ECE560
Computer and Information Security

Fall 2024

User Authentication and Access Control

Tyler Bletsch
Duke University

User Authentication

Determining if a user is who they say they are
before giving them access.

Four means of authentication

e Password, PIN, answers to

Something you know orearranged questions

el dallal- 87NN E\I © Smartcard, electronic keycard,
(token) physical key

Something you are
(static biometrics)

e Fingerprint, retina, face

Something you do

(dynamic biometrics) |8 Voice pattern, handwriting

Passwords

e Most common authentication mechanism

= User provides username and password, must match server records
(For reference, see every computer thing ever)

e The hard parts:
a' How to store passwords?

= How to communicate passwords?
(covered later on)

Storing passwords: Hashing

e Given setup: store passwords in plaintext
e Threat model:

= Database of user info is compromised (happens a LOT)
= Attacker wants to figure out password

o Attack:

= Attacker just looks at the database and sees the passwords

e Improvement: Hashing
= Don’t store the plaintext password, store a hash
= Compare hashes

Storing passwords: Salting

e Given setup: store hashed passwords
e Threat model:

= Database of password hashes is compromised (happens a LOT)
= Attacker wants to figure out password for a given hash
e Attack:

= Attacker hashes many possible passwords and finds that “cOOldude” hashes to
a53d677656e7bcb216b9ef6e38bb7abl. Anyone with that hash must have that
password!

e Can also see users with the same password, even if it’s unknown!
e |mprovement: Salting
= Add a bit of random stuff (“salt”) to password before hashing
= Random stuff differs per record

= Store the salt with the hash so we can use it when verifying given passwords

e Result: I need to brute-force search per user instead of once for everyone

Storing passwords: Iteration count

e Given setup: Store salted hashed passwords

e Threat model:
= Database of password hashes is compromised (happens a LOT)
= Attacker wants to figure out password for a given hash
= Attacker has lots of fast computers

e Attack

= Qkay, given the salt for a specific user, | do hash a billion possibilities; still often likely
to find a match!

e |Improvement: Iteration count
= |nstead of just using H(data), do H(H(H(... H(data) ...)))

= |ncrease iteration count to make it very hard for attacker while still being feasible for
login checks

= Makes our hash function “slow” (configurably so!)
e Why?

= |f default hashing has speed of X, then an iteration count of 1000 gives a speed of
X/1000. Login is a tiny amount of time in normal use, but it makes the attacker’s job
1000x harder for very little cost.

Password Vulnerabilities

Offline dictionary attack: Crack a hashed password
= Defense: Make harder by salting, iteration count

Online dictionary attack: Try dictionary logins to actual live system
» Defense: Max attempt counter, password complexity requirements

Password spraying: Try few common passwords on many accounts/systems
= Defense: Password complexity requirements

Credential stuffing: Try the same user+password many places
(often the creds are leaked from a prior breach)

= Defense for individual: Password managers with strong crypto
= Defense for organization: ??7?7??

£ E.g.: Trump’s Twitter password was guessed. It was “maga2020!” ©]

Password guessing: Do research then guess
= Defense: User training, password complexity requirements

Exploiting user mistakes: Post-It notes, sharing, unchanged defaults, etc.
= Defense: Training, single-use expiring passwords for new accounts

Electronic monitoring: Sniffing network, installing keylogger, etc.
= Defense: Encryption, challenge-response schemes, training

https://www.vox.com/2020/12/16/22179065/trump-twitter-password-maga2020-dutch-gevers

UNIX password scheme

e Originally: hash stored in public-readable /etc/passwd file
= Hashes were public; relied entirely on them being hard to crack

= People slowly figured out in the 80s password cracking was feasible
(god what an awesome/lazy time to be an attacker...)

* Now: hash stored in separate root-readable /etc/shadow file

e Originally: small hash, few iterations
e Later: MD5 hash, more iterations

e Now: SHA 512 hash, configurable iterations

) Ubuntu 18.04 LTS

Passwords normally changed with passwd tool
Can generate shadow-compatible hash strings with mkpasswd

Password Cracking

e Dictionary attacks

= Develop a large dictionary of possible passwords and try each against the
password file

= Each password must be hashed using each salt value and then compared to
stored hash values

e Rainbow table attacks

= Pre-compute tables of hash values for all salts

e (Okay, the original rainbow tables were chained partial hashes, but
nowadays people often use the term to mean this simpler thing)

= A mammoth table of hash values

= Can be countered by using a sufficiently large salt value and a sufficiently
large hash length

e Password crackers exploit the fact that people choose easily
guessable passwords
= Shorter password lengths are also easier to crack

10

Storing passwords correctly

e Storing password plaintext (or encrypted)

‘[- -Mobile-E
=101\''4
F\\ Adobe

—
>
P

e Storing hashed password

=
>
=~

— Windows

LT

me=. - Storing salted hash of password

mw

“#L * Hash function has iteration count

| couldn’t find anyone who
bothered to do this yet
didn’t just use one of the
functions below

_,:" it Just use PBKDF2, scrypt, bcrypt, etc.

23 Dropbox B

« © * Have a user management library handle it n de

https://motherboard.vice.com/en_us/article/7xdeby/t-mobile-stores-part-of-customers-passwords-in-plaintext-says-it-has-amazingly-good-security
https://www.troyhunt.com/brief-sony-password-analysis/
https://www.theverge.com/2012/6/6/3067523/linkedin-password-leak-online
https://www.csoonline.com/article/2134124/network-security/adobe-confirms-stolen-passwords-were-encrypted-not-hashed.html
https://thehackernews.com/2017/10/disqus-comment-system-hacked.html
http://fortune.com/2016/08/31/dropbox-breach-passwords/
https://en.wikipedia.org/wiki/NT_LAN_Manager
https://en.wikipedia.org/wiki/Bcrypt

Where do stolen hashes go?

e Attacker uses directly, sells on black market, or they leak
e Often, eventually, they hit the public internet:

m Hashes.arg - Public Leaks x +

C Y & httpsy//hashes.org w & @ @'B (3]

HG.S]:'.I.QS.OIg

SHARED COMMUNITY PASSWORD RECOVERY

HOME FORUM HASH - CRACKING - LISTS -~ USER - MDXFIND FAQ

LEAKS (361)

ep ery hashlist

fyo rger list (o

data dumps) to get added to the leaks section, p! end a link to dump@hashes.org mentioning the source and we'll take care about
ding it to hashes.org

Show| 25 v entries Search:

D Name (Algorithm) #Hashes Left Found Recovered Updated

61 e 134 1 133 99.25% 2018.05.29
02:18:07

62 Blacklotus.net 115 176 87 89 50.57% 2018.05.29 m
02:18:07

529 AJMISSIONINFO.C0. vEULLETIN 290 79 211 72.76% 2018.05.29 m
02:21:16

59 Ararchive.com s 310 2 308 99.35% 2018.05.29 m
02:18:07 12

-

Importance of password storage illustrated (1)

e Plaintext passwords: 100% are “recovered” by attacker (obviously)
e Sorted hashes.org by “percent recovered” — all are unsalted!

1D Name (Algorithm) #Hashes Left Found Recovered Updated

780 Pingpong.su 1os 32394 0 32394 100% 2018.05.31 m
19:45:34

506 Shadi.com sHa1 1136'091 35 1136'056 100% 2018.09.28 m
11:57:53

35 Zoosk.com rps 29013020 266 29012754 100% 2018.09.10 m
13:08:06

70 Have | been Pwned V1 stal 320294'464 75'523 320218'941 99.98% 2018.08.25 m
13:34:22

26 Op Northkarea ros 6'393 4 6389 99.94% 2018.05.29
02:18:03

698 Fon 105 85'033 84 84'949 99.9% 2018.09.12 m
14:41:54

e Scroll to lower percent — almost all are salted.

249 Xronize.com 1isE 43795 171106 26'689 60.94% 2018.09.14 m
16:58:06
783 politicalforum.com veuLLzTIn 31'588 12'396 19192 60.76% 2018.09.01 m m
08:56:03
208'236 81736 126'500 60.75% 2018.05.29 m m
02:18:30
630 AGUIEFOrUR 37! vou. eI 7'853 3094 2759 60.6% 2018.08.28 m m
18:42:52
812 Snowandmud.com vz N 53722 21258 32463 60.43% 2018.09.01 m m
08:56:03
660 Bodyweb.com veuLLETIN 79'696 31'800 47'896 60.1% 2018.09.01 m m
08:55:58
625 VECORIINUX.COM)| 5Hx1(SALTPLATH) 18'343 71402 10'941 59.65% 2018.05.29 m m
02:21:16 13

115 DayZ.com i1+

Importance of password storage illustrated (2)

e Scroll to very low percentages...most use bcrypt or similar, which
has an iteration count

e Conclusion: How you store password has HUGE effect on what
happens if (when) they are breached!

14

Password Selection Strategies

e User education

= Users can be told the importance of using hard to guess passwords and can
be provided with guidelines for selecting strong passwords

e Computer generated passwords

= Users have trouble remembering them
(good for single-use, bad for long-term)

e Reactive password checking

= System periodically runs its own password cracker to find guessable
passwords

e Complex password policy

= User is allowed to select their own password, however the system checks to
see if the password is allowable, and if not, rejects it

= Goal is to eliminate guessable passwords while allowing the user to select a
password that is memorable

15

Four means of authentication

e Password, PIN, answers to

Something you know orearranged questions

el dallal- 87NN E\I © Smartcard, electronic keycard,
(token) physical key

Something you are
(static biometrics)

e Fingerprint, retina, face

Something you do

(dynamic biometrics) |8 Voice pattern, handwriting

Types of tokens (1)

e Cards (or card-like things)
= Magnetic stripe (read-only, clear communication)
= Memory card (read-only/read-write, no processor, clear communication)
= Smart card (read-only/read-write, has processor, encrypted communication)
e May be contact (e.g., this bank card) or contactless (e.g., your DukeCard)

Micro-chip (Smart card interface) (Dumb interface) cw (something you know)

Bank Name

Account Number

1234 5674 987k S432

1234 i MONTWITAR
wae (18799 M@
CARDHOLDER

{Bank |dentification Number)

BIN
E)pmm n date(mly)

Cardholder name Eirand Mark

= Holds crypto key that can’t (easily) be extracted

17

= Uses it to generate a time-sync’d key stream

Types of tokens (2)

e Communication device (i.e., your phone)
= Relies on real-time and secure communication
= Good: Dedicated app with cryptographic secrets (e.g. Duo)
= Bad: Using SMS (text messaging)

e Many examples of SMS hijacking:
Every helpdesk employee at your mobile provider can
do it (either because they were fooled or they’re evil)!

e Better than nothing, though...
e Authentication token

= Similar to cryptographic token from before, but communicates digitally rather
than with displayed one-time passwords

= The “cool” version of multi-factor authentication

A common model made by Yubikey s

Types of tokens (3)

e Physical keys (they’re made of metal and you have some)

= Many different types, same idea: mechanically unbind a lock

MACS =7
Incremen t: 0.15"
Progression: Two Step
Blade Width: .343"
Depth Tolerance: +.002" -0
Spacing Tolerance: +.001"

Root Depths
.335"
320"
.305"
.290"
275"
.260"
.245"
.230"
215"
.200"

©XNOODO D WN - O

= Turns out you can attack physical locks many different ways
(covered later when we get to physical security)

e Fallback passwords
= Long, random single use passwords that are written down or stored

= Keptin a secure location for exception situations
(e.g. in response to an account hijack)

19

More on contactless communication

e Recall: smart cards may be contactless
= Has CPU, memory, ROM, maybe even non-volatile storage (EEPROM/flash)

e Terminology and standards:
= RFID: Radio Frequency ldentification
e Broad category
e Usually powered wirelessly (inductively or via RF pulse)
e May be very short range (like DukeCard) or longer (Duke parking pass)

e May be very dumb (“just transmit this string”) or more advanced
(“execute this encrypted read/write command”)

= NFC: Near Field Communication
e A collection of standards for two-way communication based on RFID
e Generally on the smarter side in terms of protocol
e Supported by modern mobile phones

= Powers things like “ApplePay”, “GooglePay”, etc.

= Your DukeCard is NFC,
and your phone can act as a DukeCard using NFC 2

Four means of authentication

e Password, PIN, answers to

Something you know orearranged questions

el dallal- 87NN E\I © Smartcard, electronic keycard,
(token) physical key

Something you are
(static biometrics)

e Fingerprint, retina, face

Something you do

(dynamic biometrics) |8 Voice pattern, handwriting

Biometric basics

e Authenticate based on unique physical characteristics
(pattern recognition)

* More complex/expensive than previous techniques
e Common characteristics:

= Fingerprint

= Face
A
e Less common: _
Hand Iris

= Hand geometry Reti

. etina
= Retinal pattern $| Signature
" |ris Face Finger
= Signature Vo

: oice

= \oice

Y

Accuracy

Figure 3.8 Cost Versus Accuracy of Various Biometric
Characteristics in User Authentication Schemes.

22

Processes of biometric authentication

e Enrollment: Add new
people

- Biometric Feature
"l semsor extractor

Y

e A
Biometric
database

User interface

(a) Enrollment

e Verification: User
j{Pometric| 1§} Faure som| | 2SSErts identity and
+ database proves it
P . Feature
User interface true/false w— matcher -« One temphate
(b) Verification
. e |dentification: Pick out
> emor xtractor _ which user the given
! — biometric corresponds

b

User interface user's identity or e h d
"user unidentified" matcher [~ N templates tO ardaer

(c) Identification 23

Analyzing biometric accuracy

e Biometric is pattern matching; naturally imprecise (probabilistic)

= Will get a match score, system accepts when score > threshold

e Metrics to evaluate a biometric system:
= False Accept Rate (FAR): Probability it allows the wrong person

= False positive (FP) rate

= False Reject Rate (FRR): Probability it disallows the right person

= False negative (FN) rate

= Receiver Operating Characteristic (ROC): Comparison of the FAR+FRR with
respect to threshold (a general concept for any classifier)

Threshold adjustment

ROC CURVE
0= o ~——PERFECT CLASSIFIER » < ﬂg?-_:-;;
o
w 2
=
Lo
[+4
11}
=
E
w1
Q
['N
Wi
>
4
-
P(TP)
] 1 1] [1
e 0.0 0.2 oy 0.6 [oX-] .o
Figures from here - > FALSE POSITINE RATE 24

0% P(FP) 100%

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Remote authentication

What about the network?

e Authentication over a network is more complex — more to worry
about

= Eavesdropping:
e Capturing a credential (allowing attacker to login)

e Capturing a session cookie (evidence of authentication, allows attacker to
act as user)

= Replay attacks: Even if attacker doesn’t know credential, can they blindly
replay the packets to login?

e Example: a “pass the hash” attack

e Solution: Various challenge-response schemes

26

A basic challenge-response scheme

e Assume we have some authentication secret S

= Password, token value, biometric signature, etc...

e Don’t want to send it (or even its hash!)

e Instead, server issues a challenge (random value R) to client that can
only be answered if it has S, but which doesn’t reveal S.

[N [N

I’'m user Bob

Oh yeah? Assume R=5248, so
compute h(R + h(S)) for me,
: where S is Bob’s secret.

Client

Server

Here’s h(R + h(S))

oh ok cool

Challenge-Response: What about passwords?

e |n the previous scheme, if the password hash is leaked, it’s equivalent to having
the actual password, since we only need h(S)!

Mutations done to the salted password

e Other challenge-response schemes SaltedPassword
avoid this issue, e.g. Salted Challenge N
Response Authentication Mechanism (SCRAM) ciientkey \ serverkey .
l ServerProof
StoredKey th
Communications sequence
ClientProof
client server
Black = computed by server when account is created
Underline = stored by server
Red = computed by client during auth
Blue = computed by server during auth
username, ClientNonce
—f-
(ClientNoncesServeronce) SaltedPassword = {salted hash of password}
salt, iteration, CombinedNonce Clientkey = HMAC(SaltedPassword, "Client Key")
- StoredKey = H(ClientKey)
ServerKey = HMAC(SaltedPassword, "Server Key")
ClientProof, CombinedNonce
— - Auth = {username, salt, iteration, CombinedNonce}
ServerSignature ClientProof = Clientkey » HMAC(StoredKey, Auth)
el — source ServerProof = HMAC(ServerKey, Auth)

For more, see Wikipedia or this article 2

https://en.wikipedia.org/wiki/Salted_Challenge_Response_Authentication_Mechanism
https://www.mongodb.com/blog/post/improved-password-based-authentication-mongodb-30-scram-explained-part-1
https://www.mongodb.com/blog/post/improved-password-based-authentication-mongodb-30-scram-explained-part-1

Identity Federation

e |dentity Federation: System to allow an organization to trust
identities/credentials managed by another organization

= Allows you to provide access to users from external orgs (and vice versa)
e Translation:

Signin to Etsy User:

Password:
g Continue with Google

log in

_| Remember me on this computer

= Login with OpenlD

Register Sign In | '

Corporate providers: Google/Facebook Open provider framework: OpeniD

e Allow one entity to manage the concept of “logging in” (credentials, etc.), and
communicate that to another entity on behalf of the user

e Want a standard to support federation from any provider? OAuth
e Duke has an authentication system: Duke NetID

= You can write apps that use OAuth to allow login via Duke NetID!

29

Multifactor Authentication (MFA)

Multifactor authentication (MFA)

e Now that we’'ve covered the modes of authentication (something
you know/have/are/do), definition is easy:

= Multifactor Authentication: Require more than one of those categories.
(that’s all)

e |n practice, today it usually means password + token.
= Lame: Password + SMS
= Better: Password + actual token or app

e Looking forward:

» Trusted Platform Modules (TPMs) are hardware chips that can securely hold
cryptographic secrets without leaking them (unless there’s a flaw...)

= Modern standard: WebAuthn — use TPM to make MFA easy

31

WebAuthn: Practical MFA of the future

RP APP SERVER

App calls for
FIDO Authn (00 —e000]|
through browser*
Il R:;;'Sg;?g;v ~— DO AUTHENTICATION S—-- (o0 =—e000]
(00 —e000|
W3C Standard: BROWSER I.. ...l

Web Authentication OPTION 2:

JS API* External Authenticator (00 —e000]|
T : .
I I @ EEATEORM Client To Authenticator Protocol*

OPTION 1: INTERNAL . 1 FIDO SERVER
. AUTHENTICATOR
On-device I.. ...I
Authenticator*
/ & — -~ (e =—000]|

(00 —o000]|
O ----- METADATA

* FIDO2 Project

e WebAuthn incorporates FIDO authentication (an open standard)
= Web app: Implements WebAuthn standard to ask for a login
= Browser: Needs WebAuthn support, hooks into support from OS
= OS: Provides a Client-To-Authenticator Protocol (CTAP). May use:
e |Internal authenticator (using TPM chip), or These store cryptographic keys,
e External token (phone, watch, USB security token) } ety

give proof via signature

Figure from https://fidoalliance.org/fido2/

https://fidoalliance.org/fido2/

Access control

So you’ve proven who you are, but what are you
allowed to do?

e Core concepts

e Access control policies:
= DAC
e UNIX file system
= MAC
= RBAC

Subjects, Objects, Actions, and Rights

Subject Verb Right Object
(initiator) (request) (permission) (target)

e The thing e The e A specific e The thing
making the operation to ability for that’s being
request (e.g. perform the subject hit by the
the user) (e.g., read, to do the request (e.g.,

delete, etc.) action to the a file).
object.
<<}\ 4 >
% / \

35

Categories of Access Control Policies

e Discretionary AC (DAC): There’s a list of permissions attached to the
subject or object (or possibly a giant heap of global rules).

e Mandatory AC (MAC): Objects have classifications, subjects have
clearances, subjects cannot give additional permissions.
= An overused/abused term
e Role-Based AC (RBAC): Subjects belong to roles, and roles have all
the permissions.
= The current Enterprise IT buzzword meaning “good” security
e Attribute-Based AC (ABAC): Subjects and objects have attributes,
rules engine applies predicates to these to determine access

= Allows fine-grained expression
= Usually complex, seldom implemented
= We’re gonna skip this, since I’'ve never seen anyone care about it IRL

36

e Core concepts

e Access control policies:
= DAC
e UNIX file system
= MAC
= RBAC

Discretionary Access Control (DAC)

e Discretionary Access Control (DAC): Scheme in which an entity may
enable another entity to access some resource

= Often provided using an access matrix: subjects x objects
= Each entry shows the access rights of that subject to that object

Pseudocode
bool IsActionAllowed(subject, object, action) {
if (action € get_permissions(subject,object))
return true

}

38

Implementation

e Can use various data structures, Matrix

f which should '
none of which should surprise you
File 1 File 2 File 3 File 4
Own Own
User A Read Read
Write Write
Own
SUBJECTS User B Read Read Write Read
Write
Own
Read
User C Writ Read Read
rite Write
F I a t I i St (a) Access matrix
Subject Access Object
Mode
A own File 1 L . k d I . t
A Read File 1 I n e I S
A Write File 1
A Own File 3
File1—> A | —>[B | User A—>File1| —>[File3]
A Read File 3 Own | [Oown| | [Own|
A Write File 3 W < W ¥
_ = [C— =
B Read File 1
" File2——>[B — C User B—>{File 1| —>[File2
B Own File 2 Own] — —— o
B Read File 2 W * ‘ W
B Write File 2 = = = =
B Write File 3 File3—> A] ™3] User C—>File1] >{Eile2]
Own R
B Read File 4 & w w R
€ Read File 1 L= = = =
© Write File 1 File 4A—> B] —{C]
c Read File 2 R Ol"{v“ (c) Capability lists for files of part (a)
W
© Own File 4 — =
C Read File 4 (b) Access control lists for files of part (a)
Cc Write File 4
Figure 4.2 Example of Access Control Structures

39

UNIX Philosophy

o “UNIX” here includes Linux, MacOSX, and traditional UNIX
e Major tenet of UNIX philosophy: everything is a file
= Why?

= Flexibility: If you build an API to access files,
you can use it for everything ©

= Security: If you build a permission system for files,
you can use it for everything ©

e How everything is a file:
» Hardware devices show up as files under /dev
* Info and controls for the running kernel are simulated in /proc and /sys

* You can attach (“mount”) storage devices to directories all under one global
hierarchy

= You can even turn a pipe or socket into a named file!

40

UNIX File Access Control

e Your disk is a dumb flat array of blocks that can be read/written

e A filesystem organizes this, handles allocation of disk regions to
files, lets you organize these files into hierarchical directories.
e (Most) UNIX filesystems store file metadata in inodes (index nodes)

* |nodes store metadata about a file/directory,
including ownership/permissions

= They live on disk in an inode table; in memory in a kernel inode cache
e Directories are special files that list names + inode numbers

e There are a few other special file types:
= Symbolic links (also known as symlinks or soft links)
= Device files (character or block)
= Named pipes (also known as fifos)
= Named sockets (like two-way fifos)

41

UNIX File Access Control Basics

e Users have numbers called User ID numbers (“uid”)

e Users can belong to one or more groups;
groups have numbers called Group ID numbers (“gid”)

e Afileis owned by a user (uid) and a group (gid)

* The reference is numeric; 1s translates numbers to names for you; can turn off with -n

e Twelve permission bits applied to file (file “mode”)
= Lower 9 bits: user/group/others : read/write/execute
= Upper 3 bits: “Weird” ones (covered next) & & S

€ Ubuntu 20.04 LTS

user: Iw- 44 T

group: :r-- <

other::--- «

(a) Traditional UNIX approach (minimal access control list)

42

UNIX File Access Control Basics

e Change a file’s owner with chown (changes uid)
e Change afile’s group with chgrp (changes gid)
e Change a file’s mode (permissions) with chmod (changes mode bits)

= Can express in base-8 octal: chmod 750 vyields r-x---

= Can express symbolically: chmod u:ry turns on owner’s read/write
fgser/group/gthers read/write/execute

The other three bits:
= SetUID (u+s) and SetGID (g+s):
e Executables run that have this bit run as the user/group that owns it

e A way to allow privilege escalation, either
legitimately, like for sudo, or
illegitimately, as in a backdoor created by attackers

= Sticky bit (+t):

e Applied to directories; when set, only the owner of any file in the directory can
rename, move, or delete that file — used for e.g. / tmp

e The root user (uid 0) is immune from permission bit limitations.

= Hence using sudo to carry out chown/chgrp/chmod commands when you otherwise couldn’t.
43

Sidebar: Hard vs soft links

e Directories are special files that list file names and inode numbers
e Hard link: When multiple directory entries refer to the same inode

= Such “files” are actually the same content; change one = change all
= Useful for creating cheap “clones” of files, no extra storage

e Soft link: A special file that refers to another path
= Also called symbolic link or symlink.
= Path can be relative or absolute
= Can traverse file systems or even point to nonexistent things
= Can be used as file system organization “duct tape”

e Example: Symlink a long, complex path to a simpler place, e.g.:

$ 1n -s /remote/codebase/projectX/beta/current/build ~/mybuild
$ cd ~/mybuild

softlink tit

I

inode 5678: Links 1
g \ l
ath to filel

itiode: 1334 Links 2 l
l itiode: 1234 Links 1 P

. N) filel Data filel Data 44
Figure from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ)

File system access control lists (ACLS)

e [Issue: UNIX model can't represent all permission situations (e.g. multiple
groups or users having access); use Access Control Lists (ACLs)
o Arbitrary list of rules governing access per-file/directory
* More flexible than classic UNIX permissions, but more metadata to store/check

Windows ACL Ul Examples of Linux ACL commands
72| DZ7tkEn.png Properties | 2 | Set all permissions for user johny to file named "abc”
General | Security | Details | Previous Versions # setfacl -m "u:johny:rux" abc

Object name: C\Users‘tkbletsc'Dropbox 02tk En png Check permissions
Group or user names:

gz # getfacl abc

2. tkbletsc (MORT Y tkbletsc) # file: abc 0%% \‘)66 &

52, Administrators (MORTY \Administrators) # owner: so é° QQQ ‘é

Hrele & o o
= o & &
o | zw- | zw- [-—- |
To change pemissions, click Edi. Edit ir A A
L= | user: :rw-
Pemissions far SYSTEM Allawy Demy Change permissions for user johny: masked{ user:joe:rw-
entries e

Full control group: ¥

Maodify # setfacl -m "u:johny:r-x" abc mask: :rw- —

Read & execute o other::--- <

Read Check permissions (b) Extended access control list

Write

. - # getfacl abc
Special permissions
I Figure 4.5 UNIX File Access Control
For special permissions or advanced settings, FT—— &
click Advanced. =
Leam about access control and permissions
oK || Cancel A 45

From Arch Wiki

https://wiki.archlinux.org/index.php/Access_Control_Lists

e Core concepts

e Access control policies:
= DAC
e UNIX file system
= MAC
= RBAC

MAC example: SELinux

e Developed by U.S. Dept of Defense

e General deployment starting 2003

e Can apply rules to virtually every user/process/hardware pair
e Rules are governed by system administrator only

= No such thing as “selinux_chmod” for users

Pseudocode
bool IsActionAllowed(subject, object, action) {
for each rule in rules:
if rule allows (subject,object,action) return true
return false

}

47

MAC example: SELinux

Eile Help
Select: o]
Status Customized
File Labeling Filter
User Mapping Active | Module v Description Name
SELinux User apache Allow httpd to act as a FTP server by listening on the httpd_enable_ftp_server
Translation apache Allow HTTPD to run SSI executables in the same dom httpd_ssi_exec
Network Port apache Allow Apache to communicate with avahi service via (allow_httpd_dbus_avahi
Policy Module i apache Allow httpd to use built in scripting (usually php) httpd_builtin_scripting
apache Allow http daemon to send mail httpd_can_sendmail
apache Allow httpd to access nfs file systems httpd_use nfs
i apache Unify HTTPD to communicate with the terminal. Nee httpd_tty_comm
apache Allow Apache to use mod_auth_pam allow_httpd_mod_auth_ntlm_winbind
apache Allow HTTPD scripts and modules to connect to the r httpd_can_network_connect
i apache Unify HTTPD handling of all content files httpd_unified
apache Allow apache scripts to write to public content. Dire allow_httpd_sys_script_anon_write

| apache Allow httpd to read home directories httpd_enable_homedirs

apache Allow Apache to use mod_auth_pam allow_httpd_meod_auth_pam
apache Allow httpd to access cifs file systems httpd_use_cifs
= apache Allow httpd cgi support httpd_enable_cgi
apache Allow HTTPD scripts and modules to network conneci httpd_can_network_connect_db
apache Allow httpd to act as a relay httpd_can_network_relay
bind Allow BIND to write the master zone files. Generally { named_write_master_zones
cdrecord Allow cdrecord to read various content. nfs, samba, r cdrecord_read_content
cron Enable extra rules in the cron domain to support fcro fcron_crond
cvs Allow cvs daemen to read shadow allow_cvs_read_shadow
7 domain Allow unlabeled packets to work on system allow_unlabeled_packets
exim Allow exim to connect to databases (postgres, mysqg exim_can_connect_db
exim Allow exim to create, read, write, and delete unprivile exim_manage_user_files
exim Allow exim to read unprivileged user files. exim_read_user_files
ftp Allow ftp to read and write files in the user home dire ftp_home_dir
ftp Allow ftp servers to login to local users and read/writ: allow_ftpd_full_access
ftp Allow ftp servers to use nfs used for public file trans: allow ftpd use nfs S

48

e Core concepts

e Access control policies:
= DAC
e UNIX file system
= MAC
= RBAC

RBAC: The thing you invent if you spend enough

time doing access control

e Scenario:
= Frank: “Bob just got hired, please given him access.”
= Admin: “What permissions does he need?”
" Frank : “Same as me.”

e Later, a new system is added
= Bob: “Why can’t | access the new system?!”
= Admin: “Oh, | didn’t know you needed it too...”
= Bob: “I need everything Frank has!”

e Later, Frankis promoted to CTO

= Admin: “Welp, looks like Bob also needs access to our private earnings, since
this post-it says he gets everything Frank has...”

e The admin is later fired amidst allegations of conspiracy to commit
insider trading with Bob. He dies in prison. ®

50

RBAC

e Decide what KINDS of users you have
(roles)

e Assign permission to roles.
e Assign users to roles.

Roles Resources

e When a role changes, everyone gets
the change.

e \When a user’s role changes, that user
gets a whole new set of permissions.

e No more special unique snowflakes.

Role 2

il

e Roles may be partially ordered, e.g.
“Production developer” inherits from
“Developer” and adds access to the
pro duction servers Figure 4.6 Users, Roles, and Resources

51

RBAC implementation

e Unsurprisingly, you can represent this using various data structures.
= Anything that can

. R, R, R
represent two matrices:
u | X
OBJECTS U, x
R, R, R, F, F, P, P, D, D,
R, | control | owner c()(::lltl:;.l read = ol;:zgr wakeup | wakeup seek owner Us x x
U
R, control write = | execute owner seek ! x
7))
=
s Us x
&
Us X
R, control write stop
L]
Figure 4.7 Access Control Matrix Representation of RBAC u, | X
Pseudocode

bool IsActionAllowed(subject, object, action) {
if (action € get_permissions(subject.role,object))
return true

52

Any questions?

	Slide 1: ECE560 Computer and Information Security Fall 2024
	Slide 2: User Authentication
	Slide 3: Four means of authentication
	Slide 4: Passwords
	Slide 5: Storing passwords: Hashing
	Slide 6: Storing passwords: Salting
	Slide 7: Storing passwords: Iteration count
	Slide 8: Password Vulnerabilities
	Slide 9: UNIX password scheme
	Slide 10: Password Cracking
	Slide 11: Storing passwords correctly
	Slide 12: Where do stolen hashes go?
	Slide 13: Importance of password storage illustrated (1)
	Slide 14: Importance of password storage illustrated (2)
	Slide 15: Password Selection Strategies
	Slide 16: Four means of authentication
	Slide 17: Types of tokens (1)
	Slide 18: Types of tokens (2)
	Slide 19: Types of tokens (3)
	Slide 20: More on contactless communication
	Slide 21: Four means of authentication
	Slide 22: Biometric basics
	Slide 23: Processes of biometric authentication
	Slide 24: Analyzing biometric accuracy
	Slide 25: Remote authentication
	Slide 26: What about the network?
	Slide 27: A basic challenge-response scheme
	Slide 28: Challenge-Response: What about passwords?
	Slide 29: Identity Federation
	Slide 30: Multifactor Authentication (MFA)
	Slide 31: Multifactor authentication (MFA)
	Slide 32: WebAuthn: Practical MFA of the future
	Slide 33: Access control
	Slide 34: Topics
	Slide 35: Subjects, Objects, Actions, and Rights
	Slide 36: Categories of Access Control Policies
	Slide 37: Topics
	Slide 38: Discretionary Access Control (DAC)
	Slide 39: Implementation
	Slide 40: UNIX Philosophy
	Slide 41: UNIX File Access Control
	Slide 42: UNIX File Access Control Basics
	Slide 43: UNIX File Access Control Basics
	Slide 44: Sidebar: Hard vs soft links
	Slide 45: File system access control lists (ACLs)
	Slide 46: Topics
	Slide 47: MAC example: SELinux
	Slide 48: MAC example: SELinux
	Slide 49: Topics
	Slide 50: RBAC: The thing you invent if you spend enough time doing access control
	Slide 51: RBAC
	Slide 52: RBAC implementation
	Slide 54: Any questions?

