ECES66
Enterprise Storage Architecture

Spring 2025

Hard disks, SSDs, and the I/O subsystem

Tyler Bletsch
Duke University

Slides include material from Vince Freeh (NCSU)

Hard Disk Drives
(HDD)

History

e First: IBM 350 (1956)
e 50 platters (100 surfaces)
e 100 tracks per surface (10,000 tracks)
e 500 characters per track

e 5 million characters
e 24" disks, 20" high

Overview

e Record data by magnetizing ferromagnetic material
e Read data by detecting magnetization

e Typical design
e 1 or more platters on a spindle

e Platter of non-magnetic material (glass or aluminum), coated with
ferromagnetic material

e Platters rotate past read/write heads
e Heads ‘float’ on a cushion of air
e Landing zones for parking heads

Basic schematic

arm arm head indle
assembly r P

sactor track

e platter
il T,
— . =\ Ve
‘..._ | \ /

: _____——f’ii’__ﬁcynndm —

a. side view. b. top view.

Generic hard drive

Spindle Head

Platter
Actuator Arm

Power Connector

Jumper Block

Actuator A (these aren’t common any more)

Data Connector

Types and connectivity (legacy)

o SCSI (Small Computer System Interface):
e Pronounced “Scuzzy”
e One of the earliest small drive protocols

e The Standard That Will Not Die:
the drives are gone, but most enterprise
gear still speaks the SCSI protocol

Types and connectivity (modern)

SATA
hard drive

e SATA (Serial ATA):

e Current consumer standard

e Series of backward-compatible revisions
SATA 1 = 1.5 Gbit/s, SATA 2 = 3 Gbit/s,
SATA 3 = 6.0 Gbit/s, SATA 3.2 = 16 Gbit/s - sy

e Data and power connectors are hot-swap ready

e Extensions for external drives/enclosures (eSATA), H]
small all-flash boards (mSATA, M.2), Taracaviell Wl SrAex cavie
multi-connection cables (SFF-8484), more

e Usually in 2.5” and 3.5” form factors

e SAS (Serial-Attached-SCSI)

e SCSI protocol over SATA-style wires
e (Almost) same connector e
e Can use SATA drives on SAS controller, 4 | i Q

not vice versa L R uilgls p ;ﬂlllll}l!}_!Lj.

Hard drive capacity

100000 g I 1 I l T I I 5
10000 £ AT
E X X E
- X% X -
- X X -
X
1000 = XX > 5
E X X X E
B X X XX X x 7]
i X X % T
100 E wxxg ”z -
= B X 3
o) - s S -
e WX -
e B . 1
> o
S 10 == %V;Wg« =
: : " :
o - R]
3] R x K R X -
1E % 3
S : E
: X X i
0.1 —
- X 3
C x X x]
: X/(§ agf yi X i
0.01 = X ¥ X X =
= 2 X% E
0.001 | | | | | | | |
1980.1 1985.1 1990.1 1995.1 2000.1 2005.1 2010.1 2015.1 2020.1

Year

http://en.wikipedia.org/wiki/File:Hard_drive capacity over time.png

http://en.wikipedia.org/wiki/File:Hard_drive_capacity_over_time.png

Seeking

o Steps
e Speedup
e Coast
e Slowdown
o Settle

e Very short seeks (2-4 tracks): dominated by settle time
e Short seeks (<200-400 tracks):

e Almost all time in constant acceleration phase
e Time proportional to square root of distance

e Long seeks:
e Most time in constant speed (coast)
e Time proportional to distance

10

Average seek time

e What is the “average” seek? If
1. Seeks are fully independent and
2. All tracks are populated:
=» average seek = 1/3 full stroke

e But seeks are not independent
e Short seeks are common

e Using an average seek time for all seeks yields a poor model

11

e Note Sector Track Zone Density Recording
e More linear distance at edges then at center
e Bits/track ~ R (circumference = 2nR)
e To maximize density, bits/inch should be the same

e How many bits per track?
e Same number for all = simplicity; lowest capacity
o Different number for each =» very complex; greatest capacity

e Zoning
e Group tracks into zones, with same number of bits

e Quter zones have more bits than inner zones
o Compromise between simplicity and capacity

12

Sparing

e Reserve some sectors in case of defects
e Two mechanisms
e Mapping
e Slipping
e Mapping
e Table that maps requested sector - actual sector

e Slipping

e Skip over bad sector

e Combinations
e Skip-track sparing at disk “low level” (factory) format
e Remapping for defects found during operation

13

Caching and buffering

e Disks have caches

e Caching (eg, optimistic read-ahead)

e Buffering (eg, accommodate speed differences bus/disk)
e Buffering

o Accept write from bus into buffer

e Seek to sector
e Write buffer

e Read-ahead caching
e On demand read, fetch requested data and more
o Upside: subsequent read may hit in cache
e Downside: may delay next request; complex

14

Command queuing

e Send multiple commands (SCSI)
e Disk schedules commands
e Should be “better” because disk “knows” more

e Questions
e How often are there multiple requests?
e How does OS maintain priorities with command queuing?

15

Time line

host sends controller

0S| bus data
transfers to host

— S

command decodes it
controller
- disconnects from
H'Eﬂd bus & starts seek

5%: rcutitia n

latency

host sends controller
command decodes it

L B i

H —__controller
WI’I'IE starts seek

T b
5ee rotation

latency

status message 1o host

» SCSI bus

data transfer off head switch

mechanism

sl bus data
transfer from host

4

» disk mechanism

status message to host

= SCSI bus

data transfer to head switch

mechanism

= disk mechanism

16

Disk Parameters

Toshiba MK1003

Seagate Savvio

Seagate 61B

(early 2000s) (~2005) Enterprise HDD
(2016)
Diameter 1.8” 2.5" 3.5”
Capacity improving ® 10 GB /3 GB 6 TB
RPM 4200 RPM 10000 RPM 7200 RPM
Cache mproving@ | 512 KB 8 MB 128 MB
Platters 1 2 ~6
Average Seek About equal ® 7 ms 4.5 ms 4.16 ms
Sustained Data Rate |meevise 16 MB/s 94 MB/s 216 MB/s
Interface ATA SCSI SAS/SATA
Use Ancient iPod Laptop Desktop

17

Solid State Disks
(SSD)

Introduction

e Solid state drive (SSD)

e Storage drives with no mechanical component
e Available up to 16TB capacity (as of 2019)
e Classic: 2.5" form factor (card in a box)

19

Evolution of SSDs

e PROM - programmed once, non erasable

e EPROM - erased by UV lighting*, then reprogrammed

e EEPROM - electrically erase entire chip, then reprogram

e Flash — electrically erase and rerecord a single memory cell
e SSD - flash with a block interface emulating controller

* Obsolete, but totally awesome looking because they had a little window:

20

Flash memory primer

e Types: NAND and NOR
e NOR allows bit level access
 NAND allows block level access
e For SSD, NAND is mostly used, NOR going out of favor

e Flash memory is an array of columns and rows
e Each intersection contains a memory cell

e Memory cell = floating gate + control gate
e 1 cell =1 bit

21

Memory cells of NAND flash

Single-level cell (SLC) Multi-level cell (MLC) Triple-level cell (TLC)

Single (bit) level cell Two (bit) level cell Three (bit) level cell
Fast: Reasonably fast: Decently fast:

25us read/100-300 us 50us read, 600-900us 75us read, 900-1350 us
write write write

Write endurance - Write endurance — Write endurance — 5000
100,000 cycles 10000 cycles cycles

Expensive Less expensive Least expensive

22

SSD internals

Package contains multiple dies (chips)

v

Die segmented into multiple planes

A plane with thousands(2048) of blocks + 10 buffer pages

M

A block is around 64 or 128 pages

v

A page has a 2KB or 4KB data + ECC/additional information

23

SSD operations

e Read
e Page level granularity
e 25us (SLC) to 60us (MLC)

o Write
e Page level granularity
e 250us (SLC) to 900us(MLC)
e 10 x slower than read
e Erase
e Block level granularity, not page or word level
e Erase must be done before writes
e 3.5ms
e 15 x slower than write

24

SSD internals

e Logical pages striped over multiple packages
e A flash memory package provides 40MB/s
e SSDs use array of flash memory packages

e Interfacing:

e Flash memory — Serial IO — SSD Controller — disk interface
(SATA)

e SSD Controller implements Flash Translation Layer (FTL)
e Emulates a hard disk
e Exposes logical blocks to the upper level components
e Performs additional functionality

25

SSD controller

e Differences in SSD is due to controller
e Performance loss if controller not properly implemented

e Has CPU, RAM cache, and may have battery/supercapacitor
e Dynamic logical block mapping

26

Preemptive erasure

e Preemptive movement of cold data

e Recycle invalidated pages
e Performed by garbage collector
e Background operation
e Triggered when close to having no more unused blocks

allocated, filled in

deallocated & blank
(CAN be used for new data)

27

Wear leveling

e SSDs wear out
e Each memory cell has finite flips
e All storage systems have finite flips even HDD
e SSD finite flips < HDD
e HDD failure modes are larger than SSD

e General method: over-provision unused blocks
e Write on the unused block
e Invalidate previous page
e Remap new page

28

Dynamic wear leveling

e Only pool unused blocks 25% of blocks
e Only non-static portion is wear FAT ol SaperFenrs ot and Dynamic data
I eV E| e d Windows Vista® temp buffers J
o Controller implementation easy 75% of blocks
e Example: SSD lifespan exeturable e, an s e
dependent on 25% of SSD S
_

Source: micron

29

Static wear leveling

Pool all blocks
All blocks are wear leveled

Controller complicated
e needs to track cycle # of all blocks

Static data moved to blocks
with higher cycle #

Example: SSD lifespan
dependent on 100% of SSD

25% of blocks

Log files, MP3 play counts,
FAT tables, SuperFetch™ data, and
Windows Vista® temp buffers

Dynamic data

= Static data

=
75% of blocks
Operating systems, MP3s,
executable files, and user files
_/

Source: micron

30

SSD TRIM! Sent from the OS

e TRIM

e Command to notify SSD controller about deleted blocks
e Sent by filesystem when a file is deleted
e Avoids write amplification and improves SSD life

31

Using SSD (1)

e SSD as main storage device
e NetApp “All Flash” storage controllers
300,000 read IOPS
< 1 ms response time
> 6Gbps bandwidth
Cost: $big
Becoming increasingly common as SSD costs fall

e Hybrid storage (tiering)
o Server flash
e Client cache to backend shared storage
e Accelerates applications

. Egg/s’)cs efficiency of backend storage (backend demand decreases by up to
0

e Example: NetApp Flash Accel acts as cache to storage controller
e Maintains data coherency between the cache and backend storage
e Supports data persistent for reboots

32

Using SSD (2)

e Hybrid storage

e Flash array as cache (PCI-e cards flash arrays)
e Example: NetApp Flash Cache in storage controller
e Cache for reads

e SSDs as cache
e Example: NetApp Flash Pool in storage controller
e Hot data tiered between SSDs and HDD backend storage
e Cache for read and write

33

NetApp EF540 flash array

e 2U

e Target: transactional
apps with high IOPS and
low latency

e Equivalent to > 1000
15K RPM HDDs

e 95% reduction in space,
power, and cooling

e Capacity: up to 38TB

Source: NetApp

34

Differences between SSD and HDD

Uniform seek time

Fast seek time — random read/writes as
fast as sequential read/writes

Cost (Intel 530 Series 240GB — $209)
« Capacity — $0.87/GB

« Rate — $0.005/I0PS

« Bandwidth - $0.38/Mbps

Power:

Active power: 195mW - 2W

Idle power: 125mW - 0.5 W

Low power consumption, No sleep
mode

Different seek time for different sectors
Seek time dependent upon the distance

Cost (Seagate Constellation 1TB
7200rpm - $116)

« Capacity — $0.11/GB

« Rate — $0.55/I0PS

« Bandwidth - $0.99/Mbps

Power:

Average operating power: 5.4W

Higher power consumption, sleep mode
zero power, higher wake up cost

35

Differences between SSD and HDD

> 10,000 to > 1million IOPS
Read/write in microseconds

No mechanical part — no wear and tear
MTBF ~ 2 million hours

Faster wear of a memory cell when it
is written multiple times

Hundreds of I0PS
Read/write in milliseconds
Moving part — wear and tear
MTBF ~ 1.2 million hours

Slower wear of the magnetic bit
recording

36

Intel X-25E -
$345

(older)

SLC

32 GB

SATA II

170-250MB/s
Latency 75-85us

Intel 530 - $209
(new)

MLC

240GB

SATA I

up to 540MB/s
Latency 80-85us

Samsung 840
EVO - $499

(new)

TLC

1TB

SATA I

up to 540MB/s

37

Which is cheaper?

HDD? or SSD?
yes! Yes!
Cheaper per gigabyte of Cheaper per IOPS
capacity. (performance).

Tradeoft!

38

Workloads

Workloads SSD HDD Why?

High write Y Wear for SSD

Sequential I0 Y Y Both SSD and HDD do great
(e.g. media files) on sequential

Log files (small writes) Y Faster seek time

Database read queries Y Faster seek time

Database write queries Y Faster seek time

Analytics — HDFS Y Y SSD — Append operation faster

HDD — higher capacity
Operating systems Y SSD: FAST!!!I

39

Other Flash technologies - NVDIMMS

Revisiting NVRAM
DDR DIMMS + NAND Flash
e Speed of DIMMS

o extensive read/write cycles
for DIMMS

e Non volatile nature of NAND
Flash

Support added by BIOS
e Backup to NAND Flash

e Triggered by HW SAVE
signal

Stored charge
e Super capacitors
o Battery packs

How It Works
If there is a power failure, the supercap
module powers NVDIMM while it copies
all data from the DDR-3 to on-module

__J

When power is restored NVDIMM copies
all data from flash to DDR-3 and normal
operation resumes

(SNIA - NVDIMM Technical Brief)

40

In future - persistent memory

App to SSD 10 Read Latency (QD=1, 4KB)

nanomicsatas onel [O B
nanomicsaTasones [O
NaND MLC pele x4 Gen3 ONF3 - |G i |
Future NvM PCié x4 Gen3 VTN
o

20 40 60 80 100 120

us
Source: Andy Rudoff, Intel
B NVM Tread B NVM xfer m Misc SSD M Link Xfer = Platform + adapter W Software

e NVM latency closer to DRAM

e Types
e Battery-backed DRAM, NVM with caching, Next-gen NVM

e Attributes:
e Bytes-addressable, LOAD/STORE access, memory-like, DMA
e Data not persistent until flushed

41

Basics of 1O Performance

Measurement

Motivation and basic terminology

o We cover performance measurement in detail later in the
semester, but you may need the basics for your project sooner
than that...

e The short version:
e Sequential workload: MB/s

e Even an SSD does better sequential than random because of
caching and other locality optimizations

e Random workload: I0/s (commonly written IOPS)
e You need to indicate the IO size, but it's not part of the metric
e Don't forget: latency (ms)

43

Measurement methodology

e Basic test: do X amount of 10 and divide by time T.
e Both X and T may be specified or measured
e Example:
e Measure time to do 100,000 IOs (X given, T free variable)

o Write to disk at max rate for 60 seconds, look at file size
(T given, X free variable)

e Problem: measurement variance

tkbletsc@LAPIS:~ § dd if=/dev/zero of=testfile bs=1k count=1k

MB, 1.0 MiB) copied, 0.00917473 s| 114 |MB/s
d if=/dev/zero of=testfile bs=1k count=1k

ME, 1.0 MiB) copied, 0.0101952 s,|103 ME/s
d if=/dev/zero of=testfile bs=1k count=1k

3, 1.0 MiB) copied, 0.0108398 s,|96.7|MB/s
d if=/dev/zero of=testfile bs=1lk count=1k

0 MB, 1.0 MiB) copied, 0.0105439 s,|99.4|MB/s
d if=/dev/zero of=testfile bs=1lk count=1k

(1.0 mB, 1.0 MiB) copied, 0.00812217 s| 129 |MB/s 44

Combating measurement variance (1)

e Measurement varying too much? Make sure your tests are
long enough!

e Otherwise you're testing tiny random effects instead of the actual
phenomenon under study...

'_E' -bash —
tkbletsc@LAPIS ~ § dd if=/dev/zero of=testfile bs=1k couni=1k
1024+0 records in
1024+0 records out — O
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.00917473 s| 114 |MB/s . . - -
tkbletsc@LAPIS ~ $ dd if=/dev/zero of=testfile bs=lk count=1lk v/zero of=testfile bs=lk count=100k
1024+0 records in
1024+0 records out
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.0101952 s,|103 MB/s | MiB) copied, 0.415998 s,|252|MB/s
tkbletsc@LAPIS:~ § dd if=/dev/zero of=testfile bs=1k count=1k v/zero of=testfile bs=1k count=100k
1024+0 records in
1024+0 records out
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.0108398 s,|96.7 |MB/s) MiB) copied, 0.385542 s,|272|MB/s
tkbletsc@LAPIS ~ § dd if=/dev/zero of=testfile bs=1k count=1k wv/zero of=testfile bs=1k count=100k
1024+0 records in
1024+0 records out
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.0105439 s,|99.4 MB/s) MiB) copied, 0.375832 s,|279|MB/s
tkhletsc@LAPIS ~ § dd if=/dev/zero of=testfile bs=1k count=1k v /zero of=testfile bs=1k count=100k
1024+0 records in)
1024+0 records out
e = . - - S e : ;
tEé?ZéchEiiiski.g HE, 1.0 MiB) copied, 0.00812217 s| 129|MB/s | MiB) copied, 0.376901 s,[278)mMB/s
- e — BBy Szero of=testfile bs=1k count=100k
102400+0 records 1in
102400+0 records out
104857600 bytes (105 ME, 100 MiB) copied, 0.378793 s,|277 |MB/s
tkbletsc@LAPIS ~ § |]

Combating measurement variance (2)

e Measurement variance never goes away

* Need to characterize it when presenting results, or you won't be

trusted!

e How? Take multiple repetitions show average and standard deviation

(or other variance metric)

e ALL data requires variance to be characterized!

(not just in this course, but in your life)

e For your projects, failure to characterize variance is likely an automatic

request for resubmission!!
e How to present:

e In tables, show variance next to average (e.g. "251.2 £ 11.6")

e In graphs, show variance with error bars, e.g.:

300
250
200
150
100
50
0

I

testl

test2 46

Hands-on with the

Linux storage subsystem

I'm going to live demo a lot of command-line tools and concepts:
watching live or reviewing a video recording
may be of more value than just the slides.

47

Fundamental concepts in UNIX

e UNIX figured out a /ot of what is smart in OS design.
e One insight: Everything is a file

e All hardware is represented as special device files. Described by
“major” and “minor” numbers to tell kernel what device you mean.

e Devices automatically created in special filesystem “/dev”
e Includes block devices (e.g., HDDs and SSDs)

e /dev/sda, /dev/sdb, /dev/sdc, ... = SCSI Disk A, B, C, ...
e List block devices with 1sblk:

4 localadmin@esal{: ~
:~% 1sblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 3:0 8@ 120G 0 disk

sdal 81 %) 1M @ part

sda? 32 5 406G @ part /

sda3 3:3 5 26 @ part [SWAP]
sdb B:16 p 144G 0 disk /mnt/b

sdc 3:332 p 1446 0 disk
sdd 3:48 B 144G 0 disk
sde 3:0 3 144G 0 disk
sr@ 11:8 1 988M O rom

~%

48

Doing basic 10 manually

e Can open/read/write/close block devices like any other
e Requires root access by default (e.g. via sudo)
e Any program can do this — no special interface!
e Bash commands, python, etc.

e Useful to have a tool for doing basic 10 with lots of options
e Introducing dd!

e Basic usage:

e dd i1f=INPUTFILE of=0OUTPUTFILE bs=1lk count=32
AN AN A~ A

Defaults to stdin if omitted Defaults to stdout if omitted

Defaults to Defaults to
512 if omitted all if omitted

e dd if=/dev/sdb of=/dev/null bs=1 count=1l

Read from disk B Discard result 1 byte in total

e Lots more options, see manpage for details!

49

Block device tracing

o Kernel can trace the activity to block devices for us

e Install it:
sudo apt install --no-install-recommends blktrace
o Default: blktrace stores trace in binary format in a file;
blkparse used to view it in text

e Can chain the two to get live trace on screen (as root):
blktrace -d /dev/sdb -o - | blkparse -i -

Q=Queued R=Read
G=Get request W=Write
P/U= “Plug”/"Unplug” N=None (placeholder)
I=Insert into device queue D=Discard (trim)
D=Device command issued +
C=Completed A=readahead

Seeman blkparse for more S=synchronous

more...

Time(s) PID “Action”
Sequence# “RWBS”

CPU# Block#

#Blocks

Device major,minor

O localadmin@esai): ~

% sudo blktrace -d Jfdev/zdb -=p - blkpars= -i -
8,16] B . 800686800 16 Q RA B + 32 [dd]
] 2 16 G RA @ + 32 [dd]
N [dd]
N [dd] 1

RA @ + 32 [dd]
32 [dd]

50

Let’s directly use this disk!

o Write “hello” to the very front of it? Easy:
e echo hello > /dev/sdb

e Read the raw bytes of the disk?

e Could use ‘cat’, but it will read the whole disk...

e Can use ‘dd’, but what about non-text content?

e Need a way to interpret binary bytes so we can see them onscreen

e We want a hex dump

e Three flavors:
* hd: Gives binary+ascii dump by default (other options available)
* hexdump: Get a binary+ascii dump with hexdump -C
(other options available)

» od: Gives octal by default (other options available)

O root@esaki: ~

lesaXX:~# hd /dev/sdb

6f Oa OO PO 00 OO G0 00 00 00 00 00 ||"|e]_]_-::| ___________ |

* means “this row repeats for a while

51

Living without a filesystem

So far, no filesystem. Screw it — we don't need a filesystem!

I put my taxes at offset 1000
echo “IRS form 1040 ..” | dd of=/dev/sdb bs=1 seek=1000

I put my dog picture at offset 2000
dd if=dog.]jpg of=/dev/sdb bs=1 seek=2000

I can retrieve the stuff!

O root@esa)}: ~

root@esaXX:~# hd /dev/sdb | head -n3@

PPOPEPEP 68 65 6c 6c 6T Pa OO PO 0O OO 00 00 00 00 00 V0 |hello........... |
20000010 66 B0 08 66 B0 88 660 B0 668 00 00 668 B0 88 88 B |
*

2000030 660 00 08 668 B0 08 868 BB e2 B0 9c 49 52 53 28 66 |
PPEPA3Te 6f 72 6d 20 31 30 34 30 20 e2 80 ab e2 80 9d Pa |orm 1040 |
20000400 60 00 08 66 B0 68 60 B0 668 00 00 668 00 08 88 B |
*

PeRee7de ff d8 ff 0 00 10 4a 46 49 46 00 01 01 01 00 48 | JFIF..... H|
POPOR70 00 A8 00 00 ff e1 5d 21 A5 78 69 66 00 00 Ad Ad |.H....]!Exif..HH|
PPOOA7O 00 22 00 00 OO 03 0O A3 01 Of 00 02 00 00 00 B4 | .*. |
20000888 4dc 47 45 668 81 160 868 B2 60 60 00 88 68 00 88 be |LGE n|
PPOPE310 ©1 1a PO 05 OO 00 00 P1 00 0P 00 76 01 1b @B B5 |........... Vool
0000820 66 60 08 81 B0 88 88 Je @1 28 00 83 68 00 88 8l | ST (. |
0POPA230 00 02 PO 00 02 13 00 A3 0O 0D 00 91 00 01 @0 VO |ceeenunn.. |
20000848 27 69 00 64 00 08 86 81 60 68 00 8o 88 25 08 84 |.i %..|
PPOPA250 00 00 PO 01 00 00 01 72 00 00 01 b4 de 65 78 75 |....... r....Nexu|

L — —— g

e e e e e 1 - — —

Inventing the filesystem

o Wow, remembering these offsets is hard.
I'll write them down...ON THE DISK!

e echo “taxes: 1000, dog: 2000, ...” > /dev/sdb

e Wow, manually doing the seeks to read/write areas of the disk is hard.
I'll invent OS functions that do it for me...and update the file locations

e I'll call the data containers “files”

e I'll organize them into hierarchical “directories”

I'll give them the concept of “size” so I know when they end

I'll keep track of what areas of the disk aren’t used and call that “free”

I'll call that speC|aI info that describes files my
“meta-data”

To access data, programs will “open” the file
(confirm it exists), then “read” and “write"” to it,
then “close” it — that’s a great interface!

Life was good, until....

e "I love that my whole hard drive is now organized!”

Filesystem trees in UNIX

e Another UNIX insight: One global hierarchy
e A UNIX system has a single root directory with a root file system
e Other filesystems can be "mounted” in directories under the root

“Real” root (/)

“Real” root (/)
Other FS root
Mount
the other FS

e Also, filesystems don’t have to just hold “real” files on “real”
storage devices — there are virtual filesystems:

e /proc — info about processes and basic system info (used by top)
e /sys — info about kernel (used by blktrace)

e /dev — access to device files themselves (managed by udev)

e Ramdisk — files live in memory, wiped on reboot (e.g. tmpfs)

55

See what’s mounted

e TWO commands to see what's mounted:
« mount — shows all filesystems (real and virtual)

- df — shows disk free space on filesystems that have that concept

o (Side-effect: shows fewer “fake” filesystems, more concise)
- £findmnt — newer tool, shows a nice hierarchy

G root@esalt: ~

root@esaXxX:~# df

Filesystem 1K-blocks Used Available Use¥% Mounted on
458724] 458724 0% /dev
100480 996 99484 1% /run

41022688 4191784 34717368 11% /

502380 2] 502380 0% /dev/shm

5120 5] 5120 8% /run/lock
502380 5] 502380 0% /sys/fs/cgroup
100476 [} 1ee476 0% /run/user/1000

root@esaXX:~# mount

sysfs on fsys type sysfs (rw,nosuid,nodev,noexec,relatime)

proc on fproc type proc (rw,nosuid,nodev,noexec,relatime)

udev on /dev type devtmpfs (rw,nosuid,noexec,relatime,size=458724k,nr_inodes=114681,mode=755)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=628,ptmxmode=000)

0 ‘ ’ o0 o ' T =100480k ,mode=755)

B Ubuntu 22.04.51TS —] x
tkbletsc@OBAMA ~ $ findmnt PRSI
TARGET SOURCE FSTYPE OPTIONS size=5120k)
i/ rootfs wslfs ru, noatime e=755)
—/dev none tmpfs ru, noatime ,mode=755 ev,noexec,relatime,nsdelegate)
—fdev/pts devpts devpts rw,nosuid,noexec,noatime, gid=5,mode=628 ,noexec, relatime,xattr, name=systemd)
—/sys sysfs sysfs ru,nosuid,nodev,noexec, noatime relatime)
—/sys/fs/cgroup tmpfs tmpfs rw,nosuid, nodev,noexec, relatime ,mode=755 ;ng:?Ezimme)
“—/sys/fs/cgroup/devices cgroup cgroup rw,nosuid, nodev,noexec, relatime, devices ,noexe;.,relatimé,devices)
—/proc proc proc ru,nosuid, nodev, noexec, noatime uid,nodev, noexec, relatime,net_cls,net_prio)
—/proc/sys/fs/binfmt_misc binfmt_misc binfmt_misc rw,relatime ,noexec, relatime, freezer)
—/run none tmpfs ru,nosuid, noexec,noatime,mode=755 ,noexec, relatime, hugetlb)
—/run/lock none tmpfs ru,nosuid, nodev, noexec, noatime xec,relatime, rdma)
—/run/shm none tmpfs ru, nosuid,nodev, noatime e, el e, bl i)
. . . . __ ev,noexec, relatime,perf_event)
—/run/user none tmpfs ru,nosuid, nodev,noexec, noatime,mode=755 Az s el e, EE, ()
—/mnt/c C:\ drvfs ru,noatime,uid=16008,gid=1600, case=off xec,relatime,pids)
—/mnt/d D:\ drvfs ru,noatime,uid=1600,gid=1008, case=off oexec,relatime,memory)
—/mnt/e E:\ drvfs ru,noatime,uid=1060,gid=1000, case=off e, d=28, pgrp=1, timeout=0,minproto=5,maxproto=3,direct,pipe_ino=15972)
tkbletsc@OBAMA: ~ § _ fize=2M)

time)
_ ~ o _ . . xec,relatime)
tracefs on /sys/kernel/tracing type tracefs (rw,nosuid,nodev,noexec,relatime)
fusectl on /sys/fs/fuse/connections type fusectl (rw,nosuid,nodev,noexec,relatime)

Partitioning

e What if I want to put multiple filesystems on one device?
e Examples:
e Multiple operating systems (e.g. Windows and Linux)
e An area for files and an area for virtual memory swap space

o Keep the OS separate from user home directories (so user data
filling up doesn't affect the OS)

e Solution: partitioning

e Widely supported scheme to divide up a disk; partitions are contiguous
and small in number (usually 1-3).

e Partitions labeled with integer that hints at what type of data is there.
e Two standards: MBR (deprecated) and GPT (GUID Partition Table).

e The partition table occupies beginning of disk, file systems actually
live within partitions. The OS knows about this and gives partitions
numbered device files:

/dev/sdb is partitioned into /dev/sdbl, /dev/sdb2, etc.

57

Partitioning with cfdisk

e Run cfdisk /dev/sdb

4 root@esaX): ~

New (or erased)
disk

Select label type

dos
sgi
sun

We want this guy

Select a type to create a new label or press 'L" to load script file.

e Follow prompts and we can make partitions, set type, etc.

G root@esaXi: ~ = O x

Disk: /dev/sdb
Size: 144 GiB, 154618822656 bytes, 301989888 sectors
Label: gpt, identifier: EAB4F2B4-1E48-874F-AFOB-CE@E11F40D53

Device Start End Sectors Size Type
J/dev/sdbl 2048 33556479 33554432 16G Linux filesystem
>> [dev/sdb2 33556480 301989854 268433375 128G Linux swap root@esaXX:~# 1lsblk R

T root@esali: ~ — O X

MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

[Delete] [Resize] [qQuit 1 [Type 1 [[ICEVEE [write] Pae o i w e

[Dump] 8:1 (%] 1M @ part ,
8:2 %] 40G O part

. 8:3 @ 26 0 part [SWAP]

Print help screen 8:16 © 144G 0 disk
8:17 @ 16G @ part
8:18 @ 128G @ part
8:32 8 144G @ disk
: \\W H n h d R It H . 8:48 @ 144G @ disk
e Hit "Write” when done. esult In 1sblk: gy
= rom

root@esaXxX:~#

Filesystem choices

e Let’s put a filesystem on, but which one?
e Common picks:
e ext4 — common Linux default
btrfs — fancy Linux option with lots of special features

FAT — classic Windows/DOS filesystem still in use on SD cards;
called vfat in Linux

exFAT — modern take on FAT, used on large USB/SD cards
NTFS — modern Windows filesystem
HFS+ - modern Mac OSX filesystem

e Need to initialize a filesystem: write on-disk metadata
structures on that represent empty filesystem. Use mk£fs

o Let’s pick a simple filesystem: vfat
(Why? Because ext4 does fancy background stuff that gets noisy to trace)

e Run mkfs.vfat /dev/sdbl
e Watch blktrace as it goes — wheeeee!

59

Let’s mount it

e Make an empty dir as a mountpoint: mkdir /mnt/blah

e Mount it: mount /dev/sdbl /mnt/blah

e Kernel will scan partition and auto-detect type of filesystem
o Will load correct filesystem driver
e Now, OS calls to paths under there will get handled by that driver

e Driver satisfies all OS calls by doing readblock/writeblock requests to
the underlying block device

e That's how filesystems work!

User apps
|

VFS < Common filesystem interface

[
ext4 vfat ntfs

|
& Buffer cache| < cache for disk blocks
I

A cachel Let's Disk drivers
experiment and I

understand this... . .
Physical disk
Figure adapted from Gotzon Gregor

60

Test the block cache (1)

echo hi > file
e No blktrace output! (OS cache is writeback by default)

cat file

o No blktrace output! (Cache hit)

(Wait about a minute, it posts later to biktrace)
e Yes blktrace output! (Cache being flushed on a timer, see metadata+data changes)

echo hi > file
e No blktrace output! (Writeback cache again)

sync
e Yes blktrace output! (This command forces OS to flush cache)

cat file
e No blktrace output! (Still a hit, just block isn't dirty in cache)

61

Test the block cache (2)

echo 3 > /proc/sys/vm/drop caches
e Writing to this special file tells kernel to drop caches;
e No blktrace output though, but ramcache was cleared.

cat file

o Blktrace output — we miss because we dropped caches

umount /mnt/blah

mount -o sync /dev/sdbl /mnt/blah
e Unmount and remount with the ‘sync” mount option
e Forces writethrough cache mode!

echo hi > file
e Blktrace output immediately! No writeback cache, writethrough instead

cat file
e No blktrace output - it still caches reads

62

Let’s trace from the other side

e We've been tracing the block device Sor opps
e What about the OS requests? ctrace N
S tra ce ext4 vflat ntfs

Buffer cache
[

blktrace NLS drivers

Physical /disk

e Shows each OS syscall done by a program.

e Works on a command by default; can attach to already-running
program if desired

e Have to wade through some “noise” (unrelated calls), not hard with a
little experience

e VERY powerful and useful — can determine behavior of software
without looking at source code or machine instructions!

63

strace example

root@esaXX:/mnt/blah# strace dd if=/dev/sdb bs=1 count=1
execve ("/usr/bin/dd", ["dd", "if=/dev/sdb", "bs=1l", "count=1l"], O0x7ffec5104518 ..)

I
o

t (AT FDCWD, "/dev/sdb", O RDONLY) = 3]]]])
Zi:g?; 0) =ves -) _ o Ll Open the input device, rename it to file descriptor 0 (dd
close (3) 0 likes to pretend its input is always stdin, which is 0)
lseek (0, 0, SEEK _CUR) =0
read (0, "\0", 1) =1
write(1, "\0", 1) = 1 | | Read the one requested byte from fd 0 (disk) and write
close (0) = 0 | | to fd 1 (stdout), then close both.
close (1) =0

write(2, "140 records in\nl+0 records out\n", 311+0 records in

140 records out

) = 31
write(2, "1 byte copied, 0.000672287 s, 1."..., 381 byte copied, 0.000672287 s, 1.5 kB/s) = 38
write(2, "\n", 1 \
) =1 . . .
Report to stderr the statistics. Blue stuff is dd’s actual

close (2) =0 . . .

. output to stderr; black is strace telling us about it.
exit group (0) ="

+++ exited with 0 +++ 64

Let’s play

e |Let's try some other strace+dd combos,
and let's watch blktrace as we do!

e Things to observe

e Note how bs sets the read/write size for OS calls, but a single call
could turn into many block I0s

* Note the effect of read-ahead caching by the OS
e Note how the cache can be a mix of hits and misses
e We can use the “-t” option with blkparse to get timing info

e Observe the correlation between block operations and slower dd
results (i.e., cache misses)

65

Architecture conclusions

Disks are block devices

All devices in Linux/UNIX are represented by device files; can directly

interact with

Disk blocks are cached in RAM by operating system (buffer cache)
Block devices are cumbersome to manually store data,

so we invent filesystems

OS handles filesystems — many filesystems can be mounted at once;
the VFS layer pivots among them, using the right filesystem driver

Filesystem driver will issue read/write requests to disk driver

User apps

VFS

< Common filesystem interface

ext4

vfat

ntfs

Buffer cache

Disk drivers

Physical disk

Figure ad

apted from Gotzon Gre

< Cache for disk blocks

gor

66

Tool conclusions

e We learned lots of great tools/commands:
« 1lsblk: View block devices
- df: View attached “real” filesystems (and free space)
- mount: Without arguments, shows a// mounted filesystems
« dd: Simple tool to do sequential IO operations
« hd and hexdump: View binary data in human-readable way
« mount and umount: Mount and unmount filesystems
- cfdisk: Create and manage disk partitions
- mkfs.*: Create various filesystems on a block device
- blktrace and blkparse: Trace IO operations to physical block devices
- strace: Trace system calls being made by a program
« sync: Force OS to flush all dirty blocks in writeback cache to disk
« echo 3 > /proc/sys/vm/drop caches: Force OS to lose entire block cache content

67

Questions?

Backup slides

The I/O Subsystem

Processor

<

/O Systems

interrupts

Cache

Memory - I/O Bus

Main
Memory

1/0 1/0 1/0
Controller Controller Controller
Graphics /m

— —
Disk \ ‘Disk

71

/O Interface

CPU |« > » Memory
Independent 1/O I memaory
Bus I I bus
Interface | |Interface Seperate 1/O instructions (in,out)
Peripheral | |Peripheral
CPU Lines distinguish between
common memory I/O and memory transfers
& 1/0 bus

I

.

Memory

Interface

Interface

1

I

Peripheral | | Peripheral

72

Memory Mapped I/O

CPU
I Single Memory & I/O Bus

No Separate I/O Instructions

I I I ROM

Memory Interface | |Interface RAM

] 1

Peripheral | | Peripheral

CPU
$ /1O

L2

>
I Memory Bus 110 bus

IS

Memory Bus Adaptor

73

Programmed I/O (Polling)

CPU

1

Memory

IO Controller

I

device

Is the
data
ready?

yes v
read
data

store
data

done? % no
yes

busy wait loop

not an efficient

way to use the CPU
unless the device

IS very fast!

but checks for I/O
completion can be
dispersed among
computationally
intensive code

74

Interrupt Driven Data Transfer

CPU \
1 (1) V0 program
interrupt prog
nop
Memory | |10 Controller (2) save PC
I (3) interrupt
device service addr_|
— —»_read _
store Inter_rupt
\ service
User program progress only halted during (4) rti routine
actual transfer

75

Direct Memory Access (DMA)

e Interrupts remove overhead of polling...

o But still requires OS to transfer data one word at a time
e OK for low bandwidth I/O devices: mice, microphones, etc.
e Bad for high bandwidth I/O devices: disks, monitors, etc.

e Direct Memory Access (DMA)
e Transfer data between I/O and memory without processor control
e Transfers entire blocks (e.g., pages, video frames) at a time
e Can use bus “burst” transfer mode if available
e Only interrupts processor when done (or if error occurs)

76

DMA Controllers

e To do DMA, I/0O device attached to DMA controller
e Multiple devices can be connected to one DMA controller
o Controller itself seen as a memory mapped I/O device
e Processor initializes start memory address, transfer size, etc.
e DMA controller takes care of bus arbitration and transfer details
e So that's why buses support arbitration and multiple masters!

CPU ($) |<

Bus

DMA DMA /O ctrl

Main :
displa NIC
Memory Py 1

77

/O Processors

e A DMA controller is a very simple component
e May be as simple as a FSM with some local memory

e Some I/O requires complicated sequences of transfers
e I/0 processor: heavier DMA controller that executes instructions
e Can be programmed to do complex transfers
e E.g., programmable network card
CPU () |«

Main :
displa NIC
Memory Py 1

78

Summary. Fundamental properties of I/O systems

Top guestions to ask about any I/O system:
e Storage device(s):
e What kind of device (SSD, HDD, etc.)?
e Performance characteristics?
e Topology:
e What's connected to what (buses, I0 controller(s), fan-out, etc.)?

o What protocols in use (SAS, SATA, etc.)?

e Where are the bottlenecks (PCI-E bus? SATA protocol limit? IO
controller bandwidth limit?)

e Protocol interaction: polled, interrupt, DMA?

79

	Slide 1: ECE566 Enterprise Storage Architecture Spring 2025
	Slide 2: Hard Disk Drives (HDD)
	Slide 3: History
	Slide 4: Overview
	Slide 5: Basic schematic
	Slide 6: Generic hard drive
	Slide 7: Types and connectivity (legacy)
	Slide 8: Types and connectivity (modern)
	Slide 9: Hard drive capacity
	Slide 10: Seeking
	Slide 11: Average seek time
	Slide 12: Zoning
	Slide 13: Sparing
	Slide 14: Caching and buffering
	Slide 15: Command queuing
	Slide 16: Time line
	Slide 17: Disk Parameters
	Slide 18: Solid State Disks (SSD)
	Slide 19: Introduction
	Slide 20: Evolution of SSDs
	Slide 21: Flash memory primer
	Slide 22: Memory cells of NAND flash
	Slide 23: SSD internals
	Slide 24: SSD operations
	Slide 25: SSD internals
	Slide 26: SSD controller
	Slide 27: Preemptive erasure
	Slide 28: Wear leveling
	Slide 29: Dynamic wear leveling
	Slide 30: Static wear leveling
	Slide 31: SSD TRIM! Sent from the OS
	Slide 32: Using SSD (1)
	Slide 33: Using SSD (2)
	Slide 34: NetApp EF540 flash array
	Slide 35: Differences between SSD and HDD
	Slide 36: Differences between SSD and HDD
	Slide 37
	Slide 38: Which is cheaper?
	Slide 39: Workloads
	Slide 40: Other Flash technologies - NVDIMMS
	Slide 41: In future - persistent memory
	Slide 42: Basics of IO Performance Measurement
	Slide 43: Motivation and basic terminology
	Slide 44: Measurement methodology
	Slide 45: Combating measurement variance (1)
	Slide 46: Combating measurement variance (2)
	Slide 47: Hands-on with the Linux storage subsystem
	Slide 48: Fundamental concepts in UNIX
	Slide 49: Doing basic IO manually
	Slide 50: Block device tracing
	Slide 51: Let’s directly use this disk!
	Slide 52: Living without a filesystem
	Slide 53: Inventing the filesystem
	Slide 54: Life was good, until….
	Slide 55: Filesystem trees in UNIX
	Slide 56: See what’s mounted
	Slide 57: Partitioning
	Slide 58: Partitioning with cfdisk
	Slide 59: Filesystem choices
	Slide 60: Let’s mount it
	Slide 61: Test the block cache (1)
	Slide 62: Test the block cache (2)
	Slide 63: Let’s trace from the other side
	Slide 64: strace example
	Slide 65: Let’s play
	Slide 66: Architecture conclusions
	Slide 67: Tool conclusions
	Slide 68: Questions?
	Slide 69: Backup slides
	Slide 70: The I/O Subsystem
	Slide 71: I/O Systems
	Slide 72: I/O Interface
	Slide 73: Memory Mapped I/O
	Slide 74: Programmed I/O (Polling)
	Slide 75: Interrupt Driven Data Transfer
	Slide 76: Direct Memory Access (DMA)
	Slide 77: DMA Controllers
	Slide 78: I/O Processors
	Slide 79: Summary: Fundamental properties of I/O systems

