Introduction and Course Policies

Tyler Bletsch
Duke University
Instructor and TAs

• Professor: Tyler Bletsch
 ▪ Office: Wilkinson 103
 ▪ Email: Tyler.Bletsch@duke.edu
 ▪ Office Hours: see course site

• Teaching Assistants:
 ▪ See course site
Course objective: Evolve your understanding of security

• Theory:
 ▪ How do I think systematically about security?
 ▪ What constructs are available for me to use?
 ▪ How do I understand new threats and defenses not covered in the course?

• Skills:
 ▪ What tools are commonly used to do the above?
 ▪ How can I manipulate data and automate things to make the above practical?

• Practice:
 ▪ “Stick time”: Actually doing it.
 ▪ Both attacking and defending.
Getting Info

• **Course Web Page**: static info

 - Syllabus, schedule, slides, assignments, rules/policies, prof/TA info, office hour info
 - Links to useful resources

• **Ed**: questions/answers

 - Post all of your questions here
 - Questions must be “public” unless good reason otherwise
 - No code or copyable answers in public posts!

• **GradeScope**: assignment submission/grading

• **Sakai**: submission of certain parts of assignments, gradebook
• Lecture is **in person by default**
 - May be taken remotely with permission
 - Valid reasons:
 - Positive (or unresolved) COVID test
 - Contact tracing hit
 - Concern over contracting COVID
 - Invalid reason: Just feel like being remote
 - Just email me if you want to join remotely – zoom links already posted
 - Camera on is *required* in this case

• Lecture is **synchronous by default**
 - Recordings posted for you to *review* – not to replace live class time
 - Are you in a crazy timezone?
 - Limited support available or asynchronous mode
 - Email me in this case
• To attend in-person, you must
 1. wear a mask,
 2. practice social distancing, and
 3. be vaccinated.

This may change based on updates to Duke policy

• Local or remote: either way, you must...
Textbook

 - Get the **GLOBAL EDITION**, it’s the EXACT SAME BOOK for cheaper.
- The course uses the textbook highly out-of-order, see course site for readings.

If you go to addall.com, you can search all online booksellers at once.

exact same content!

ISBN 1-292-22061-9

$140

$50
Workload

- Homework assignments – **discussed collaboratively, done individually**
 - Pencil and paper problems
 - Programming problems
 - Technical exercises
 - Attack and defense scenarios
 - Data manipulation and automation tasks

- *Security is broad and diverse field → Lots of different things to practice → Lots of work!!*

Some collaboration is allowed

ALLOWED: Collaboration on *approach* or *concepts*.
DISALLOWED: Collaboration on *answers*.

All artifacts you submit must be entirely your own.
Advice for homework survival!

"I spent 20 hours on this one problem!"

- **Don't do that.** Put a fair bit of effort in (~2 hours), then ask for help and put that problem aside.

- Recommended workflow (based on iterative deepening):
 - **Do shallowest problems first** instead of proceeding sequentially:
 - Finish all the simple problems; try the harder ones
 - Note questions that block progress; ask in Ed/class/office hours
 - **Put the assignment aside;** do other stuff. Why?
 - Your posted questions will get answered (no blocking!)
 - Your brain will work on problems subconsciously (free background processing!)
 - Now do a **deeper pass** -- finish the medium-difficulty ones and dig deep into the harder ones, asking questions and taking a break as before
 - **Loop until done:** {make progress, ask questions, switch to other tasks}

- Your operating system time slices tasks when they block to maximize throughput and efficiency, so why shouldn't you?
Grading Breakdown

<table>
<thead>
<tr>
<th>Assignment</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks</td>
<td>60%</td>
</tr>
<tr>
<td>Midterm exam</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

Partial credit is available – provide detail in your answers to seek it!

Late homework submissions incur penalties as follows:
- Submission is 0-24 hours late: total score is multiplied by 0.9
- Submission is 24-48 hours late: total score is multiplied by 0.8
- Submission is more than 48 hours late: total score is multiplied by the Planck constant (in J·s)

NOTE: If you feel in advance that you may need an extension, contact the instructor.

These assignments are looooooooooong. START EARLY.
Homework Zero

• Due next week!

• Designed to get you familiar with UNIX in general and Linux in particular

• UNIX skills are for more than this course – there’s a reason people use these tools!

• If you’re having trouble, post on Ed and we can help you.

This is the same Homework 0 sometimes given in ECE/COMPSCI 250.

If you’ve already done it there, you don’t need to do it again – just submit the screenshot from the training system.
Grade Appeals

• All regrade requests must be in writing via GradeScope

• After getting feedback with the TA, if you still have concerns, contact the instructor

• All regrade requests must be submitted no later than 1 week after the assignment was returned to you.
Academic Misconduct

• Academic Misconduct
 ▪ Refer to Duke Community Standard
 ▪ Homework content is individual – you do your own work
 ▪ Common examples of cheating:
 • Copying and rephrasing written answers from another student
 • Using code or answers from an outside source

• I will not tolerate any academic misconduct!

• “But I didn’t know that was cheating” is not a valid excuse

Some collaboration is allowed

ALLOWED: Collaboration on approach or concepts.
DISALLOWED: Collaboration on answers.

All artifacts you submit must be entirely your own.
Goals of This Course

- Things you will understand after this course:
 - Fundamental security objectives: **Confidentiality, Integrity, and Availability**
 - How to develop and describe a **threat model**
 - The types of **security threats and attacks** that must be dealt with
 - How to distinguish among various **types of intruders** and their behavior patterns
 - The **poor programming practices** that cause many security vulnerabilities
 - Major **networking protocols, standards, and tools**
 - **Symmetric and asymmetric cryptography** including message authentication
 - **User authentication**
 - How to reason about and implement **security policies**
 - How to secure **operating systems, databases, hypervisors, and cloud environments**
 - The role of **firewalls, intrusion detection, and intrusion prevention systems**
 - Security **auditing and forensics**
 - **Social engineering** attacks
 - **Ethical and legal aspects** of security
Our Responsibilities

• The instructor and TA will...
 ▪ Provide lectures/recitations at the stated times
 ▪ Set clear policies on grading
 ▪ Provide timely feedback on assignments
 ▪ Be available out of class to provide reasonable assistance
 ▪ Respond to comments or complaints about the instruction provided

• Students are expected to...
 ▪ Receive lectures/recitations at the stated times
 ▪ Turn in assignments on time
 ▪ Seek out of class assistance in a timely manner if needed
 ▪ Provide frank comments about the instruction or grading as soon as possible if there are issues
 ▪ Assist each other *within the bounds of academic integrity*
Computing resources

• We’ll make extensive use of VMs from the Duke Virtual Computing Manager: https://vcm.duke.edu/
 ▪ Students in this course will have their course VMs not count against their limit
 ▪ These VMs have public internet IP addresses – practice good security!

• Later, you will be given access to VMs running Kali Linux (a distribution of Linux with many security tools pre-installed)

• We will use shared target machines from time to time
 ▪ Treat these with respect – unless otherwise noted, you should ONLY do the prescribed actions to them. Do not “attack” systems you are not explicitly told to.
Ethics in Security

• There are three flavors of security practitioner in the world:
 ▪ **White hat**: Obey the law, work to make systems secure
 ▪ **Black hat**: Break the law, infiltrate (usually for profit)
 ▪ **Grey hat**: Does both (so still super unethical)

• There is ONE flavor of security practitioner in this course:

• All students must sign and turn in an ethics pledge in order to receive credit on any assignments (see course site!)