ECE560 Computer and Information Security

Fall 2024

Denial of Service Attacks

Tyler Bletsch Duke University

Definition

Denial-of-Service (DOS) Attack:

"An action that prevents or impairs the authorized use of networks, systems, or applications by exhausting resources such as central processing units (CPU), memory, bandwidth, and disk space."

– NIST Computer Security Incident Handling Guide

Definition

- Attacks Availability (the "A" part of the CIA triad)
- Common types of resources targeted:
 - Network bandwidth (organizations have limited size network pipes)
 - System resources (CPU, memory, etc.)
 - Application resources (Connections, objects, file handles, etc.)

But there's more...

Anything can be a resource

- Be careful in your thinking about DoS attacks
- May be tempted to think "DoS" = "network flood of some kind"
- DoS attacks, more generally, can attempt to exhaust *any* resource
- Things that are resources that you might not think of:
 - Threads in a thread pool: If a server has a capped or constant number of threads, getting them to service your requests, even if the threads are blocked, is a DoS attack (i.e., can tie up a server even when CPU is at 0%).
 - Memory: If your read function allocates memory "as needed", then all an attacker needs to do to knock you out is have you *need* to allocate unlimited memory (e.g. a 1TB URL).
 - Random entropy: cat /dev/random is a DoS attack on kernel entropy.
 - ID numbers: If each widget has a 16-bit ID number, then making 64k widgets is a DoS attack.

Classic DOS attack: Ping flood

- Ping flooding
 - Send lots of ICMP Ping packets
 - Default endpoint policy: Reply with echo packets
 - Default network policy: Treat all packets as equal, drop some when strained

^ bad

Obuntu 18.04 LTS tkb13@LAPIS:~ \$ ping duke.edu PING duke.edu (152.3.72.104) 56 Obuntu 18.04 LTS tkb13@LAPIS:~ \$ ping duke.edu PING duke.edu (152.3.72.104) 56(84 Highly sophisticated cyber attack -> Ubuntu 18.04 LTS kb13@LAPIS:~ \$ ping duke.edu PING duke.edu (152.3.72.104) 56(84) Ubuntu 18.04 LTS kb13@LAPIS:~ \$ ping duke.edu PING duke.edu (152.3.72.104) 56(84) b 64 bytes from duke-web-fitz.oit.duke. 54 bytes from duke-web-fitz.oit.duke. 64 bytes from duke-web-fitz.oit.duke. 64 bytes from duke-web-fitz.oit.duke. 64 bytes from duke-web-fitz.oit.duke 64 bytes from duke-web-fitz.oit.duke. 64 bytes from duke-web-fitz.oit.duke. 64 bytes from duke-web-fitz.oit.duke 64 bytes from duke-web-fitz.oit.duke.

- Better endpoint policy: Limit echo replies (rate, quantity, etc.)
- Better network policy: Quality of Service (QoS) settings to deprioritize pings ^ better!
- By default, the source of the attack is revealed, unless they spoof the source address

Source address spoofing

- Use a *forged* source address
 - Not allowed by OS by default, but can use a raw socket interface to craft your own packets (that are full of lies)
- Harder to identify attacking system
- Types of spoofing:
 - Claim to be a different machine on your subnet
 - Always works, hard to detect, but doesn't deflect your identity very far
 - Claim to be a machine on a different subnet entirely!
 - Deflects your identity to anyone on the internet! If it works...
 - Requires that routers not ask any questions as to why a packet from subnet X is coming from subnet Y
 - Well-configured routers would drop such packets
 - But that's extra work, since routers usually don't look at the source address at all
 - Result: too many networks are not well configured in this way 🟵

Example

Figure 7.1 Example Network to Illustrate DoS Attacks

SYN Spoofing

- TCP three way handshake: SYN, ACK, SYN+ACK
- Server *receives* a SYN? Allocate lots of resources to handle the incoming connection (buffers, counters, table entries, etc.).
- Client *sends* a SYN? Normally, client OS allocates same structures.
- But what if you send a SYN but don't really mean it?
 - The OS isn't actually allocating resources for the outgoing connection!
- Result:
 - Cheap for attacker to send SYN packets
 - Expensive for receiver to handle them!
- Fills network connection table of server with little consequence to attacker!

SYN spoofing illustrated

Figure 7.2 TCP Three-Way Connection Handshake

Figure 7.3 TCP SYN Spoofing Attack

Other flooding attacks

- Trying to just fill up bandwidth?
- Can flood with any kind of packet, really. Not just ping.
- Examples:
 - ICMP Ping (covered earlier)
 - Other ICMP packets (traceroute, destination unreachable etc.): may need client permission, may be hard to filter out safely
 - UDP: easy to launch, no flow control, no client permissions needed
 - TCP connect (via OS socket interface): easy to launch, but uses OS resources
 - TCP SYN: needs client permission, expensive for receiver and cheap for sender

Distributed Denial of Service (DDOS) attacks

- More clients = better attack
- Where to get clients? Compromised machines!
- Use a worm or other attack to compromise a bunch of machines
- Install remote control software
 - Zombies or bots make up a botnet.
- Order them all to blast packets at a victim

DDOS Architecture

Figure 7.4 DDoS Attack Architecture

Not all zombies are victims

Operation: Payback

We will attack any organization which seeks to remove WikiLeaks from the internet or promote the censorship of the masses. *Join us.*

> TARGET THESE IP's 208.73.210.29 204.152.204.166 209.85.51.151 195.74.38.17 89.18.176.148

	FUCKING IRC HIVE MIND	RC Server	Channel Noic	Port 6667	Disconnected.
OW Orbit • Manual Nod	e (for pussies)	RSS URI,		Timer	
n Cannon	FUCKING RSS HIVE MIND	·		10	Disabled, like your whole family.
-1 Select your	r target			2. R	eady?
URL			Lock on		MACHARON MAULAZER
All V		1	Lock on	10.00	WINA CHAROIN MAIN LALEP
Selected targ	61				
Selected targ	Ň	0	NE	. /	
	N	01	N E	:!	
-3. Affack optik Trimout	DIS HTTP Subsite I Append random char		NE	: ! saage	Append random chars to the message
Selected targ	pns HTTP Subsite I Append random chan	o I		saage U	Append random chars to the message dun geofied
- 3. Affack optix Trineout 5001 80	INS HTTP Subsize Append random chan / TCP 10 Wat	torrepty	N E	ssage v	Append random chars to the message dun geofied
Selected targ	et NS HTTP Subsite ■ Append random chan / TCP • 10 ■ Wat Nethod Threads	t for reply	N E	ssage U c= faster	Append random chars to the message dun geofied Speed slower =>
Selected targ	Ins HTTP Subsite Append random chan / TCP 10 Wat Method Threads	t for reply	N E	ssage U c= faster	Append random chars to the message dun geofied Speed slower =>

Hypertext Transfer Protocol (HTTP) Based Attacks

HTTP flood

- Same as any other flood
- Worse if the server has to do computation to respond. Contrast:
 - Visiting google.com vs
 - Doing a google *search*

• Spidering

• Recursively visiting all the links on a site, so each visit is unique.

Slowloris

- Sending HTTP requests that never complete
- Consumes Web server's connection capacity with legitimate HTTP traffic
- Harder to detect doesn't spike network throughput graphs, logs show results that look legitimate

Reflection Attacks

- Attacker sends packets to a known service on an intermediary with a spoofed source address of the actual target system
 - Intermediary responds; response sent to the target
- In effect, we "reflect" the attack off the intermediary (reflector)
 - Amplification: Attack is more effective if the reflection is bigger than the original request
- Goal: generate enough traffic to flood the link to the target system (ideally without alerting the intermediary)
- Defender solution: Same as other spoofing attacks why are networks allowing spoofed-source packets to go out???

Simple reflection attack based on the old "echo" service

Note: this example uses port 7 (echo), which nobody has on any more, because of this attack and others like it.

Figure 7.6 DNS Reflection Attack

Amplification example: DNS amplification

- DNS requests can be small ("tell me about google.com")
- DNS responses can be large (all the google.com DNS records)
- Spoof source on little DNS requests to many public DNS servers, they send big responses to the spoofed source
- Can magnify attacker bandwidth by 50x!

Cyclic amplification

 If a service can be made to forward to 2 targets, a loop can be formed that attacks a target at each iteration (constant rate)

 If a service forwards to 3+ targets, the loop can attack & grow (exponential rate)

DOS defenses: prevention

- Prevention through configuration
 - Block spoofed source addresses from your network (helps others)
 - Block IP directed broadcasts (the ability to send to 1.2.3.*)
 - Disable needless services
 - Rate limit certain traffic upstream (e.g., max ICMP pings per second)
- Prevention through specific tricks
 - TCP: Encode connection info in sequence number, only allocate buffers on SYN+ACK (step 3 of connection instead of step 1)
 - TCP: If connection table overflowing, drop a random "awaiting SYN+ACK" one
 - Interactive service: Require captcha on repeated/heavy load
- Prevention through money
 - Have additional servers on standby (either physically or via cloud)
 - Pay someone with a huge cloud to front-end your services (e.g. CloudFlare)

Example: Website protection with CloudFlare (or similar services)

 General idea: pay someone else to absorb the DDOS and filter it. (Often free for small sites.)

Here's a diagram so high-level and fluffy so as to make it useless.

Example: Website protection with CloudFlare (or similar services)

- Some web hosts offer it as a one-click option.
- If not, it's just a matter of changing DNS settings so stuff gets handled by CloudFlare before hitting your server

PHP mode:	PHP 5.4 FastCGI
(what's this?)	
Automatically upgrade PHP:	
Keeps your site up to date with	
DreamHost's recommended PHP	
version.	
Extra Web Security?	
(highly recommended - what's this?)	
PHP XCache Support:	requires a VPS
(what's this?)	
Passenger (Ruby/NodeJS/Python	
apps only):	
(what's this?)	
loudFlare Services	
🚈 Enable CloudFlare on this	
domain?	
(what's this?)	

Build in site settings on a popular webhost

DOS defenses: response

• Have a **response plan**

- Need to get *upstream* connection to block malicious traffic: have contact info for ISP, especially via non-internet means!
- Identify type of attack (capture packets, analyze what you find)
- **Design filters** that will block just the attack traffic
 - What characteristics about it are unique? Same source, same content?
 - Tell your ISP
- Have a backup deployment plan
 - Deploy new servers, change addresses, etc.

Questions?