ECE566 Enterprise Storage Architecture

Spring 2025

Network-Attached Storage (NAS) Tyler Bletsch Duke University

Adapted from the course "Information Storage and Management v2" (module 7, "Network-Attached Storage"), published by <u>EMC corporation</u>.

Includes additional content cited inline.

What is NAS?

NAS

It is an IP-based, dedicated, high-performance file sharing and storage device.

- Enables NAS clients to share files over IP network
- Uses specialized operating system that is optimized for file I/O
- Enables both UNIX and Windows users to share data

NAS block diagram

General Purpose Servers Vs. NAS Devices

Benefits of NAS versus local storage

- **Efficiency**: Economy of scale (e.g. a big RAID-6 rather than many little RAID-1's)
- **Flexibility**: Reallocate storage in software rather than by buying/moving hardware
- Centralized storage: Easier to find stuff
- Scalability: Can add disk arrays for performance or capacity
- **High availability**: Clustering and replication (covered later)
- **Security**: All accesses authentication, auditable

Components of NAS

NAS Device

NAS File Sharing Protocols

- Two common NAS file sharing protocols are:
 - Common Internet File System (CIFS)
 - Network File System (NFS)

Common Internet File System (CIFS)

- Client-server application protocol
 - > An open variation of the Server Message Block (SMB) protocol
- Enables clients to access files that are on a server over TCP/IP
- Stateful Protocol
 - Maintains connection information regarding every connected client
 - Can automatically restore connections and reopen files that were open prior to interruption

Windows

CIFS client example

							x
S C V Nomedir.oit.duke.edu\users\t\tkb	13\public_html\courses\ece590		🛨 🍫 Search	n ece590		_	2
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ools <u>H</u> elp							Ů
Organize 🔻 Burn New folder					•		0
🍑 j	^ Name	Date modified	Туре	Size			
🐌 k	homeworks	9/14/2016 10:35 AM	File folder				
1	images	7/11/2016 9:57 PM	File folder				
🧰 m	resources	7/11/2016 5:46 PM	File folder				
📁 n	🌗 slides	9/14/2016 9:36 AM	File folder				
	📅 flair.jpg	7/11/2016 5:55 PM	JPG Image	85 KB			
p p	💿 index.html	9/14/2016 10:50 AM	Chrome HTML Do	17 KB			
••• 4 11	📓 jquery.countdown.min.js	8/14/2015 9:44 AM	JScript Script File	5 KB			
••• '	🛞 jquery.min.js	8/23/2015 5:32 PM	JScript Script File	83 KB			
· ·	💿 project.html	9/14/2016 11:15 AM	Chrome HTML Do	15 KB			
tkb13	iiii server.jpg	8/17/2016 7:16 PM	JPG Image	111 KB			
	📷 server-ssd.jpg	8/17/2016 7:16 PM	JPG Image	98 KB			
users delete	style.css	8/17/2016 5:46 PM	Cascading Style S	7 KB			
🍑 w							
🛺 x							
\mu у							
\mu z							
WINDOWSMEDIA	_						
📴 Control Panel							
Recycle Bin							
	•						
12 items							

Network File System (NFS)

- Client-server application protocol
- Enables clients to access files that are on a server
- Uses Remote Procedure Call (RPC) mechanism to provide access to remote file system
- Currently, three versions of NFS are in use:
 - NFS v2 is stateless and uses UDP as transport layer protocol
 - NFS v3 is stateless and uses UDP or optionally TCP as transport layer protocol
 - NFS v4 is stateful and uses TCP as transport layer protocol

NFS mount example

NAS I/O Operation

NAS Implementation – Unified NAS

- Consolidates NAS-based (file-level) and SAN-based (block-level) access on a single storage platform
- Supports both CIFS and NFS protocols for file access and iSCSI and FC protocols for block level access
- Provides unified management for both NAS head and storage

Unified NAS Connectivity

- Consolidate NAS (file) and SAN (block) access in a single platform
- Provides unified management for both NAS and SAN at once; can also share physical storage between them

NAS Implementation – Scale-out NAS

- Pools multiple nodes together in a cluster that works as a single NAS device
 - Pool is managed centrally
- Scales performance and/or capacity with addition of nodes to the pool non-disruptively
- Creates a single file system that runs on all nodes in the cluster
 - Clients, connected to any node, can access entire file system
 - File system grows dynamically as nodes are added
- Stripes data across all nodes in a pool along with mirror or parity protection

Scale-out NAS Connectivity

NAS Use Case – Storage Consolidation with NAS

NFS and CIFS in more detail

Based on "<u>NFS, AFS, GFS</u>" presentation by Yunji Zhong (ASU) and "<u>Network File System</u>" presentation by Joshua Caltagirone-Holzli (Univ. of Florida)

NFS (Network File System)

- First developed in 1980s by Sun
- Presented with standard UNIX FS interface
- Network drives are *mounted* into local directory hierarchy
- Initially completely stateless
 - Operated over UDP; did not use TCP streams
 - File locking, etc, implemented in higher-level protocols
- Modern implementations use TCP/IP & stateful protocols

Server-side Implementation

- NFS defines a *virtual file system*
 - Does not actually manage local disk layout on server
- Server instantiates NFS volume on top of local file system
 - Local hard drives managed by concrete file systems (EXT, ReiserFS, ...)

NFS Locking

- NFS v4 supports stateful locking of files
 - Clients inform server of intent to lock
 - Server can notify clients of outstanding lock requests
 - Locking is lease-based: clients must continually renew locks before a timeout
 - Loss of contact with server abandons locks

NFS Client Caching

- NFS Clients are allowed to cache copies of remote files for subsequent accesses
- Supports *close-to-open* cache consistency
 - When client A closes a file, its contents are synchronized with the master, and timestamp is changed
 - When client B opens the file, it checks that local timestamp agrees with server timestamp. If not, it discards local copy.
 - Concurrent reader/writers must use flags to disable caching

Security and NFS

- /etc/exports
 - This file enumerates the hostnames of systems who have access to directories in the local file system
- Export file systems only to clients you trust
- Access to NFS ports should be restricted
- File level access on NFS based on:
 - UID, GID, and file permissions
- NFS servers trust the client to tell who is accessing files
- Example: if mary and bob have the same UID, then they can access each other's files
- Root_squash prevents root from changing the UID on the NFS server
 - Forces root to be a normal user on the server

Security and CIFS

- Clients log into CIFS server with end-user credentials
 - No client "trust" as with NFS
- Windows file systems support Access Control Lists (ACLs)
 - Fine-grained control of access permissions to users and groups
- Local account mode:
 - User account exists on the local client machine
 - When connecting to a remote CIFS share, user enters in credentials for remote user they want to connect as
- Active Directory mode:
 - All systems in the environment are "in the domain" (share credentials and policies via Active Directory)
 - User logs into system with a single-signon (like Duke NetID)
 - Attempts to access CIFS shares automatically use this account (can override with other credentials if desired)

Live demo: "marty"

Highlights

- Environment setup (workstation, media player, virtualization)
- NFS vs SMB/CIFS setup
- Proxmox share (centralized storage for virtualization)

Questions?