
ECE566
Enterprise Storage Architecture

Spring 2025

RAID
Tyler Bletsch

Duke University

Slides include material from Vince Freeh (NCSU)

2

A case for redundant arrays of inexpensive disks

• Circa late 80s..

• MIPS = 2year-1984 Joy’s Law

• There seems to be plenty of main-memory available (multi
mega-bytes per machine).

• To achieve a balanced system
Secondary storage system has to match the above developments.

• Caches
• provide a bridge between memory levels

• SLED (Single Large Expensive Disk) had shown modest
improvement…

• Seek times improved from 20ms in 1980 to 10ms in 1994

• Rotational speeds increased from 3600/minute in 1980 to 7200 in 1994

3

Core of the proposal

• Build I/O systems as ARRAYS of inexpensive disks.

• Stripe data across multiple disks and access them in parallel to achieve
both higher data transfer rates on large data accesses and…

• higher I/O rates on small data accesses

• Idea not entirely new…

• Prior very similar proposals [Kim 86, Livny et al, 87, Salem & Garcia-
Molina 87]

• 75 inexpensive disks versus one IBM 3380

• Potentially 12 times the I/O bandwidth

• Lower power consumption

• Lower cost

4

Original Motivation

• Replacing large and expensive mainframe hard drives (IBM
3310) by several cheaper Winchester disk drives

• Will work but introduce a data reliability problem:

• Assume MTTF of a disk drive is 30,000 hours

• MTTF for a set of n drives is 30,000/n

• n = 10 means MTTF of 3,000 hours

5

Data sheet

IBM 3380 Conner CP 3100

14’’ in diameter 3.5’’ in diameter

7,500 Megabytes 100 Megabytes

$135,000 $1,000

120-200 IO’s/sec 20-30 IO’s/sec

3 MB/sec 1MB/sec

24 cube feet .03 cube feet

• Comparison of two disk of the era

• Large differences in capacity & cost

• Small differences in I/O’s & BW

• Today

• Consumer drives got better

• SLED = dead

6

Reliabilty

• MTTF: mean time to failure

• MTTF for a single disk unit is long..

• For IBM 3380 is estimated to be 30,000 hours (> 3 years)

• For CP 3100 is around 30,000 hours as well..

• For an array of 100 CP3100 disk the…

MTTF = MTTF_for_single_disk / Number_of_disk_in_the_Array

I.e., 30,000 / 100 = 300 hours!!! (or about once a week!)

• That means that we are going to have failures very frequently

7

A better solution

• Idea: make use of extra disks for reliability!

• Core contribution of paper (in comparison with prior work):

• Provide a full taxonomy (RAID-levels)

• Qualitatively outlines the workloads that are “good” for every
classification

• RAID ideas are applicable to both hardware and software
implementations

8

Basis for RAID

• Two RAID aspects taken into consideration:

• Data striping : leads to enhanced bandwidth

• Data redundancy : leads to enhanced reliability

• Mirroring, parity, or other encodings

9

Data striping

• Data striping:

• Distributes data transparently over multiple disks

• Appears as a single fast large disk

• Allows multiple I/Os to happen in parallel.

• Granularity of data interleaving

• Fine grained (byte or bit interleaved)

• Relatively small units; High transfer rates

• I/O requests access all of disks in the disk array.

• Only one logical I/O request at a time

• All disks must waste time positioning for each request: bad!

• Coarse grained (block-interleaved)

• Relatively large units

• Small I/O requests only need a small number of disks

• Large requests can access all disks in the array

10

Data redundancy

• Method for computing redundant information

• Parity (3,4,5), Hamming (2) or Reed-Solomon (6) codes

• Method for distributing redundant information

• Concentrate on small number of disks vs. distribute uniformly across all
disks

• Uniform distribution avoids hot spots and other load balancing issues.

• Variables I’ll use:

• N = total number of drives in array

• D = number of data drives in array

• C = number of “check” drives in array (overhead)

• N = D+C

• Overhead = C/N
(“how many more drives do we need for the redundancy?”)

11

RAID 0

• Non-redundant

• Stripe across multiple disks

• Increases throughput

• Advantages

• High transfer

• Low cost

• Disadvantage

• No redundancy

• Higher failure rate

RAID 0 (“Striping”)
Disks: N≥2, typ. N in {2..4}. C=0.
SeqRead: N
SeqWrite: N
RandRead: N
RandWrite: N
Max fails w/o loss: 0
Overhead: 0

Block

12

RAID 1

• Mirroring

• Two copies of each disk block

• Advantage

• Simple to implement

• Fault-tolerant

• Disadvantage

• Requires twice the disk capacity

RAID 1 (“Mirroring”)
Disks: N≥2, typ. N=2. C=1.
SeqRead: N
SeqWrite: 1
RandRead: N
RandWrite: 1
Max fails w/o loss: N-1
Overhead: (N-1)/N (typ. 50%)

13

RAID 2

• Instead of duplicating the data blocks we use an error
correction code (derived from ECC RAM)

• Need 3 check disks, bad performance with scale.

RAID 2 (“Bit-level ECC”)
Disks: N≥3
SeqRead: depends
SeqWrite: depends
RandRead: depends
RandWrite: depends
Max fails w/o loss: 1
Overhead: ~ 3/N (actually more complex)

Bit

14

XOR parity demo

• Given four 4-bit numbers: [0011, 0100, 1001, 0101]

• Given N values and one parity,
can recover the loss of any of the values

0011

 0100

 1001

 0101

 1011

XOR them
Lose one and

XOR what’s left

1011

 0100

 1001

 0101

 0011
Recovered!

15

RAID 3

• N-1 drives contain data, 1 contains parity data

• Last drive contains the parity of the corresponding bytes of
the other drives.

• Parity: XOR them all together

p[k] = b[k,1] b[k,2] ... b[k,N]

RAID 3 (“Byte-level parity”)
Disks: N≥3, C=1
SeqRead: N-1
SeqWrite: N-1
RandRead: 1
RandWrite: 1
Max fails w/o loss: 1
Overhead: 1/N

Byte

16

RAID 4

• N-1 drives contain data , 1 contains parity data

• Last drive contains the parity of the corresponding blocks of the other
drives.

• Why is this different? Now we don’t need to engage ALL the drives to do a
single small read!

• Drive independence improves small I/O performance

• Problem: Must hit parity disk on every write

RAID 4 (“Block-level parity”)
Disks: N≥3, C=1
SeqRead: N-1
SeqWrite: N-1
RandRead: N-1
RandWrite: 1
Max fails w/o loss: 1
Overhead: 1/N

Block

17

RAID 5

• Distribute the parity:
Every drive has (N-1)/N data and 1/N parity

• Now two independent writes will often engage two separate sets of disks.

• Drive independence improves small I/O performance, again

RAID 5 (“Distributed parity”)
Disks: N≥3, C=1
SeqRead: N
SeqWrite: N
RandRead: N
RandWrite: N
Max fails w/o loss: 1
Overhead: 1/N

Block

18

RAID 6

• Distribute more parity:
Every drive has (N-2)/N data and 2/N parity

• Second parity not the same; not a simple XOR. Various possibilities (Reed-
Solomon, diagonal parity, etc.)

• Allowing two failures without loss has huge effect on MTTF

• Essential as drive capacities increase – the bigger the drive, the longer RAID
recovery takes, exposing a longer window for a second failure to kill you

RAID 6 (“Dual parity”)
Disks: N≥4, C=2
SeqRead: N
SeqWrite: N
RandRead: N
RandWrite: N
Max fails w/o loss: 2
Overhead: 2/N

Block

19

Nested RAID

• Deploy hierarchy of RAID

• Example shown: RAID 0+1

RAID 0+1 (“mirror of stripes”)
Disks: N>4, typ. N1=2
SeqRead: N0*N1

SeqWrite: N0

RandRead: N0*N1

RandWrite: N0

Max fails w/o loss: N0*(N1-1) (unlikely)
Mins fails w/ possible loss: N1

Overhead: 1/N1

20

RAID 1+0

• RAID 1+0 is commonly deployed.

• Why better than RAID 0+1?

• When RAID 0+1 is degraded, lose
striping (major performance hit)

• When RAID 1+0 is degraded, it’s still
striped

RAID 1+0 (“RAID 10”, “Striped mirrors”)
Disks: N>4, typ. N1=2
SeqRead: N0*N1

SeqWrite: N0

RandRead: N0*N1

RandWrite: N0

Max fails w/o loss: N0*(N1-1) (unlikely)
Mins fails w/ possible loss: N1

Overhead: 1/N1

21

Other nested RAID

• RAID 50 or 5+0

• Stripe across 2 or more block-parity RAIDs

• RAID 60 or 6+0

• Stripe across 2 or more dual-parity RAIDs

• RAID 10+0

• Three-levels

• Stripe across 2 or more RAID 10 sets

• Equivalent to RAID 10

• Exists because hardware controllers can’t address that many drives, so
you do RAID-10s in hardware, then a RAID-0 of those in software

22

The small write problem

• Specific to block level striping

• Happens when we want to update a single block

• Block belongs to a stripe

• How can we compute the new value of the parity block

...b[k+1] p[k]b[k+2]b[k]

23

First solution

• Read values of N-1 other blocks in stripe

• Recompute

p[k] = b[k] b[k+1] ... b[k+N-1]

• Solution requires

• N-1 reads

• 2 writes (new block and parity block)

...b[k+1] p[k]b[k+2]b[k]

24

Second solution

• Assume we want to update block b[m]

• Read old values of b[m] and parity block p[k]

• Compute

p[k] = new_b[m] old_b[m] old_p[k]

• Solution requires

• 2 reads (old values of block and parity block)

• 2 writes (new block and parity block)

...b[k+1] p[k]b[k+2]b[k]

25

Picking a RAID configuration

• Just need raw throughput, don’t care about data loss?
(e.g., scratch disk for graphics/video work)

• RAID 0

• Small deployment? Need simplicity?
(e.g., Local boot drives for servers)

• RAID 1, n=2

• Small deployment but need low overhead?
(e.g., Home media storage)

• RAID 5, n=4..6

• Danger: big drives with large RAID-5’s increase risk of double failure during
repair

• Need simplicity and big throughput?

• RAID 1+0

• Large capacity?

• RAID 6 or RAID 6+0, n=15..30

• Simplicity when workload never has small writes?

• RAID 4, n=4..6

26

High availability vs. resiliency

• Main purpose of RAID is to build fault-tolerant file systems for
high availability

• However,

RAID DOES
NOT REPLACE

BACKUPS

27

What RAID can’t do

• RAID does not protect against:

• Human error (e.g. accidental deletion)

• Malware

• Non-drive hardware failure (I/O card, motherboard, CPU, RAM, etc.)

• Undetected read errors from disk

• Unless you’re reading all disks and checking against parity every time...

• But that’s performance-prohibitive.

• Even then you wouldn’t know which drive’s data was bad.

• Data corruption due to power outage

• In fact, RAID makes it worse...what if you lose power when only some of
the drives in a stripe have been updated? The “write hole”

• Catastrophic destruction of the system, rack, building, city, continent,
or planet

28

Recovering from failure

• When a disk fails in an array, the array becomes degraded

• While array is degraded, it is at risk of additional disk failures!

• Remember, for RAID 1/4/5, double disk failure = death!

• When the disk is replaced, the degraded array can be rebuilt

• For RAID-1, re-copy data. For RAID-4/5/6, reconstruct from parity.

• Hot spares: Disks that don’t participate in the array

• On failure, system immediately disables bad disk, promotes a spare,
and begins rebuilding.

• Reduces time spent in degraded state.

• Administrator can remove and replace bad disk at leisure (no urgency).

29

Issues

• What happens when new disks are added into the system?

• Usually have to change layout, rearrange data

• (More advanced techniques can avoid/minimize this)

• Alternative: add entire RAID arrays at a time, concatenate to existing
virtual disk (this is called an “aggregate” or “storage pool”)

• How to “grow” the array by replacement with bigger disks?

• Must replace every disk in turn, rebuilding between each

• Only a consideration for small deployments – large deployments just
add whole shelves (i.e. entire RAID arrays) of disks at a time

30

Optimizations in the Array Controller

• Access Coalescing

• Determine whether several disk I/Os on same disk are coalesced into a
single disk I/O.

• Load Balancing

• How the disk controller distributes the load between a disk and its
mirror.

• Adaptive Prefetching

• Based on automatic detection of sequential I/O streams.

• Write-back Caching Policy

• When are dirty data written from cache to disk

• Parameter: max number of dirty blocks that can be held in cache
without triggering disk writes.

	Slide 1: ECE566 Enterprise Storage Architecture Spring 2025
	Slide 2: A case for redundant arrays of inexpensive disks
	Slide 3: Core of the proposal
	Slide 4: Original Motivation
	Slide 5: Data sheet
	Slide 6: Reliabilty
	Slide 7: A better solution
	Slide 8: Basis for RAID
	Slide 9: Data striping
	Slide 10: Data redundancy
	Slide 11: RAID 0
	Slide 12: RAID 1
	Slide 13: RAID 2
	Slide 14: XOR parity demo
	Slide 15: RAID 3
	Slide 16: RAID 4
	Slide 17: RAID 5
	Slide 18: RAID 6
	Slide 19: Nested RAID
	Slide 20: RAID 1+0
	Slide 21: Other nested RAID
	Slide 22: The small write problem
	Slide 23: First solution
	Slide 24: Second solution
	Slide 25: Picking a RAID configuration
	Slide 26: High availability vs. resiliency
	Slide 27: What RAID can’t do
	Slide 28: Recovering from failure
	Slide 29: Issues
	Slide 30: Optimizations in the Array Controller

