Wireless Security
Wireless Security Overview

It’s like regular security, but the communications medium is more accessible.

Like if your wired network was like this:
Wireless Network Modes

• WiFi is specified in IEEE 802.11 with various lettered suffixes
• 802.11 wireless networks operate in two basic modes:
 ▪ **Infrastructure mode**
 • Each wireless client connects directly to a central device called Access Point (AP)
 • No direct connection between wireless clients
 • AP acts as a wireless hub that performs the connections and handles them between wireless clients
 ▪ **Ad-hoc mode**
 • Each wireless client connects directly with each other
 • No central device managing the connections
 • Rapid deployment of a temporary network where no infrastructure exists
 • Being deprecated by OS vendors (Windows 10 doesn’t support it 😞)
Wireless Networking Components

Figure 24.1 Wireless Networking Components

Wireless client: WIFI-enabled laptop/tablet, cell phone, Bluetooth device, ...

Access point: Cell towers, WIFI hotspots, wireless routers

Transmission medium: carries signals

For WiFi, APs are identified by SSID:
- A client must set the same SSID as the one in that particular AP to join the network
- Without SSID, the client won’t be able to select and join a wireless network
Wireless Network Threats

- Inappropriate association (either accidental or malicious)
- Identity theft (MAC spoofing)
- Man-in-the-middle attacks
- Denial of service (DoS)
- Network injection
 - Bogus reconfiguration commands to routers/switches that degrade performance
- Unique attacks on non-traditional networks
 - Bluetooth, proprietary wireless
Proposed advice on securing wireless networks (some good, some okay, some bad)

• Use encryption
 ▪ Yes, especially strong modern algorithms (WPA2)
• Change router’s preset password
 ▪ Yes. Not having a publically known key usually helps with encryption...
• Use and enable anti-virus, anti-spyware, firewall
 ▪ True, but unrelated to wireless.
• Change default identifier on router
 ▪ Good idea so you know what’s-what, but does nothing for security.
• Reduce signal strength
 ▪ Place away from windows and external walls, use directional antennas
 ▪ Problem: attackers can boost power, get directional antennas, etc...
• Turn off SSID broadcasting
 ▪ Waste of time.
• Apply MAC-filtering
 ▪ Almost entirely useless due to MAC spoofing.
IEEE 802.11 Wireless LAN

- IEEE 802: a committee responsible for LANs
- IEEE 802.11: responsible for developing wireless protocols
 - Key standards:
 - 802.11b: Uses 2.4GHz spectrum, up to 11Mbps
 - 802.11g: Uses 2.4GHz spectrum, up to 54Mbps
 - 802.11n: Uses 2.4 and 5GHz spectrum, up to 288Mbps or 600Mbps
 - 802.11ac: Uses 5GHz spectrum, up to ~3Gbps
 - A variant can use the frequencies formerly used in analog TV
 - 802.11ax: Uses 2.4GHz and 5GHz spectrum, up to 10Gbps
 - *Upcoming* – not commonly deployed yet!
IEEE 802.11 Protocol Stack

- **Physical layer**: (encode/decode signals)
- **MAC layer**: assembles MAC frame, disassembles frames and performs address recognition
- **LLC**: keeps track of frame transmission
A MAC Frame (MPUD)

- MAC protocol data unit (MPUD)
IEEE 802.11 Extended Service Set

- **BSS** (Basic Service Set): the smallest building block
- BSSs connected via **APs**
 - APs functions as bridges
- **ESS** (Extended Service Set): two or more BSSs
IEEE 802.11# Wireless Security

Wired Equivalent Privacy (WEP) - Garbage
Wi-Fi Protected Access (WPA) - So-so
Wi-Fi Protected Access 2 (WPA2) - Good
WEP - Wired Equivalent Privacy

- The original native security mechanism for WLAN
- provide security through a 802.11 network
- Used to protect wireless communication from eavesdropping (confidentiality)
- Prevent unauthorized access to a wireless network (access control)
- Prevent tampering with transmitted messages
- Provide users with the equivalent level of privacy inbuilt in wireless networks.
How WEP works

IV

original unencrypted packet

key

RC4

checksum

encrypted packet
WEP Flaws and Vulnerabilities

• Weak keys:
 - It allows an attacker to discover the default key being used by the Access Point and client stations
 - This enables an attacker to decrypt all messages being sent over the encrypted channel.

• IV (initialization vector) reuse and small size:
 - There are 224 different IVs
 - On a busy network, the IV will surely be reused, if the default key has not been changed and the original message can be retrieved relatively easily.
Attacks on WEP

- WEP encrypted networks can be cracked in 10 minutes
- Goal is to collect enough IVs to be able to crack the key
- IV = Initialization Vector, plaintext appended to the key to avoid Repetition
- Injecting packets generates IVs

And Aircrack took 5 seconds to do it

Thats sittingduck's 128 bit Wep key
WPA - WI-FI Protected Access

- Standardized in 2002
- Replacement of security flaws of WEP
- Improved data encryption
- Strong user authentication
- Because of many attacks related to static key, WPA minimize shared secret key in accordance with the frame transmission
- Use the RC4 algorithm in a proper way and provide fast transfer of the data before someone can decrypt the data.
WPA2 - WI-FI Protected Access 2

- Based on the IEEE 802.11 standard
- The primary enhancement over WPA is the use of the AES (Advanced Encryption Standard) algorithm
- The encryption in WPA2 is done by utilizing either AES or TKIP
- Two modes:
 - **Personal mode** uses a PSK (Pre-shared key) & does not require a separate authentication of users
 - **Enterprise mode** requires the users to be separately authenticated by using the EAP protocol

- DukeBlue is WPA2-EAP!
WPA2

- WPA2 has immunity against many types of attacks
 - Man-in-the middle
 - Authentication forging
 - Replay
 - Key collision
 - Weak keys
 - Packet forging
 - Dictionary attacks
WEP vs WPA vs WPA2

<table>
<thead>
<tr>
<th></th>
<th>WEP</th>
<th>WPA</th>
<th>WPA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption</td>
<td>RC4</td>
<td>RC4</td>
<td>AES</td>
</tr>
<tr>
<td>Key Rotation</td>
<td>NONE</td>
<td>Dynamic Session Keys</td>
<td>Dynamic Session Keys</td>
</tr>
<tr>
<td>Key Distribution</td>
<td>Manually typed into each device</td>
<td>Automatic distribution available</td>
<td>Automatic distribution available</td>
</tr>
<tr>
<td>Authentication</td>
<td>Uses WEP key as Authentication</td>
<td>Can use 802.1x & EAP</td>
<td>Can use 802.1x & EAP</td>
</tr>
</tbody>
</table>
Procedures to Improve Wireless Security

- Enable **WPA2-PSK** (personal) or **WPA2-EAP** (enterprise)
 - AES is more secure, use TKIP for better performance
- Use a good passphrase

- “Change your SSID every so often”
 - ^ This was in the original slides and is totally nuts.
Wireless Network Tools

• MAC Spoofing
 ▪ http://aspoof.sourceforge.net/
 ▪ http://www.gorlani.com/publicprj/macmakeup/macmakeup.asp
 ▪ http://www.klcconsulting.net/smac/

• WEP Cracking tools
 ▪ http://www.backtrack-linux.org/
 ▪ http://www.remote-exploit.org/articles/backtrack/index.html
 ▪ http://wepattack.sourceforge.net/
 ▪ http://wepcrack.sourceforge.net/

• Wireless Analysers
 ▪ http://www.kismetwireless.net/
 ▪ http://www.netstumbler.com/
Mobile Security
Two ways to think about mobile security

• Security against mobile devices: mindset of the sysadmin
 ▪ Our focus

• Security for mobile devices: mindset of vendors...sometimes?
 ▪ We’ll leave this aside unless we have extra time.
 ▪ Short version:
 • Encryption
 • Per-app permissions and isolation
 • Sandboxing
Mobile Device Security Challenges

• Trends:
 ▪ Bring Your Own Device (BYOD)
 • No more tight control over computing devices
 ▪ De-perimeterization: static network perimeter is gone
 • Mobile network allows Internet gateways you don’t control
 ▪ External business requirements (guests, third-party contractors, …) keep the above true

• Resulting threats:
 ▪ Lack of physical security control
 ▪ Use of untrusted mobile devices
 ▪ Use of untrusted networks
 ▪ Use of apps created by unknown parties
 ▪ Interaction with other systems (e.g., cloud-based data sync)
 ▪ Use of untrusted content
Mobile Device Security

• User training

• Mobile device configuration:
 ▪ Enable auto-lock
 ▪ Enable password/PIN/thumbprint protection
 ▪ Disable/discourage auto-completion for passwords
 ▪ Enable remote wipe
 ▪ Up-to-date OS/software
 ▪ Encrypt sensitive data
 ▪ Prohibit installation of third-party apps
 ▪ Most of the above can be enforced by policy via e.g. Microsoft Exchange

• Network/service configuration:
 ▪ User devices disallowed on trusted networks
 ▪ User devices must be registered (tied to human) to get on a network (e.g. Dukeblue)
 ▪ Remote access via VPN only
 ▪ Configure/enable SSL to prevent MITM attacks on infected endpoints
Mobile Device Security Elements

Encrypt

Configure based on policy

Authenticate/access control

Traffic is encrypted; uses SSL or IPsec VPN tunnel

Mobile device is configured with security mechanisms and parameters to conform to organization security policy

Application/database server

Firewall

Authentication/access control server

Firewall limits scope of data and application access

Authentication and access control protocols used to verify device and user and establish limits on access