}) = 0

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fb596240000

pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64) = 784

pread64(3, "\4\0\0\0\20\0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\0\0\3\0\0\0\0\0\0\0", 32, 848) = 32

pread64(3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\0\t\233\222%\274\260\320\31\331\326\10\204\276X>\263"..., 68, 880) = 68

mmap(NULL, 2036952, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fb596010000

mprotect(0x7fb596035000, 1847296, PROT_NONE) = 0

mmap(0x7fb596035000, 1540096, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x25000) = 0x7fb596035000

mmap(0x7fb5961ad000, 303104, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x19d000) = 0x7fb5961ad000

mmap(0x7fb5961f8000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1e7000) = 0x7fb5961f8000

mmap(0x7fb5961fe000, 13528, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7fb5961fe000

close(3) = 0

arch_prctl(ARCH_SET_FS, 0x7fb596241380) = 0

mprotect(0x7fb5961f8000, 12288, PROT_READ) = 0

mprotect(0x7fb596246000, 4096, PROT_READ) = 0

mprotect(0x7fb59623d000, 4096, PROT_READ) = 0

munmap(0x7fb596204000, 47823) = 0

brk(NULL) = 0x7fffcd6a3000

brk(0x7fffcd6c4000) = 0x7fffcd6c4000

openat(AT_FDCWD, ".hidden_authorization_file", O_RDONLY) = -1 ENOENT (No such file or directory)

fstat(1, {st_mode=S_IFCHR|0660, st_rdev=makedev(0x4, 0x1), ...}) = 0

ioctl(1, TCGETS, {B38400 opost isig icanon echo ...}) = 0

write(1, "You are not authorized.\n", 24You are not authorized.

) = 24

exit_group(1) = ?

+++ exited with 1 +++

Boring stuff to start

the program (load

shared libraries,

prepare heap)

Error message

that we hate

Potentially relevant

syscalls

11

Example 3: success

• It appears to check for a file called “.hidden_authorization_file” and
doesn’t find it

• What if it did find it? Let’s try:

• Success!

• But what if it the program actually looked inside the file and needed
to see certain data in there?
▪ Can’t see computation from here, just IO, so that’s when you use

disassembler/debugger

openat(AT_FDCWD, ".hidden_authorization_file", O_RDONLY) = -1 ENOENT (No such file or directory)

12

Example 4:
NSA Codebreaker challenge, 2015

• Scenario:
▪ Terrorists using a cryptography program to decrypt/authenticate messages

from leadership

▪ What we have:

• The program: codebreaker3.exe

• A member’s key: tier1_key.pem

• A text file with a hidden message: tier1_msg.txt

▪ At first glance, the program appears to simply check stock information, but
that’s a ruse.

▪ Need to reverse engineer it:
Challenge has 4 tasks, we’ll do 2.

Adapted from content by Jiaming Li, NC State University, 2015

13

Codebreaker Task 1: Decrypt

• Need to decode message we have.

• The program:

Adapted from content by Jiaming Li, NC State University, 2015

14

Codebreaker Task 1: Decrypt

• Do static analysis with IDA Pro
▪ Load binary

▪ Confirm binary format options

▪ Process:

• Code is disassembled

• Call graph of assembly code built

• All memory references are cross-referenced,
especially string literals

Adapted from content by Jiaming Li, NC State University, 2015

15

Codebreaker Task 1: Decrypt

• Do static analysis with IDA Pro, check the all string information

Adapted from content by Jiaming Li, NC State University, 2015

16

Codebreaker Task 1: Decrypt

• Press x, this leads us to the location where this string appears:

Adapted from content by Jiaming Li, NC State University, 2015

17

Codebreaker Task 1: Decrypt

• OK, let’s try “decoder” parameter:

Adapted from content by Jiaming Li, NC State University, 2015

18

Codebreaker Task 1: Decrypt

• We need to find where “Failed binary name check” appears:

• and this comes from:

Adapted from content by Jiaming Li, NC State University, 2015

19

Codebreaker Task 1: Decrypt

• Then we change our program name to
“secret-messenger.exe” and try again:

Adapted from content by Jiaming Li, NC State University, 2015

20

Codebreaker Task 1: Decrypt

• Ideas?

• Let’s jam the stuff into symbol and action fields

Adapted from content by Jiaming Li, NC State University, 2015

21

Codebreaker Task 2:
Bypass access limitation

• We’ve collected a new message file - this one to a different field
operative whose key we also have.

• Each operative has their own decrypt tool, each tool will only
decrypt content “addressed” to its owner.

• Need to defeat this access limitation to decrypt the message.

Adapted from content by Jiaming Li, NC State University, 2015

22

Codebreaker Task 2:
Bypass access limitation

• Let’s go back to IDA to find where this error appears:

22Adapted from content by Jiaming Li, NC State University, 2015

23

Codebreaker Task 2:
Bypass access limitation

• Note down the address of “cmp ax,4756h”, press SPACE:

• How to test if this is the check?

• How to bypass the check?

Adapted from content by Jiaming Li, NC State University, 2015

24

Codebreaker Task 2:
Bypass access limitation

• In order to bypass this check as easily as possible, we can just
modify the assembly code or change the specific flag during
execution. Load the program with ollydbg:

Adapted from content by Jiaming Li, NC State University, 2015

25

Codebreaker Task 2:
Bypass access limitation

• Press CTRL+g go to the address 00401bf2,
press F2 set breakpoint:

Adapted from content by Jiaming Li, NC State University, 2015

26

Codebreaker Task 2:
Bypass access limitation

• Let’s run the program and it will stop at this breakpoint, press F8 to
run one more step and we modify the conditional JUMP instruction
manually:

Adapted from content by Jiaming Li, NC State University, 2015

27

Codebreaker Task 2:
Bypass access limitation

• Then, right click → copy to executable→ all modification, so we just
saved our new program, let’s try to run it:

Adapted from content by Jiaming Li, NC State University, 2015

29

Anti-reverse engineering

• Basics:

▪ Turn off debug symbols (omit -g)

▪ Strip other symbols (e.g. “strip” tool on *NIX)

▪ Consider static linking (no external calls to standard libraries to trace)

• Anti-disassembly:

▪ Encrypted or self-modifying code

▪ Code riddled with junk that is jumped over

• Can especially confuse x86 assemblers due to variable-length instructions

• Anti-debugging:

▪ Identify if debugger is in use (effects on real time, use of debug registers, etc.) and act
differently

▪ Use threads in complex ways to get less deterministic behavior

• Tamper resistance:

▪ Hash parts of own code/data and verify periodically

▪ The verification code is also code, though…

• Obfuscation:

▪ Include lots of unreachable code to increase work the reverse engineer must do

30

DRM: Digital Rights Management

• Attempt to restrict what users can do with
data they have on a computer they own

• Almost every implementation looks like this:

▪ Customer gets everything in the dashed box

▪ Problem?

32

Extra content

33

Example 3: Auto-grader for
a homework question you didn’t get

• Naïve attack: Just change the script

34

Example 3: Lost HW autograder

• Naïve attack: Just change the script
▪ Failed: hw3sign must be checking it somehow!

35

Example 3: Lost HW autograder
Topology

sha-test.sh

hw3sign

36

Example 3: Lost HW autograder

• Could look at behavior with strace:
$ strace -f -o trace.txt ./sha-test.sh myenc

 ...

$ cat trace.txt

4127 execve("./sha-test.sh", ["./sha-test.sh", "myenc"], [/* 46 vars */]) = 0

4127 brk(0) = 0x1700000

4127 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x7f55d5a17000

4127 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or
directory)

4127 open("/etc/ld.so.cache", O_RDONLY) = 3

4127 fstat(3, {st_mode=S_IFREG|0644, st_size=210058, ...}) = 0

4127 mmap(NULL, 210058, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f55d59e3000

4127 close(3) = 0

 ...

• But hw3sign never appears to open sha-test.sh:
$ grep open trace.txt | grep sha-test.sh

4127 open("./sha-test.sh", O_RDONLY) = 3

▪ This one line is from when sha-test.sh itself is started

▪ There’s more mystery here that I’ll leave to you…

37

Example 3: Lost HW autograder
Best place to attack?

sha-test.sh

hw3sign

38

Example 3: Lost HW autograder

• Two past successful student attacks

• Black box attack:
▪ hw3sign signs the binary, then the certificate itself

▪ What if we ask it to “test” a doctored certificate as a binary – it will sign it for
us! No understanding needed!

• Chameleon attack:
▪ Add cheating to sha-test.sh; also add code to copy a legit sha-test.sh over

itself before doing signings

▪ Malicious behavior occurs then hides before check occurs

▪ Example of a TOCTOU attack (Time-Of-Check/Time-Of-Use)!

	Slide 1: ECE560 Computer and Information Security Fall 2024
	Slide 2: What is software reverse engineering?
	Slide 3: Types of tools
	Slide 4: Examples of tools
	Slide 5: Debug or disassemble? Both.
	Slide 6: Example 1: HW2 auto-grader
	Slide 7: Example 2: Minecraft
	Slide 8: Examining multi-component systems
	Slide 9: Example 3: ‘do_thing’
	Slide 10: Example 3: reading strace
	Slide 11: Example 3: success
	Slide 12: Example 4: NSA Codebreaker challenge, 2015
	Slide 13: Codebreaker Task 1: Decrypt
	Slide 14: Codebreaker Task 1: Decrypt
	Slide 15: Codebreaker Task 1: Decrypt
	Slide 16: Codebreaker Task 1: Decrypt
	Slide 17: Codebreaker Task 1: Decrypt
	Slide 18: Codebreaker Task 1: Decrypt
	Slide 19: Codebreaker Task 1: Decrypt
	Slide 20: Codebreaker Task 1: Decrypt
	Slide 21: Codebreaker Task 2: Bypass access limitation
	Slide 22: Codebreaker Task 2: Bypass access limitation
	Slide 23: Codebreaker Task 2: Bypass access limitation
	Slide 24: Codebreaker Task 2: Bypass access limitation
	Slide 25: Codebreaker Task 2: Bypass access limitation
	Slide 26: Codebreaker Task 2: Bypass access limitation
	Slide 27: Codebreaker Task 2: Bypass access limitation
	Slide 29: Anti-reverse engineering
	Slide 30: DRM: Digital Rights Management
	Slide 32: Extra content
	Slide 33: Example 3: Auto-grader for a homework question you didn’t get
	Slide 34: Example 3: Lost HW autograder
	Slide 35: Example 3: Lost HW autograder Topology
	Slide 36: Example 3: Lost HW autograder
	Slide 37: Example 3: Lost HW autograder Best place to attack?
	Slide 38: Example 3: Lost HW autograder

