
ECE566
Enterprise Storage Architecture

Spring 2025

File Systems
Tyler Bletsch

Duke University

2

The file system layer

HDD / SSD

User code

Kernel

VFS layer

ext4 fat nfs ...

Disk driver NIC driver

open, read, write, seek, close, stat, mkdir, rmdir, unlink, ...

read_block, write_block packets

File system drivers

Could be a single drive or a RAID

3

High-level motivation

• Disks are dumb arrays of blocks.

• Need to allocate/deallocate (claim and free blocks)

• Want to maximize locality (similar stuff is close together)

• Ideally keeping data contiguous (sequential data is sequential on disk)

• Minimize fragmentation (see next slide)

• Need logical containers for blocks (allow delete, append,
etc. on different buckets of data – files)

• Need to organize such containers (how to find data –
directories)

• May want to access control (restrict data access per user)

• May want to dangle additional features on top

Result: file systems

4

Disk allocation

Empty disk:

25kB

File1

5 kB

File2

9 kB

F3

1 kB

F4

1 kB

F5

1 kB

File6

8 kB

File1

5 kB

File2

9 kB

F4

1 kB

File6

8 kB

File7

2 kB

File1

5 kB

File2

9 kB

F4

1 kB

File6

8 kB

F7(a)

1 kB

F7(b)

1 kB

Add a bunch of files, filling it up

Delete F3 and F5

I want to add File7

Can’t fit contiguously 

Have to split

5

It gets worse: external fragmentation

• This is external fragmentation: little regions just outside of
what has been allocated.

• It can get worse and worse…how to avoid?

• Minimum contiguous allocation: blocks of disk
(AKA sectors or clusters)

File1

5 kB

File2

9 kB

F4

1 kB

File6

8 kB

I want to add F7 and F8, but they’re not a “nice” size,

so we leave really tiny holes

File1

5 kB

File2

9 kB

F4

1 kB

File6

8 kB

F7

800

B

F8

800

B

Worse, if a file is a little larger than the hole, then you get a really tiny

extra piece. Let’s say F9 is 390 B,

it leaves just a 10 byte hole!

File1

5 kB

File2

9 kB

F4

1 kB

File6

8 kB

F9

(a)

200

B

F7

800

B

F8

800

B

10 B

F9

(b)
190

B

6

Also: there’s internal fragmentation

• Pro: Holes can’t get smaller than the block size – lower bound on how
small fragments can get (limits performance loss)

• This is critical, so we do it this way – block allocation is almost always used

• Con: Can have a lot of “unusable” space (internal fragmentation)

• It’s allocated but not used

Empty disk:

25 kB

Allocation block: 1kB
(in this example)

File1

5 kB

File2

9 kB

F3

1

kB

F4

1

kB

F5

1

kB

File6

8 kB

File1

5 kB

File2

9 kB

F7

(a)

1

kB

F4

1

kB

F7

(b)

100

B

File6

8 kB

Delete F3 and F5, add F7 which is 1100 bytes

Used: 100 bytes Allocated but unused: 900 bytes
(can only be used to grow F7)

7

We live with both forms of fragmentation

File1

4100 B

File2

8100 B

F7

(a)

1

kB

F4

1

kB

F7

(b)

1

kB

F8

100

B

F9

1

kB

F10

1

kB

F11

1

kB

Used

100 B

Unused

900 B

Used

100 B

Unused

900 B

Used

100 B

Unused

900 B

Internal fragmentation on the tails of files.
Worse if you have lots of small files.

External fragmentation when unallocated
blocks are sprinkled across the disk.

Worsens as filesystem ages and files are
added/deleted.

• Internal fragmentation is mostly just accepted

• We’ll learn techniques to reduce space loss later on (added complexity)

• External fragmentation can be reduced with good filesystem
design

• Can explicitly reverse this by defragmenting a disk – reorganizing it
(done on HDD, never on SSD)

8

Disk file systems

• All have same goal:

• Fulfill file system calls (open, seek, read, write, close, mkdir, etc.)

• Store resulting data on a block device, and do it well (max locality, min fragmentation, etc.)

• The big (non-academic) file systems

• FAT (“File Allocation Table”): Primitive Microsoft filesystem for use on floppy disks and later
adapted to hard drives

• FAT32 (1996) still in use (default file system for USB sticks, SD cards, etc.)

• Bad performance, poor recoverability on crash, but near-universal and easy for simple systems
to implement

• ext2, ext3, ext4: Popular Linux file system.

• Ext2 (1993) has inode-based on-disk layout – much better scalability than FAT

• Ext3 (2001) adds journaling – much better recoverability than FAT

• Ext4 (2008) adds various smaller benefits

• NTFS: Current Microsoft filesystem (1993).

• Like ext3, adds journaling to provide better recoverability than FAT

• More expressive metadata (e.g. Access Control Lists (ACLs))

• HFS+: Current Mac filesystem (1998), also has journaling.

• exFAT: A modern take on FAT, designed for broad compatibility on stuff like SD cards.

• “Next gen” file systems: ZFS (2005), btrfs (2009), WAFL (1998), and others

• Block indirection allows snapshots, copy-on-write clones, and deduplication

• Often, file system handles redundancy itself – no separate RAID layer

9

FAT

10

FAT

• FAT: “File Allocation Table”

• 3 different varieties: FAT12, FAT16, FAT32 – to accommodate
growing disk capacity

• Allocates by clusters (a set of contiguous disk sectors)

• Clusters number is a power of two < 216

• The actual File Allocation Table (FAT):

• Resides at the beginning of the volume

• Two copies of the table

• For a given cluster, gives next cluster (or FFFF if last)

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ)

Cluster is just their term for “block”

11

Directories

• Root directory:

• A fixed length file (in FAT16, FAT32)

• Subdirectories are files of same format, but arbitrary size
(extend via the FAT)

• Consist of 32B entries:

Offset Length Meaning

0x00 8B File Name

0x08 3B Extension

0x0b 1B File Attribute

0x0c 10B Reserved:

(Create time, date, access date in FAT 32)

0x16 2B Time of last change

0x18 2B Date of last change

0x1a 2B First cluster

0x1c 4B File size.

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ)

12

FAT Principle

• Directory gives first cluster

• FAT gives subsequent ones in a simple table

• Use FFFF to mark end of file.

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ)

13

Tradeoffs

• Cluster size

• Large clusters waste disk space because only a single file can live in a
cluster.

• Small clusters make it hard to allocate clusters to files contiguously and
lead to large FAT.

• FAT entry size

• To save space, limit size of entry, but that limits total number of
clusters.

• FAT 12: 12 bit FAT entries

• FAT 16: 16 bit FAT entries

• FAT 32: 32 bit FAT entries

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ)

14

Long file names

• Needed to add support for filenames longer than 8+3

• Also needed to be backward compatible

• Result: ridiculous but it works

• Store a bunch of extra “invalid” entries after the normal one just to
hold the long file name

• Set up these entries in such a way that old software will just ignore
them

• Every file has a long name and a short (8+3) name; short name is
auto-generated

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ)

15

Problems with FAT

1. Scalability/efficiency:

• Every file uses at least one cluster: internal fragmentation

• No mechanism to optimize data locality (to reduce seeks): external
fragmentation

• Fixed size FAT entries mean that larger devices need larger clusters;
problem gets worse

2. Consistency: What happens when system crashes/fails
during a write? Nothing good...

3. Like a billion other things: Seriously, did you see the long
filename support? It’s awful. And there is literally no security model – no
permissions or anything. There’s just a “hidden” bit (don’t show this unless the
user really wants to see it) and a “system” bit (probably don’t delete this but you
can if you want to). It’s impossible to support any kind of multi-user system on FAT, so Windows
basically didn’t until NT, which didn’t become mainstream until Windows 2000 and later XP. Also, the way
you labeled a whole file system was a special file that had a special permission bit set – that’s right, there’s a permission bit for “this
file is not really a file but rather the name of the file system”. Also, the directory entries literally contain a “.” entry for the current directory, which is
completely redundant. Speaking of redundant data, the duplicate FAT has no parity or error recovery, so it only helps you if the hard drive explicitly fails to read a
FAT entry, not if there’s a bit error in data read. Even so, if the disk does fail to read the first FAT, the second only helps if the duplicate has the entry you need
intact. But recall that bad sectors tend to be clustered, so a failure of one part of the FAT usually means the whole FAT region is dead/dying. This meant scores of
FAT data was lost to relatively small corruptions, because file recovery is almost impossible if all disk structure information is lost. In any case, we haven’t even got to the
other backwards compatibility stuff in FAT32. In that format, the bytes that make up the cluster number aren’t even contiguous! They sacrificed some of the reserved region, so just to compute the cluster
number you have to OR together two fields. Worst thing of all is that despite all this, FAT32 is still alive and well with no signs of going away, because it’s so common that every OS supports it and it’s so simple
that cheap embedded hardware can write to it. We live in a nightmare.

16

ext2

17

• Allocation of disk space to files is done with blocks.

• Choice of block size is fundamental

• Block size small: Needs to store much location information

• Block size large: Disk capacity wasted in partially used blocks (at the
end of file – internal fragmentation)

• Typical Unix block sizes are 4KB and 8KB

Disk Blocks

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ)

18

Disk layout

• Super block: Filesystem-wide info (replicated a lot)

• Group descriptors: addresses of the other parts, etc.

• Data block bitmap: which blocks are free?

• Inode bitmap: which inodes are free?

• Inode table: the inodes themselves

• Data blocks: actual file data blocks

From “Understanding the Linux Kernel, 3e” by Marco Cesati, Daniel P. Bovet.

Original UNIX filesystem basically

had one of this for the whole disk,

which meant that metadata was

always really far from data. This

more modern “block group” idea

drastically reduces the average

distance between the two.

19

• Inodes are fixed sized metadata describing the layout of a file

• Inode structure:

• i_mode (directory IFDIR, block special file (IFBLK), character special file
(IFCHR), or regular file (IFREG)

• i_nlink

• i_address[] (an array that holds addresses of blocks)

• i_size (file size in bytes)

• i_uid (user id)

• i_gid (group id)

• i_mtime (modification time & date)

• i_atime (access time & date)

Inodes

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ)

20

• Metadata in Inode is space-limited

• Limited NUMBER of inodes:

• Inode storing region of disk is fixed when the file system is created

• Run out of inodes -> can’t store more files ->
Can get “out of disk” error even when capacity is available

• Limited SIZE of inode:

• Number of block addresses in a single inode only suffices for small
files

• Use (single and double) indirect inodes to find space for all blocks
in a file

Inodes

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ)

21

Inode indirection

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ)

22

Inode indirection

From “File Systems Indirect Blocks and Extents” by Cory Xie (link)

Triple

http://www.coderplay.org/filesysdev/File-Systems-Indirect-Blocks-And-Extents.html

23

Directories and hard links

• Directories are special files that list file names and inode
numbers
(and some other minor metadata)

• What if two entries refer to the same inode number?

• Two “files” that are actually the same content

• This is called a hard link

• Need to track “number of links” – deallocate inode when zero

• This is an early example of filesystem-based storage efficiency:

• Can store same data “twice” without actually storing more data!

• Example: “Rsnapshot” tool can create multiple point-in-time
backups while eliminating redundancy in unchanged files

• We’ll see more advanced forms of filesystem-based storage
efficiency later on!

24

Soft links

• Soft link: an additional file/directory name.

• Also called symbolic link or symlink.

• A special file whose contents is the path to another file/directory.

• Path can be relative or absolute

• Can traverse file systems

• Can point to nonexistent things

• Can be used as file system organization “duct tape”

• Organize lots of file systems in one place (e.g., cheap NAS namespace
virtualization)

• Symlink a long, complex path to a simpler place, e.g.:
$ ln -s /remote/codebase/projectX/beta/current/build ~/mybuild

$ cd ~/mybuild

Figure from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ)

25

EXT Allocation Algorithms

• Allocation – selecting block group:
• Non-directories are allocated in the same block group as parent

directory, if possible.

• Directory entries are put into underutilized groups.

• Deallocation - deleted files have their inode link value
decremented.

• If the link value is zero, then it is unallocated.

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ)

26

EXT Details: Two time issues

• Time Values

• Are stored as seconds since January 1, 1970, Universal Standard Time

• Stored as 32-bit integer in most implementations

• Remember Y2k? Get ready for the Year 2038 problem.

• Linux updates (in general)

• A-time, when the content of file / directory is read.

• This can be very bad: every read implies a write!!

• Can be disabled: “noatime” option (atime field becomes useless)

• Can be mitigated: “relatime” option – only update atime if file modified
since current atime or if atime difference is large

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ)

27

Problems with ext2

• We solved the scalability/efficiency problem from FAT

• We still have one big problem left:

Consistency: What happens when system crashes/fails
during a write? Nothing good...

28

Journaling:
ext3, NTFS, and others

29

Why Journaling?

• Problem: Data can be inconsistent on disk

• Writes can be committed out of order

• Multiple writes to disk need to all occur and “match” (e.g. metadata of
file size, inode listing of disk blocks, actual data blocks)

• After a crash, need to walk entire filesystem to see if anything is
inconsistent (“scandisk” or “chkdsk” in Windows, “fsck” in Linux)!

• Uh oh! Drives are getting bigger more than they’re getting faster!

• Full checks could take DAYS on big arrays!! 

• How to solve?

• Write our intent to disk ahead of the actual writes

• These “intent” writes can be fast, as they can be ganged together (few
seeks)

• This is called journaling

30

Design questions

• Where is journal?

• Same drive, separate drive/array, battery backed RAM, etc.

• What to journal?

• Logical journal

• Metadata journaling: Only log meta data in advance

• Physical journal

• Data journaling: Log advanced copy of the data
(All data written twice!)

• What are the tradeoffs?

• Costs vs. benefits

From “Journaling Filesystems” by Vince Freeh (NCSU)

31

Journaling

• Process:

• record changes to cached metadata blocks in journal

• periodically write the journal to disk

• on-disk journal records changes in metadata blocks that have not yet
themselves been written to disk

• Recovery:

• apply to disk changes recorded in on-disk journal

• resume use of file system

• On-disk journal: two choices

• maintained on same file system as metadata, OR

• stored on separate, stand-alone file system

From “Operating Systems: File systems” by Dennis Kafura (Virginia Tech)

32

Journaling Transaction Structure

• A journal transaction

• consists of all metadata updates related to a single operation

• transaction order must obey constraints implied by operations

• the memory journal is a single, merged transaction

• Examples

• Creating a file

• creating a directory entry (modifying a directory block),

• allocating an inode (modifying the inode bitmap),

• initializing the inode (modifying an inode block)

• Writing to a file

• updating the file’s write timestamp (modifying an inode block)

• may also cause changes to inode mapping information and block
bitmap if new data blocks are allocated

From “Operating Systems: File systems” by Dennis Kafura (Virginia Tech)

33

Journaling in Linux (ext3)

• Given the (merged) transaction from memory

• Start flushing the transaction to disk

• Full metadata block is written to journal

• Descriptor blocks are written that give the home disk location for each
metadata block

• Wait for all outstanding filesystem operations in this
transaction to complete

• Wait for all outstanding transaction updates to be complete

• Update the journal header blocks to record the new head/tail

• When all metadata blocks have been written to their home
disk location, write a new set of journal header blocks to free
the journal space occupied by the (now completed)
transaction

From “Operating Systems: File systems” by Dennis Kafura (Virginia Tech)

34

Journaling modes (ext3)

• Nomenclature for ext3 journaling:

• Journal write: write the intended changes

• Journal commit: marks end of journal entry; indicates a promise that
all changes are either reflected in the fixed-block filesystem or
recoverable if there’s an outage
(“I promise the data is either stored or restorable”)

Figure from CS 161 lecture “Journaling” by James Mickens, Harvard

http://www.eecs.harvard.edu/~cs161/notes/journaling.pdf

35

Journaling with ext3: Data mode

• Data mode

☺ Post-crash data is guaranteed perfect

 Double-write

• Ordered mode

☺ No double-write of data

 Can lose mid-crash appends

• Unordered mode

☺ Best performance

 Post-crash, files may contain “junk” if
metadata written before data

Based on CS 161 lecture “Journaling” by James Mickens, Harvard

http://www.eecs.harvard.edu/~cs161/notes/journaling.pdf

36

Who does journaling?

• Everyone does journaling.

• Microsoft Windows: NTFS

• Linux: ext3, ext4, jfs, reiserfs

• Apple OSX: HFS+

• Full list:

• OCFS, OCFS2, XFS, JFS, QFS, Be File, NSS, NWFS, ODS-2, ODS-5, UDF,
VxFS, Fossil, ZFS, VMFS2, VMFS3, Btrfs, GFS, GPFS, HPFS, NTFS, HFS,
HFS Plusline, FFS, UFS1, UFS2, LFS, ext2, ext3, ext4, Lustre, NILFS,
ReiserFS, Reiser4

37

Can we go further?

• If journaling is so great, what if we just NEVER wrote to fixed
blocks, and used the journal for EVERYTHING????

Journaling

38

Can we go further?

• Yes!

Journaling

Journaling

Logging!

39

Log-structured file systems

Based on “Log-Structured File Systems” by Emin Gun Sirer and
Michael D. George (Cornell)

40

Basic Problem

• Most file systems now have large memory caches (buffers) to
hold recently-accessed blocks

• Most reads are satisfied from the buffer cache

• From the point of view of the disk, most traffic is write traffic

• To speed up disk I/O, we need to make writes go faster

• NOTE: This assumption depends strongly on workload!

• Disk performance is ultimately limited by seek delay

• With current file systems, adding a block takes several writes (to the
file and to the metadata), requiring several disk seeks

• So...let’s not do that.

From “Log-Structured File Systems” by Emin Gun Sirer and Michael D. George (Cornell)

M. Rosenblum and J. K. Ousterhout. The design
and implementation of a Log-structured File
system. ACM TOCS, 10(1):26–52, 1992.

41

LFS: Basic Idea

• An alternative is to use the disk as a log
• Log: a data structure that is written only at the head

• If the disk is managed as a log, there’d be no head seeks!

• The log is always added to sequentially

• New data and metadata (inodes, directories) are accumulated
in the buffer cache, then written all at once in large blocks
(e.g., segments of 0.5M or 1M)

• This would greatly increase disk throughput!

• How does this really work? How do we read? What does the
disk structure look like? etc.?

From “Log-Structured File Systems” by Emin Gun Sirer and Michael D. George (Cornell)

42

LFS Data Structures

• Segments: log containing data blocks and metadata

• inodes: as in Unix, inodes contain physical block pointers for
files

• inode map: a table indicating where each inode is on the disk

• inode map blocks are written as part of the segment; a table in a fixed
checkpoint region on disk points to those blocks

• segment summary: info on every block in a segment

• segment usage table: info on the amount of “live” data in a
block

From “Log-Structured File Systems” by Emin Gun Sirer and Michael D. George (Cornell)

43

LFS vs. traditional FS

file1 file2

dir1 dir2

Unix File

System

file1 file2

dir1 dir2

Log-Structured

File System

Log

Blocks written to create two 1-block files: dir1/file1 and dir2/file2

From “Log-Structured File Systems” by Emin Gun Sirer and Michael D. George (Cornell)

inode

directory

data

inode map

44

LFS: read and write

• Every write causes new blocks to be added to the current
segment buffer in memory; when that segment is full, it is
written to the disk

• Reads are no different than in Unix File System, once we find
the inode for a file (in LFS, using the inode map, which is
cached in memory)

• Over time, segments in the log become fragmented as we
replace old blocks of files with new block

• Problem: in steady state, we need to have contiguous free
space in which to write

From “Log-Structured File Systems” by Emin Gun Sirer and Michael D. George (Cornell)

45

Cleaning

• The major problem for a LFS is cleaning, i.e., producing
contiguous free space on disk

• A cleaner process “cleans” old segments, i.e., takes several
non-full segments and compacts them, creating one full
segment, plus free space

• The cleaner chooses segments on disk based on:

• utilization: how much is to be gained by cleaning them

• age: how likely is the segment to change soon anyway

• Cleaner cleans “cold” segments at 75% utilization and “hot”
segments at 15% utilization (because it’s worth waiting on
“hot” segments for blocks to be rewritten by current activity)

From “Log-Structured File Systems” by Emin Gun Sirer and Michael D. George (Cornell)

46

LFS cleaning

XX X X LogX

inode

directory

data

inode map

Segment Segment

X = superceded in later segment

freed Segment

Log

new new new new

Next segment

47

LFS Failure Recovery

• Checkpoint and roll-forward

• Recovery is very fast

• No fsck, no need to check the entire disk

• Recover the last checkpoint, and see how much data written after the
checkpoint you can recover

• Some data written after a checkpoint may be lost

• Seconds versus hours

From “Log-Structured File Systems” by Emin Gun Sirer and Michael D. George (Cornell)

48

LFS Summary

• Basic idea is to handle reads through caching and writes by
appending large segments to a log

• Greatly increases disk performance on writes, file creates,
deletes, ….

• Reads that are not handled by buffer cache are same
performance as normal file system (except locality is busted)

• Requires cleaning daemon to produce clean space, which
takes additional CPU time

From “Log-Structured File Systems” by Emin Gun Sirer and Michael D. George (Cornell)

49

Use of log-structured filesystems

• In the role of a traditional filesystem – not a lot:

• Original Ousterhout & Rosemblum LFS in Sprite OS (1992)

• Various academic projects, some small commercial ventures

• The NetApp “Write Anywhere File Layout (WAFL)”
(we’ll cover this one next)

• Specific to flash or optical media – more common
(recall that those mediums have trouble with in-place writes):

• UDF (commonly used on CD/DVD)

• JFFS, JFFS2 (commonly used in for flash in embedded Linux systems)

• Others (mostly focused around flash)

Note: “flash” above means raw flash, not SSDs – the data-hiding, wear-
leveling, etc. done by SSDs obviates many of the benefits

50

Remaining problem

• We’ve solved performance/efficiency issues with inodes and
chunks (ext2)

• We’ve solved consistency with journaling (and perhaps
logging)

• Remaining problem:

• Lack of magical superpowers that make you millions of dollars

51

Highly indirected filesystems

52

First, a sidebar: Copy on Write

Source

https://wizardzines.com/comics/copy-on-write/

53

Snapshots and clones:
Adapting this story to entire filesystems

snapshots

a filesystem-specific

Doing this

snapshot

snapshot

content

files

directories

metadata

data

data

snapshot

disk

Often snapshots are just
used as an in-place
backup, and many

snapshots are never even
accessed!

the
filesystem

disk

data

file

the
filesystem

metadata trees
(covered soon)

actual
data

block

block

syscall

the
filesystem

block

metadata tree

Source

the
filesystem

https://wizardzines.com/comics/copy-on-write/

54

Desires

• We want snapshots: point-in-time read-only replicas of
current data which can be taken in O(1) time and space

• We want clones: point-in-time writable replicas of current
data which can be taken in O(1) time and space, and we only
store changes between clone and original

• We want various other features, like:

• Directory-level quotas (capacity limits),

• Deduplication (identify redundant data and store it just once), and

• Thin-provisioning (provide storage volumes with a total capacity
greater than actual disk storage available)

55

Write Anywhere File Layout (WAFL)

• Inspired ZFS, HAMMER, btrfs

• Core Idea: Write whole snapshots to disk
(read only views of the whole filesystem)

• Snapshots are virtually free: use copy-on-write to preserve them

• Can be taken automatically on a schedule

• Uses:

• Users can recover accidentally deleted files

• Sys admins can create backups from running system

• System can restart quickly after unclean shutdown
(roll back to last automatic snapshot)

• Snapshots accessible from .snapshot directory in root

6 File System Design for An NFS File Server Appliance - Rev. C 3/95

2. Introduction To Snapshots
WAFL's primary distinguishing characteristic is Snapshots, which are read-only copies

of the entire file system. WAFL creates and deletes Snapshots automatically at

prescheduled times, and it keeps up to 20 Snapshots on-line at once to provide easy

access to old versions of files.

Snapshots use a copy-on-write technique to avoid duplicating disk blocks that are the

same in a Snapshot as in the active file system. Only when blocks in the active file

system are modified or removed do Snapshots containing those blocks begin to

consume disk space.

Users can access Snapshots through NFS to recover files that they have accidentally

changed or removed, and system administrators can use Snapshots to create backups

safely from a running system. In addition, WAFL uses Snapshots internally so that it

can restart quickly even after an unclean system shutdown.

2.1. User Access to Snapshots

Every directory in the file system contains a hidden sub-directory named

.snapshot that allows users to access the contents of Snapshots over NFS.

Suppose that a user has accidentally removed a file named todo and wants to

recover it. The following example shows how to list all the versions of todo

saved in Snapshots:

spike% ls -lut .snapshot/*/todo

-rw-r--r-- 1 hitz 52880 Oct 15 00:00

.snapshot/nightly.0/todo

-rw-r--r-- 1 hitz 52880 Oct 14 19:00

.snapshot/hourly.0/todo

-rw-r--r-- 1 hitz 52829 Oct 14 15:00

.snapshot/hourly.1/todo

...

-rw-r--r-- 1 hitz 55059 Oct 10 00:00

.snapshot/nightly.4/todo

-rw-r--r-- 1 hitz 55059 Oct 9 00:00

.snapshot/nightly.5/todo

With the -u option, ls shows todo's access time, which is set to the time when

the Snapshot containing it was created. The user can recover the most recent

version of todo by copying it back into the current directory:

spike% cp .snapshot/hourly.0/todo .

From “Advanced File Systems” by Ali Jose Mashtizadeh (Stanford)

56

WAFL File Descriptors

• Inode based system with 4 KB blocks

• Inode has 16 pointers, which vary in type depending upon file
size

• For files smaller than 64 KB:

• Each pointer points to data block

• For files larger than 64 KB:

• Each pointer points to indirect block

• For really large files:

• Each pointer points to doubly-indirect block

• For very small files (less than 64 bytes), data kept in inode
itself, instead of using pointers to blocks

Adapted from "File System Design for an NFS File Server Appliance" by Dave Hitz, et al. Original slides appear later in this deck.

57

WAFL Meta-Data

• Key insight: Meta-data stored in files!

• Inode file – stores inodes

• Block-map file – stores free blocks

• Inode-map file – identifies free inodes

Adapted from "File System Design for an NFS File Server Appliance" by Dave Hitz, et al. Original slides appear later in this deck.

58

Zoom of WAFL Meta-Data
(Tree of Blocks)

• Root inode must be in fixed location

• Other blocks can be written anywhere

Adapted from "File System Design for an NFS File Server Appliance" by Dave Hitz, et al. Original slides appear later in this deck.

59

Snapshots (1 of 2)

• To take a snapshot: Copy root inode only,
do copy-on-write for changed data blocks

• Over time, old snapshot references more and more data blocks
that are not used

• Rate of file change determines how many snapshots can be stored
on system

Adapted from "File System Design for an NFS File Server Appliance" by Dave Hitz, et al. Original slides appear later in this deck.

60

Snapshots (2 of 2)

• When disk block modified, must modify meta-data (indirect
pointers) as well

• Batch, to improve I/O performance

Adapted from "File System Design for an NFS File Server Appliance" by Dave Hitz, et al. Original slides appear later in this deck.

61

Consistency Points

• Make restart quick (like journaling): creates special snapshot
called consistency point every few seconds

• Batched operations are written to disk each consistency point

• Like a log structured filesystem!

• In between consistency points, data only written to RAM

• But it’s battery-backed Non-Volatile RAM (NVRAM)!

• Recover after outage by just reverting to last consistency point, then
replay NVRAM

Adapted from "File System Design for an NFS File Server Appliance" by Dave Hitz, et al. Original slides appear later in this deck.

62

Later NetApp/WAFL capabilities

• What if we make a big file on a WAFL file system, then treat that file as a
virtual block device, and we make a WAFL file system on that?

• Now file systems can dynamically grow and shrink (because they’re really files)

• Can do some optimizations to reduce the overhead of going through two file
system layers: inner file system can be “aware” that it’s hosted on an outer file
system

• Result: thin provisioning – Allocate more storage than you’ve got

• Similarly, LUNs are just fixed-size files

• Result: SAN support

• Multiple files can refer to same data blocks with copy-on-write semantics

• Result: writable clones

63

ZFS

• Copy-on-Write functions similar to WAFL

• Similar enough that NetApp sued Sun over it...

• Integrates Volume Manager & File System

• Software RAID without the write hole

• Integrates File System & Buffer Management

• Advanced prefetching: strided patterns etc.

• Use Adaptive Replacement Cache (ARC) instead of LRU

• File System reliability

• Check summing of all data and metadata

• Redudant Metadata

From “Advanced File Systems” by Ali Jose Mashtizadeh (Stanford)

https://en.wikipedia.org/wiki/Adaptive_replacement_cache

64

Conclusion

• File system design is a major contributor to overall
performance

• File system can provide major differentiating features

• Do things that you didn’t know you wanted to do (snapshots, clones,
etc.)

65

Questions?

66

WAFL: The history and details

A slightly updated version of a very early technical presentation
made by the founders of NetApp

67

About the authors

• Dave Hitz, James Lau, and Michael Malcolm

• Founded NetApp in 1992

• NetApp is now a fortune 500
company worth $10 billion

• Malcolm left early, other two stuck around

• Current pics:

Hitz

Lau

Malcolm

File System Design for an NFS File
Server Appliance

Dave Hitz, James Lau, and Michael Malcolm
Technical Report TR3002

 NetApp

2002

http://www.netapp.com/us/library/white-papers/wp_3002.html
(At WPI: http://www.wpi.edu/Academics/CCC/Help/Unix/snapshots.html)

http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.wpi.edu/Academics/CCC/Help/Unix/snapshots.html

Introduction

• In general, appliance is device designed to
perform specific function

• Distributed systems trend has been to use
appliances instead of general purpose computers.
Examples:
– routers from Cisco and Avici
– network terminals
– network printers

• For files, not just another computer with your
files, but new type of network appliance
→ Network File System (NFS) file server

Introduction: NFS Appliance

• NFS File Server Appliances have different
requirements than those of general purpose
file system
– NFS access patterns are different than local file

access patterns

– Large client-side caches result in fewer reads than
writes

• Network Appliance Corporation uses Write
Anywhere File Layout (WAFL) file system

Introduction: WAFL

• WAFL has 4 requirements
– Fast NFS service

– Support large file systems (10s of GB) that can grow (can add
disks later)

– Provide high performance writes and support Redundant
Arrays of Inexpensive Disks (RAID)

– Restart quickly, even after unclean shutdown

• NFS and RAID both strain write performance:
– NFS server must respond after data is written

– RAID must write parity bits also

Outline

• Introduction (done)

• Snapshots : User Level (next)

• WAFL Implementation

• Snapshots: System Level

• Performance

• Conclusions

Introduction to Snapshots

• Snapshots are copy of file system at given point in time

• WAFL creates and deletes snapshots automatically at preset
times
– Up to 255 snapshots stored at once

• Uses copy-on-write to avoid duplicating blocks in the active
file system

• Snapshot uses:
– Users can recover accidentally deleted files

– Sys admins can create backups from running system

– System can restart quickly after unclean shutdown
• Roll back to previous snapshot

User Access to Snapshots

• Example, suppose accidentally removed file named “todo”:

CCCWORK3% ls -lut .snapshot/*/todo

-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42

.snapshot/2011_10_26_18.15.29/todo

-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42

.snapshot/2011_10_26_19.27.40/todo

-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42

.snapshot/2011_10_26_19.37.10/todo

• Can then recover most recent version:

CCCWORK3% cp .snapshot/2011_10_26_19.37.10/todo todo

• Note, snapshot directories (.snapshot) are hidden in that they
don’t show up with ls (even ls -a) unless specifically requested

Snapshot Administration

• WAFL server allows sys admins
to create and delete
snapshots, but usually
automatic

• At WPI, snapshots of /home.
Says:
– 3am, 6am, 9am, noon, 3pm,

6pm, 9pm, midnight
– Nightly snapshot at midnight

every day
– Weekly snapshot is made on

Saturday at midnight every
week

→ But looks like every 1 hour
(fewer copies kept for older
periods and 1 week ago max)

claypool 168 CCCWORK3% cd .snapshot
claypool 169 CCCWORK3% ls -1
home-20160121-00:00/
home-20160122-00:00/
home-20160122-22:00/
home-20160123-00:00/
home-20160123-02:00/
home-20160123-04:00/
home-20160123-06:00/
home-20160123-08:00/
home-20160123-10:00/
home-20160123-12:00/
…
home-20160127-16:00/
home-20160127-17:00/
home-20160127-18:00/
home-20160127-19:00/
home-20160127-20:00/
home-latest/

Snapshots at WPI (Windows)
• Mount UNIX space (\\storage.wpi.edu\home), add \.snapshot

to end

• Can also right-click on file and
choose “restore previous version”

Note, files in .snapshot
do not count against quota

Outline

• Introduction (done)

• Snapshots : User Level (done)

• WAFL Implementation (next)

• Snapshots: System Level

• Performance

• Conclusions

WAFL File Descriptors

• Inode based system with 4 KB blocks

• Inode has 16 pointers, which vary in type depending upon file
size
– For files smaller than 64 KB:

• Each pointer points to data block

– For files larger than 64 KB:

• Each pointer points to indirect block

– For really large files:

• Each pointer points to doubly-indirect block

• For very small files (less than 64 bytes), data kept in inode
itself, instead of using pointers to blocks

WAFL Meta-Data

• Meta-data stored in files
– Inode file – stores inodes
– Block-map file – stores free blocks
– Inode-map file – identifies free inodes

Zoom of WAFL Meta-Data
(Tree of Blocks)

• Root inode must be in fixed location

• Other blocks can be written anywhere

Snapshots (1 of 2)
• Copy root inode only, copy on write for changed data blocks

• Over time, old snapshot references more and more data blocks
that are not used

• Rate of file change determines how many snapshots can be stored
on system

Snapshots (2 of 2)
• When disk block modified, must modify

meta-data (indirect pointers) as well

• Batch, to improve I/O performance

Consistency Points (1 of 2)

• In order to avoid consistency checks after unclean
shutdown, WAFL creates special snapshot called
consistency point every few seconds

– Not accessible via NFS

• Batched operations are written to disk each
consistency point

– Like journal

• In between consistency points, data only written
to RAM

Consistency Points (2 of 2)
• WAFL uses NVRAM (NV = Non-Volatile):

– (NVRAM is DRAM with batteries to avoid losing during
unexpected poweroff, some servers now just solid-state or
hybrid)

– NFS requests are logged to NVRAM
– Upon unclean shutdown, re-apply NFS requests to last

consistency point
– Upon clean shutdown, create consistency point and turnoff

NVRAM until needed (to save power/batteries)

• Note, typical FS uses NVRAM for metadata write cache
instead of just logs
– Uses more NVRAM space (WAFL logs are smaller)

• Ex: “rename” needs 32 KB, WAFL needs 150 bytes
• Ex: write 8 KB needs 3 blocks (data, inode, indirect pointer), WAFL

needs 1 block (data) plus 120 bytes for log

– Slower response time for typical FS than for WAFL (although
WAFL may be a bit slower upon restart)

Write Allocation

• Write times dominate NFS performance
– Read caches at client are large
– Up to 5x as many write operations as read operations at

server
• WAFL batches write requests (e.g., at consistency

points)
• WAFL allows “write anywhere”, enabling inode next to

data for better perf
– Typical FS has inode information and free blocks at fixed

location
• WAFL allows writes in any order since uses consistency

points
– Typical FS writes in fixed order to allow fsck to work if

unclean shutdown

Outline

• Introduction (done)

• Snapshots : User Level (done)

• WAFL Implementation (done)

• Snapshots: System Level (next)

• Performance

• Conclusions

The Block-Map File
• Typical FS uses bit for each free block, 1 is allocated and 0 is free

– Ineffective for WAFL since may be other snapshots that point to
block

• WAFL uses 32 bits for each block
– For each block, copy “active” bit over to snapshot bit

Outline

• Introduction (done)

• Snapshots : User Level (done)

• WAFL Implementation (done)

• Snapshots: System Level (done)

• Performance (next)

• Conclusions

Performance (1 of 2)

• Compare against other NFS systems

• How to measure NFS performance?

– Best is SPEC NFS

• LADDIS: Legato, Auspex, Digital, Data General,
Interphase and Sun

• Measure response times versus throughput

– Typically, servers quick at low throughput then
response time increases as throughput requests
increase

Performance (2 of 2)

(Typically, look for “knee” in curve)

Notes:
+ FAS has only 8 file systems, and others have dozens
- FAS tuned to NFS, others are general purpose

best
response

time

best
through-

put

Conclusion

• NetApp (with WAFL) works and is stable

– Consistency points simple, reducing bugs in code

– Easier to develop stable code for network
appliance than for general system

• Few NFS client implementations and limited set of
operations so can test thoroughly

• WPI bought one ☺

	Slide 1: ECE566 Enterprise Storage Architecture Spring 2025
	Slide 2: The file system layer
	Slide 3: High-level motivation
	Slide 4: Disk allocation
	Slide 5: It gets worse: external fragmentation
	Slide 6: Also: there’s internal fragmentation
	Slide 7: We live with both forms of fragmentation
	Slide 8: Disk file systems
	Slide 9: FAT
	Slide 10: FAT
	Slide 11: Directories
	Slide 12: FAT Principle
	Slide 13: Tradeoffs
	Slide 14: Long file names
	Slide 15: Problems with FAT
	Slide 16: ext2
	Slide 17: Disk Blocks
	Slide 18: Disk layout
	Slide 19: Inodes
	Slide 20: Inodes
	Slide 21: Inode indirection
	Slide 22: Inode indirection
	Slide 23: Directories and hard links
	Slide 24: Soft links
	Slide 25: EXT Allocation Algorithms
	Slide 26: EXT Details: Two time issues
	Slide 27: Problems with ext2
	Slide 28: Journaling: ext3, NTFS, and others
	Slide 29: Why Journaling?
	Slide 30: Design questions
	Slide 31: Journaling
	Slide 32: Journaling Transaction Structure
	Slide 33: Journaling in Linux (ext3)
	Slide 34: Journaling modes (ext3)
	Slide 35: Journaling with ext3: Data mode
	Slide 36: Who does journaling?
	Slide 37: Can we go further?
	Slide 38: Can we go further?
	Slide 39: Log-structured file systems
	Slide 40: Basic Problem
	Slide 41: LFS: Basic Idea
	Slide 42: LFS Data Structures
	Slide 43: LFS vs. traditional FS
	Slide 44: LFS: read and write
	Slide 45: Cleaning
	Slide 46: LFS cleaning
	Slide 47: LFS Failure Recovery
	Slide 48: LFS Summary
	Slide 49: Use of log-structured filesystems
	Slide 50: Remaining problem
	Slide 51: Highly indirected filesystems
	Slide 52: First, a sidebar: Copy on Write
	Slide 53: Snapshots and clones: Adapting this story to entire filesystems
	Slide 54: Desires
	Slide 55: Write Anywhere File Layout (WAFL)
	Slide 56: WAFL File Descriptors
	Slide 57: WAFL Meta-Data
	Slide 58: Zoom of WAFL Meta-Data (Tree of Blocks)
	Slide 59: Snapshots (1 of 2)
	Slide 60: Snapshots (2 of 2)
	Slide 61: Consistency Points
	Slide 62: Later NetApp/WAFL capabilities
	Slide 63: ZFS
	Slide 64: Conclusion
	Slide 65: Questions?
	Slide 66: WAFL: The history and details
	Slide 67: About the authors
	Slide 68: File System Design for an NFS File Server Appliance
	Slide 69: Introduction
	Slide 70: Introduction: NFS Appliance
	Slide 71: Introduction: WAFL
	Slide 72: Outline
	Slide 73: Introduction to Snapshots
	Slide 74: User Access to Snapshots
	Slide 75: Snapshot Administration
	Slide 76: Snapshots at WPI (Windows)
	Slide 77: Outline
	Slide 78: WAFL File Descriptors
	Slide 79: WAFL Meta-Data
	Slide 80: Zoom of WAFL Meta-Data (Tree of Blocks)
	Slide 81: Snapshots (1 of 2)
	Slide 82: Snapshots (2 of 2)
	Slide 83: Consistency Points (1 of 2)
	Slide 84: Consistency Points (2 of 2)
	Slide 85: Write Allocation
	Slide 86: Outline
	Slide 87: The Block-Map File
	Slide 88: Outline
	Slide 89: Performance (1 of 2)
	Slide 90: Performance (2 of 2)
	Slide 92: Conclusion

