
ECE566 Enterprise Storage Architecture
Program: Intro to FUSE

For the course project, you’ll have the option of developing a novel filesystem with FUSE (“Filesystem in

USErspace”). This assignment will introduce you to FUSE and walk you through some programming

exercises on it.

Directions:

● This assignment will be completed individually.

● Format:

○ Software deliverables: You’ll be asked to write some programs. Submit tarballs (.tgz

files) and a PDF to the Canvas locker for this assignment as directed.

1 Filesystems and FUSE
First, let’s discuss what a filesystem is at a high level (to be covered much deeper later in the course).

Your hard drive or SSD is a dumb storage device: you just tell it which block to read or write and it goes

there and does that: the interface is just the following (approximately):

• char* read_block(int blocknum)

• void write_block(int blocknum, char* data)

We could just live with that – just making a note that block 42 is my tax records and blocks 43-49 is a

picture of my dog, but that gets cumbersome.

A filesystem stores information about which blocks correspond to which pieces of information (files) on

the hard drive itself. It provides the hierarchical directory abstraction, the permissions abstraction, and

other metadata things (timestamps, etc.). The filesystem uses the block device’s

read_block/write_block interface in order to provide a richer interface that includes OS

primitives you’re used to: open, close, read, write, mkdir, delete, etc.

The usual architecture for a modern filesystem is a module within the OS kernel. When a user program

tries to do an IO call, it is passed to a handler in the OS that follows the filesystem’s algorithm to

perform that operation using a given block device. On modern systems, you may have multiple

filesystems available (“mounted”) at a time. For example, you might have your laptop’s hard drive

mounted (formatted on Windows as the NTFS standard) as well a USB stick (formatted in the FAT32

standard). The modern OS allows many different handlers to all have the same file IO interface – the

pivot that selects among them is called the Virtual Filesystem (VFS). In this example, NTFS and FAT32 are

the actual filesystems.

It is possible to write your own filesystem code as a kernel module, but writing kernel code can be

troublesome and hard to debug. The Linux kernel provides an interesting facility called FUSE

(“Filesystem in USErspace”) that can mitigate this. In this system, kernel functions to do filesystem

things are redirected back into a user program for handling – one that you will write.

This is illustrated in the figure to the right; a call to

the usual ls command goes down to the kernel

VFS, is routed back into userspace to the example

hello filesystem shown, which decides how to

handle the call. The answer is piped back through

the kernel to the original caller. In this way, user

code written in C, Python, or any other language

with FUSE bindings can act as a fully-fledged

filesystem. There’s a performance cost for this, but

for this class, that’s a cost we’re willing to play for

the simplicity of writing user code vs. kernel code.

In this assignment, you’ll go through a FUSE tutorial and write a few small example FUSE programs.

2 Get comfortable with FUSE
Let’s get acquainted with FUSE using some example code. Do the following:

First, reserve an Ubuntu Linux 22.04 VM in the Duke Virtual Computing Manager (VCM) environment1.

Second, update and install some important pre-reqs:

sudo apt update

sudo apt dist-upgrade

sudo apt install build-essential pkg-config libfuse-dev

Third, create a directory for this assignment (and hopefully a private git repo, but that’s up to you), and

within it, a subdirectory called “hellofs”.

Fourth, the FUSE development package (libfuse-dev) comes with an example filesystem we’re

going to examine. Copy the “hello” filesystem into your “hellofs” directory:

cp /usr/share/doc/libfuse-dev/examples/hello.c .

1 This is the same version of Linux deployed to your class servers, so code and build environments you

set up now will be portable to your server, which may help with the course project later on.

Note that this path also includes HTML documentation for FUSE. To make it easier to browse, this very

documentation has been mirrored within the course site here.

The hello.c code does include the command to compile it, but to avoid typing this long command

repeatedly, create the following Makefile:

Makefile for FUSE projects in C

all: hello

clean:

 rm -f hello

note: the pkg-config automatically generates the appropriate

compiler flags for use with fuse

hello: hello.c

 gcc -Wall $^ `pkg-config fuse --cflags --libs` -o $@

If you’re not familiar with make and Makefiles, take a quick detour to learn the basics to understand the

above. With this file, you can now compile the hello filesystem simply by typing:

make

At this point, please watch this introductory video I’ve prepared. Summary of key takeaways:

• Mountpoints are directories to which we attach the root of another filesystem, such as one

provided by a FUSE project.

• You can list current mounts with mount, possibly filtering with grep.

• Can mount the hello filesystem with “./hello mountpoint”; will background and go silent.

• Can unmount with “fusermount -u mountpoint”.

• Can mount the hello filesystem with “./hello -d mountpoint” for interactive debug

mode (recommended during development).

• Walked the hello code, including the FUSE getattr operation and its relationship to the UNIX

stat system call (including fields of struct stat), as well as Linux error numbers (errno).

If you want an alternative introduction to FUSE, see the tutorial linked from section 0 of this document.

https://people.duke.edu/~tkb13/courses/ece566/resources/libfuse-dev-2.9.9-html/
https://people.duke.edu/~tkb13/courses/ece566/resources/libfuse-dev-2.9.9-html/
https://youtu.be/Tpa-5R6OV-M
https://people.duke.edu/~tkb13/courses/ece566-2025sp/resources/libfuse-dev-2.9.9-html/structfuse__operations.html#ac39a0b7125a0e5001eb5ff42e05faa5d
https://linux.die.net/man/2/stat
https://linux.die.net/man/2/stat
https://www.thegeekstuff.com/2010/10/linux-error-codes/

3 Creating the hellotime filesystem
Create a variant of the hello filesystem called hellotime.c:

cp hello.c hellotime.c

Further, edit the Makefile so it builds both (i.e., add “hellotime” to the “all” target, and add a

new recipe to build “hellotime” from “hellotime.c” by copying the existing “hello” recipe).

You must modify hellotime.c to add the following features:

1. A new directory “time” is introduced under the root directory.

2. A new file “now.txt” is present within the “time” directory.

3. The “now.txt” will, when read, contain a 20-byte timestamp showing the current local time.

4. The file size of “now.txt” will be 20.

5. The modification time (mtime) of “now.txt” will be the current time when checked via the

“ls -l” or “stat” commands.

6. The UID owner of “now.txt” will be the current user checking the file.

Tips:

• Here is code to generate the exact timestamp we’re looking to see inside “now.txt”:

const int TIMESTAMP_LEN = 20;

/**

 * Write the current local time to the given character buffer,

 * which must be at least TIMESTAMP_LEN+1 bytes long.

 * The timestamp itself (excluding null terminator) will be

 * exactly TIMESTAMP_LEN bytes long.

 */

void timestamp(char *output) {

 // Get the current time

 time_t raw_time;

 struct tm *time_info;

 time(&raw_time);

 time_info = localtime(&raw_time);

 // Format the timestamp

 strftime(output, TIMESTAMP_LEN+1,

 "%Y-%m-%d %H:%M:%S\n", time_info);

}

• The stat mtime field uses “epoch time” (seconds since Jan 1, 1970 UTC), and the current epoch

time is found by the time() function.

• The UID of the current user making a request can be found via the fuse_get_context()

function.

The screenshot below shows correct operation of hellotime and demonstrates all its features:

Submit a file called hellotime.tgz with your code. It should be compiled with “make”. The

executable produced should be called hellotime, and it should have the same calling syntax as

hello.

4 Creating the twofs filesystem
Start a new FUSE program from scratch called twofs. This program will be much more like a traditional

filesystem: it will take a block device (or a file which we’ll treat as a block device) as its first argument,

then a mountpoint. The program will translate IO calls to the filesystem to read/write calls on this block

device.

However, it will do so in a really, really simple way.

The filesystem always contains just two files, and they’re always called file1 and file2. The

metadata for these files is static: owned by root, created on Jan 1 1970 at midnight UTC, read/write

permissions for everyone (0666).

file1 represents the first half of the block device; file2 represents the second half. More formally, if

the size of the block device is N, file1 represents bytes [0,N/2) and file2 represents bytes [N/2,N),

where the division shown is integer division. The size metadata for the files should reflect this.

This means that your filesystem will have no metadata, which will make the job much easier.

Attempts to read and write to file1 and file2 should work accordingly, reading from or updating

the block device as appropriate. Attempts to write past the end of the files should fail (though a read or

write that is only partially out of bounds should succeed but be cut off). Attempts to truncate (set file

size to zero) or otherwise resize the file should be silently ignored. Attempts to do anything involving

other files or any directories should fail (with error code ENOENT, a UNIX error code).

The program should have the calling syntax as follows:

twofs <blockdevice> <mountpoint>

Below is an example interaction with a twofs filesystem. In it, we create a filesystem image to act as our

block device (a 2 kB image file), create a mountpoint directory, mount a twofs filesystem, and interact

with the files we see. Typed commands and prompts are shown in blue bold.

$ dd if=/dev/zero of=filesystem_image bs=1k count=2

2+0 records in

2+0 records out

2048 bytes (2.0 kB, 2.0 KiB) copied, 0.002556 s, 801 kB/s

$ mkdir mountpoint

$./twofs filesystem_image mountpoint

$ cd mountpoint

$ ls -l

total 8

-rw-rw-rw- 1 root root 1024 Jan 01 1970 file1

-rw-rw-rw- 1 root root 1024 Jan 01 1970 file2

$ echo hi > file1

$ cat file1

hi

$ hexdump -C file1

00000000 68 69 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 |hi..............|

00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000400

$ echo > otherfile

-bash: otherfile: No such file or directory

$ ls -l

total 8

-rw-rw-rw- 1 root root 1024 Jan 01 1970 file1

-rw-rw-rw- 1 root root 1024 Jan 01 1970 file2

When done, submit a file called twofs.tgz with your code. It should be compiled with “make”.

https://www.thegeekstuff.com/2010/10/linux-error-codes

5 Introducing the bbfs filesystem
To give you exposure to many more possible system calls handled by FUSE, we’ll be looking at a bit of an

odd filesystem, the Big Brother Filesystem by Dr. Joseph Pfeiffer of New Mexico State University. This

filesystem accepts a directory name and a mountpoint, then makes it appear as though all of the

content from the directory is also present in the mountpoint. It does so by passing each FUSE request it

receives to the corresponding “real” system call for the corresponding location in the underlying

directory. As a result, it serves to show us what kernel system calls correlate to each FUSE request

handler.

I’ve set up a variant of his code which has a simplified build environment based on Makefiles like we’ve

been using: this tweaked version is available here. The only difference from Dr. Pfeiffer’s original is that

you don’t need to run a “configure” script like in the original code; running make will be sufficient.

To help you get oriented, Dr. Pfeiffer provides a tutorial walkthrough here.

Build the “bbfs” example using my version of the code and run it.

Once you have bbfs working, do some experiments. Use it to mirror an empty directory, then use

common tools to create, read, modify, and delete files in the bbfs mountpoint, observing the bbfs log

as you go. Research the calls that are executed in the FUSE documentation and system manpages (you

may also need the UNIX error code list). Become comfortable with how filesystem calls work. Ask the

instructor for clarification on anything you don’t understand.

6 Benchmarking bbfs
One additional useful property of bbfs is that it will give us a good way to measure how much slower

using FUSE is, since it just acts as an extra layer on top of a normal filesystem. To be clear, running your

filesystem in userspace the way FUSE does is certain to add overhead, and bbfs also includes logging

code. Let’s compare the underlying filesystem to FUSE using the benchmark iozone. Install it as follows:

sudo apt install iozone3

IOzone has a lot of options and features, see the documentation here.

The key settings are:

• Modes: Which tests will be run? These include 0=write/rewrite, 1=read/re-read, 2=random-

read/write, and many more. In automatic mode, it defaults to all possible tests.

• File size: How big of a file will we operate on? Among other things, this influences what caches

the file fits in (CPU caches, physical disk cache, OS buffer cache in RAM). In automatic mode,

defaults to a range in 64k to 512M.

• Record size: How big each IO is, like the “bs” option in dd. Larger IOs are usually better, up to a

point. In automatic mode, defaults to a range in 4k to 16M.

https://people.duke.edu/~tkb13/courses/ece566/resources/bbfs-simple.tgz
https://www.cs.nmsu.edu/~pfeiffer/fuse-tutorial/html/index.html
https://people.duke.edu/~tkb13/courses/ece566/resources/libfuse-dev-2.9.9-html/
https://linux.die.net/
https://www.thegeekstuff.com/2010/10/linux-error-codes
http://www.iozone.org/
http://www.iozone.org/docs/IOzone_msword_98.pdf

Let’s use automatic mode (-a), but constrain it to do only a basic read/write test (-i 0 -i 1). Let’s

only use a file size of exactly 4MB (-s 4M). We’ll let it do all the record sizes. We’ll save output in Excel

format to the home directory (-b FILENAME).

To make a temp directory and run the test on the normal filesystem:

mkdir /tmp/test

cd /tmp/test

touch iozone.tmp

iozone -a -i 0 -i 1 -w -s 4M -b ~/iozone-real.xls

To make a mountpoint and run the test through the FUSE bbfs2:

mkdir ~/mountpoint

cd (path to your bbfs binary)

./bbfs /tmp/test ~/mountpoint

cd ~/mountpoint

touch iozone.tmp

iozone -a -i 0 -i 1 -w -s 4M -b ~/iozone-fuse.xls

Now, let’s do those tests again, but this time have iozone open the file in “SYNC” mode, so that the OS

does writethrough caching instead of writeback caching. You can do this by adding the -o option to

iozone.

2 NOTE: One quirk of IOzone is that it wants to create the test file with zero permissions to prevent other apps
interfering; this works on the native filesystem, but a quirk in FUSE makes this not work there. To get around this,
we pre-create the test file with normal permissions, and include the “-w” flag to iozone to prevent it deleting this

test file. This explains the touch command and “-w” flag we used.

Prepare a line graph showing real versus FUSE performance for the write test for all record sizes with

SYNC both off and on; i.e. have lines for real+nosync, fuse+nosync, real+sync, fuse+sync. If your

real+nosync line dominates the graph, note the magnitude of the difference, then remove it so you can

see the other trends. Set the plot title and axes up appropriately so the plot speaks for itself. An example

of such a plot is shown below (though on different hardware than yours). Include this plot in your

submission as a PDF file called iozone-result.pdf. The lesson here is to observe (a) the strong

effects of caching and (b) the overhead of FUSE.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 8 16 32 64 128 256 512 1024 2048 4096

Se
q

u
en

ti
al

 w
ri

te
 t

h
ro

u
gh

p
u

t
(k

B
/s

)

IO record size (kB)

IOZONE performance an real filesystem versus FUSE bbfs

real+sync fuse+sync fuse

