
ECE566
Enterprise Storage Architecture

Spring 2025

Workload profiling and sizing

Tyler Bletsch

Duke University

2

The problem

• Workload characterization: Determining the IO pattern of
an application (or suite of applications)

• We do so by measuring it, known as workload profiling

• Storage sizing: Determining how much hardware you need
to serve a given application (or suite of applications)

• The challenge of characterization and sizing

• Storage is a complex system!

• Danger: high penalty for underestimating needs...

3

Two kinds of metrics

• Inherent access pattern metrics:

• Based on the code

• Resulting performance metrics:

• The performance observed when those
access patterns hit the storage system

• Sometimes difficult to separate:

• Common one that’s hard to tell: IOPS

• Did we see 50 IOPS because the workload only
made that many requests, or because the storage
system could only respond that fast?

• Was storage system mostly idle? Then IOPS was
limited by workload.

Workload

Storage system

4

Access pattern metrics

• Random vs. sequential IO

• Often expressed as random%

• Alternatives: average distance, seek distance histogram, etc.

• IO size

• IOPS

• If controller/disk utilization was low, then IOPS represent storage
demand (the rate the app asked for)

• Alternative metric: inter-arrival time (average, histogram, etc.)

• Reads vs. writes

• Often expressed as read%

• May also split all of the above by read vs. write
(read access pattern often different from write pattern)

• Breaking down application: can we identify separate threads?

• Is it 50% random, or is there one 100% random thread and one 100%
sequential thread?

Workload

Storage system

5

Performance metrics

• IOPS (if storage system was bottleneck)

• Alternative metric: IO latency (average, histogram, etc.)

• Alternative metric: throughput (for sequential workloads)

• Queue length: number of IO operations outstanding at a
time

• A measure of IO parallelism

Workload

Storage system

6

Example of metrics

• Metrics for “DVDStore”, a web store benchmark.

• Random workload (seek distance ≠ 0)

• IO size = 8k

• Short read queue, long write queue

• Reasonable latency (within usual seek time)

• Seek distance for writes is biased positive (likely due to asynchronous write flushing doing writes in
positive order to minimize write seek distance)

From “Storage Workload Characterization and Consolidation in Virtualized Environments” by Ajay Gulati, Chethan Kumar, Irfan Ahmad. In VPACT 2009.

7

How to get these metrics?

• Profiling: Run the workload and measure

• Two problems:

1. How to “run”?

• Most workloads interact with users

• Need user behavior to get realistic access pattern!

• Where to get users?

• App already in production? Use actual users

• If not, fake it: synthetic load generation
 (extra program pretends to be users)

• What about so-called benchmarks?

2. How to “measure”? We’ll see in a bit...

Workload

Storage system

8

Benchmarks

• Benchmark: a program used to generate load in order to
measure resulting performance. Various types:

• The application itself: You literally run the real app with a synthetic
load generator.

• Example: Microsoft Exchange plus LoadGen

• Application-equivalent: Implements a realistic task from scratch,
often with synthetic load generation built in.

• Example: DVDStore, an Oracle benchmark that literally implements
a web-based DVD store.

• Task simulator: Generate an access pattern commonly associated
with a certain type of workload

• Example: Swingbench DSS, which generates database requests
consistent with computing long-running reports

• Synthetic benchmark: Generate a mix of load with a specific pattern

• Example: IOZone, which runs a block device at a given random%,
read%, IO size, etc.

9

Methods of profiling

• App instrumentation

• Requires code changes

• Kernel instrumentation

• Can use kernel performance counters (e.g. iostat)

• Can hook at system call level (e.g. strace) or
block IO level (e.g. blktrace).

• Can also do arbitrary kernel instrumentation,
hook anything (e.g., systemtap)

• Hypervisor instrumentation

• Hypervisor sees all I/O by definition

• Example: vscsiStats in VMware ESX

• Storage controller instrumentation

• Use built-in performance counters

• Basically this is kernel instrumentation on the storage controller kernel

• User-level metrics (e.g. latency to load an email)

• These don’t directly help understand storage performance, but
they are the metrics that users actually care about

W
o
rk

lo
a
d

Storage system

App

OS

Hyp.

10

Sizing

• Now we know how workload acts;
need to decide how much storage gear we need to buy

• Will present basic rules, but there are complicating factors:

• Effects of storage efficiency features?

• Effects of various caches?

• CPU needs of the storage controller?

• Result when multiple workloads are combined on one system?

• Real-world sizing of enterprise workloads:

• For commercial apps, ask the vendor – companies with big, expensive,
scalable apps have sizing teams that write sizing guides, tools, etc.

• On the storage system side, ask the system vendor – companies with
big, expensive, scalable storage systems have sizing teams too.

11

Disk array sizing

• Recall: In a RAID array, performance is proportional to
number of disks; this includes IOPS

• Each disk “provides” some IOPS: 𝐼𝑂𝑃𝑆𝑑𝑖𝑠𝑘
• Our workload profile tells us: 𝐼𝑂𝑃𝑆𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

• Compute
𝐼𝑂𝑃𝑆𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝐼𝑂𝑃𝑆𝑑𝑖𝑠𝑘
: get number of disks needed

• Add overhead: RAID parity disks, hot spares, etc.

• Add safety margin: 20% minimum, >50% if active/active

• Note: this works for SSDs too, 𝐼𝑂𝑃𝑆𝑑𝑖𝑠𝑘 is just way bigger

12

Characterizing disks

• Use synthetic benchmark to find performance in the extremes
(100% read, 100% write, 100% seq, 100% random, etc.)

• You did this on HW1...results for Samsung 850 Evo 2TB SSD:

From http://www.storagereview.com/samsung_850_evo_ssd_2tb_review

13

Statistical side-note

• What are these graphs missing?

• Error bars!

• What is the variance in these tests? Are the results significant??

From http://www.storagereview.com/samsung_850_evo_ssd_2tb_review

Examples

15

Combining workloads

• Rare to have one storage system handle just ONE workload;
shared storage on the rise

• Can we simply add workload demands together?

• Sometimes...it’s complicated.

• Example that works: two random workloads run on separate 3-disk
RAIDs will get similar performance running together one 6-disk RAID

• Example that doesn’t: a random workload plus a sequential workload
wrecks performance of the sequential workload

• Random IOs will “interrupt” big sequential reads that would
otherwise be combined by OS/controller.

From “Storage Workload Characterization and Consolidation in Virtualized Environments” by Ajay Gulati, Chethan Kumar, Irfan Ahmad. In VPACT 2009.

16

Workload combining

• “OLTP” = “Online Transaction Processing” (normal user-activity-driven database)

• “DSS” = “Decision Support System” (long-running report on a database)

• Table 2: DVDStore benefits from twice as many disks to help with latency,
but DSS’s sequential IO gets wrecked by the random interruptions to its stream

From “Storage Workload Characterization and Consolidation in Virtualized Environments” by Ajay Gulati, Chethan Kumar, Irfan Ahmad. In VPACT 2009.

Random

Random

Random

Sequential

RAID5 config

+26%

-29%

17

Effects of aging on performance

• A storage system can get worse over time due to aging
effects – changes in storage layout over time as data is
added/removed.

• Can complicate testing and require much longer tests

• Can come from on-disk data structures (filesystem) and the
device itself (especially for SSD)…

18

Sources of aging effects

• The filesystem makes placement decisions.

• Example: write of blocks A,B,C,D,E,F,G:

• Later, we delete B,D,F and write X,Y:

• This is classic external fragmentation

• Also occurs in metadata of filesystem (e.g. inode tables)

• An SSD will indirect the location of objects

• An SSD never actually overwrites a page! Always writes elsewhere,
compacts later, etc.

• Effects most pronounced when SSD is near full;
 controller has fewest choices it can make to place new data!

• Side note: “Full” here means “not TRIM’d”

• Can mean slower writes, worse internal cache effects on reads

• Worst case: if SSD has to block a write to do an erase cycle (~3ms!)

A B C D E F G

A X C Y E (free) G

19

Dealing with aging in benchmarking

• Result: Have to subject storage system to realistic workload
for a sufficient number of IOs to get long-term measurements

• Tests might have to run for days/weeks/months…

• Test realism is important here:

• Real workloads typically follow various 80/20 rules (e.g., 80% of writes
to 20% of locations)

• Therefore, naïve synthetic workloads will be either hugely optimistic
(repeated full-device sequential write) or hugely pessimistic (repeated
full-device random write)

• Accuracy is achieved with a test workload that mirrors the intended use
case

20

Conclusion

• To characterize a workload, we must profile it

• Run it (generating user input if needed)

• Measure IO metrics in app/kernel/hypervisor/controller

• Can use workload profile for sizing:
to identify storage gear needed

• Basic rule: provision enough disks for the IOPS you need

• Past that, look for published guidance from software/hardware vendor

• Failing that, use successive experiments with differing gear to identify
performance trends

	Slide 1: ECE566 Enterprise Storage Architecture Spring 2025
	Slide 2: The problem
	Slide 3: Two kinds of metrics
	Slide 4: Access pattern metrics
	Slide 5: Performance metrics
	Slide 6: Example of metrics
	Slide 7: How to get these metrics?
	Slide 8: Benchmarks
	Slide 9: Methods of profiling
	Slide 10: Sizing
	Slide 11: Disk array sizing
	Slide 12: Characterizing disks
	Slide 13: Statistical side-note
	Slide 15: Combining workloads
	Slide 16: Workload combining
	Slide 17: Effects of aging on performance
	Slide 18: Sources of aging effects
	Slide 19: Dealing with aging in benchmarking
	Slide 20: Conclusion

