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What this lecture contains

• Included:

• Basic definitions

• Fundamental 
cryptography primitives

• Where cryptography 
can be used in 
enterprise storage

• Access control models 
applicable to storage

• Secure deletion

• Not included:

• Cryptography internals

• How to program using 
cryptography primitives (it’s 
easy to screw up!)

• The many other uses of 
cryptography

• Database security (e.g. SQL 
injection attacks)

• Intrusion detection and 
prevention systems

• Software security (bugs and 
exploits, e.g. buffer 
overflow)

• Denial of service attacks

• Too many other things to 
ever possibly list
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Key Security Concepts

Confidentiality

• Preserving 
authorized 
restrictions on 
information 
access and 
disclosure, 
including 
means for 
protecting 
personal 
privacy and 
proprietary 
information

Availability

• Ensuring timely 
and reliable 
access to and 
use of 
information

Integrity

• Guarding 
against 
improper 
information 
modification or 
destruction, 
including 
ensuring 
information 
nonrepudiation 
and authenticity

From Computer Security: Principles and Practices by William Stallings and Lawrie Brown
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Threat model

• Security is boolean:

• If (ANY exploitable flaw exists): system can be compromised
else: system cannot be compromised

• Can easily prove condition (existence proof);
cannot easily disprove condition

• Result: Cannot determine if a system is secure

• Scary/sad result

• To reason about security, need to identify threat model

• What do we assume potential attacker can do?

• Then, in that situation, what consequences can we prevent?

• Example: “Assume attacker can listen on this wire. Normally, 
they can intercept user data, but we if we use encryption, 
then they cannot.”
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Cryptography primitives
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Cryptography basics:
Symmetric encryption

• Given:

• Plaintext p (arbitrary size)

• Secret key k (fixed size)

• Encryption function E

• Decryption function D

• Can produce ciphertext c:

• c = E(p,k)

• Can recover plaintext:

• p = D(c,k)

(Also called shared-key encryption or 
secret-key encryption)
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Cryptography basics:
Symmetric encryption

• Ciphertext indistinguishable from random noise

• For a “good” algorithm, message cannot be recovered without 
key; attacker would need to try all possible keys

• If k is big, that would take too long (longer than life of universe)

• Making a “good” algorithm is hard... a whole field of study

• Never, ever make your own algorithm!

• Common algorithms: AES, Twofish, Serpent, Blowfish

• If you’re unsure, AES is a fine choice
(unless these slides are old, then google it first...)

• Problem with this?

• Need to pre-share the key!
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Cryptography basics:
Asymmetric encryption

• Sender has:

• Plaintext p (arbitrary size)

• Recipient’s public kpub (fixed size)
• Recipient makes this freely available (hence the name “public”)

• Encryption function E

• Decryption function D

• Can produce ciphertext c:

• c = E(p,kpub)

• Can recover plaintext:

• Need recipient private key kpriv

• Recipient keeps this hidden at 
all costs (hence the name “private”)

• p = D(c,kpriv)

• Also works if you reverse the keys:

• D(E(p,kpriv),kpub) == p

(Also called public-key encryption)
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Cryptography basics:
Asymmetric encryption

• Public and private keys mathematically related,
but one cannot be determined from the other

• Far slower than symmetric encryption

• Common trick: Use asymmetric to send a secret key,
then use symmetric with that key

• Common algorithms: RSA, Diffie-Hellman key exchange
• If you’re developing something with asymmetric encryption and you’re using these slides 

as your reference, stop. You’re doing it wrong.
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Cryptography basics:
Hashing

• You’re already familiar with hashing (right?)

• Usual hash function properties:

• Produces fixed size output for variable size input quickly (O(n))

• Statistically, any output is as likely as any other

^ Good enough to make a hash table

• Additional requirements for cryptography:

• Irreversibility: hash reveals absolutely nothing about input content

• Avalanche effect: small input change will completely alter hash

• No collisions: Big enough hash that collision probability is near-zero

^ Result: can’t determine input from hash except by brute force

• Given message p and hash function H, get hash value h:

• h = H(p)

• Common choices: SHA-2, SHA-3, RIPEMD-160
• Most lists also include MD5 and SHA-1, but serious vulnerabilities have been found in these – don’t use!
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Cryptography basics:
Hashing to verify integrity

• Simple integrity check: send message p with h=H(p)

• Recipient verifies that H(preceived) = h

• Password verification: instead of password p, send h=H(p)

• Receiver verifies that hreceived=hstored

• Advantage: Server doesn’t store actual passwords, only hashes

• HEY YOU: never store passwords in plaintext! NEVER! 
• Best solution: use a key-derivation function like PBKDF2 that does it right for you!

• Encryption by itself doesn’t verify that the encrypted message 
isn’t tampered with, so let’s add hash verification:

• Given message p, send c=E(p,k) and h=H(p)

• Recipient verifies that H(D(c,k)) = h

• Can also combine with asymmetric encryption...
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Cryptography basics:
Electronic signatures

• Integrity verification mixed with asymmetric encryption

Figure from Wikipedia: Electronic signature
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Cryptography basics:
Web of trust

• “Web of trust” is a complex thing, here’s the short version

• Using electronic signatures, one can “prove” to others that they are the 
holder of a given private key

• We assume that a few certain keyholders are “trusted” enough to verify 
the identity of other keyholders

• The electronic signature that identifies someone in this manner is called a 
certificate.

• Example: 

• I go to Verisign and say (1) I’m Tyler Bletsch and (2) I own tylerbletsch.com. 

• They require documentation to prove this, then they electronically sign a 
certificate attesting to it.

• Any browser that connects to tylerbletsch.com will automatically download and 
verify the certificate.
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Applying cryptography to storage
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• A basic enterprise storage deployment.

Common threat models in storage

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Server/Storage
iSCSI, FCP, NFS, CIFS

Back-end
SAS, SATA, NVMe
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Common threat models in storage:
Eavesdropping

• Eavesdrop: attacker has a read-only tap on the wire. E.g.:

• Physical access

• Compromised user machine or maybe even server
(in the case of compromised storage controller, we’re dead no matter what, so we omit consideration of this case)

• Network spoofing or compromised switch; configured to forward traffic

Server
Storage 

controller Disks

Eavesdrop:

User

Client/server
HTTP, IMAP, etc.

Server/Storage
iSCSI, FCP, NFS, CIFS

Back-end
SAS, SATA, NVMe

Attacker A Attacker B Attacker C
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Common threat models in storage:
Man-in-the-middle

• Man-in-the-middle: attacker intercepts, can drop and spoof 
packets.

• Similar attacks to gain this access; more visible to detection schemes

Server
Storage 

controller Disks

MITM:

User

Client/server
HTTP, IMAP, etc.

Server/Storage
iSCSI, FCP, NFS, CIFS

Attacker A

Back-end
SAS, SATA, NVMe

Attacker B Attacker C
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Securing the stack: client/server

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Client/server security

• A bit out of scope of this class

• Basically, it’s web-of-trust to verify identity, asymmetric key exchange 
to get a shared key, then symmetric crypto on the payload

Verify identity with certificate (prevent MITM).

Encrypt, usually with encrypted variant of normal protocol.

(HTTP→HTTPS, IMAP→IMAPS, etc.)

Server/Storage
FCP, iSCSI, NFS, CIFS
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Securing the stack: storage controller

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Storage controller security in general

• Sadly, it’s kind of worse than the client/server link...

• Primary defense: isolated network

• Physical isolation (separate switches, “air gap”) – expensive 

• Virtual isolation (VLANs) – cheaper, but configuration mistakes can 
break isolation

• Other defenses are protocol-specific and...not...really......good.........

Isolated network, protocol-dependent authorization, sometimes encryption

Server/Storage
FCP, iSCSI, NFS, CIFS
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Securing the stack: storage controller 
FCP

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Server/Storage
FCP, iSCSI, NFS, CIFS

Back-end
SAS, SATA, NVMe

• Storage controller security: FCP

• Identity verification: Zoning and world-wide names

• Switch limits access based on names (no actual secrets)

• If switch is secure and configured correctly, okay

• If not, well, there are no secrets, so no security... (bad)

• Encryption: hahahahaha what a mess, good lord

• Lots of proprietary bolt-on products that claim FCP encryption

• All are black-box mystery machines, leave a gap between the box 
and your controller

Zoning, messy proprietary encryption
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Securing the stack: storage controller
iSCSI

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Storage controller security: iSCSI

• Identity verification: CHAP protocol

• Basically it’s hash-based password checking; fairly weak

• Encryption (and also enhanced identity verification): IPSec

• IPSec is a generic encryption layer on IP

• Storage controller may do IPSec directly, or could add a tunnel 
device

• (But if you have to add a tunnel, what about network between 
tunnel and storage controller...)

CHAP authentication, bolt-on IPSec for encryption (rare)

Server/Storage
FCP, iSCSI, NFS, CIFS
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Securing the stack: storage controller
NFS

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Storage controller security: NFS

• Identity verification: IP-based check or Kerberos

• IP-based check: garbage

• Kerberos: server authenticates with central login authority;
basically equivalent to hash-based password verification

• Encryption: IPSec

• No built-in encryption standard (or even cert verification)

• Instead we use generic IPSec again; similar tradeoffs as with iSCSI

IP/Kerberos authentication, bolt-on IPSec for encryption (rare)

Server/Storage
FCP, iSCSI, NFS, CIFS
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Securing the stack: storage controller
CIFS

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Storage controller security: CIFS

• Identity verification: Windows certificates

• Similar certificate system to the client/server side, nice

• Encryption: CIFS encryption

• Historically had to do IPSec (similar to iSCSI/NFS)

• Windows server 2012+ and Windows 8+ can do CIFS-level 
encryption

Windows Active Directory  + certificate authentication, CIFS encryption (new) or bolt-on IPSec (rare)

Server/Storage
FCP, iSCSI, NFS, CIFS



24

Securing the stack: at-rest encryption

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Back-end security

• Not usually concerned with data “in-flight” from controller to disk

• If attacker has attached a wire to your SAS bus, game over

• More common concern: disk theft or inspection

• “At-rest” encryption: controller encrypts on way to physical media

• Typically symmetric encryption

• Question: Where does the key live???

Very isolated network, at-rest encryption

THEFT

?

Server/Storage
FCP, iSCSI, NFS, CIFS
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Key management

• Fundamental problem with at-rest encryption:
Where does the key live?

• In RAM? 

• How did it get there? 

• How do I get it back after an outage?

• One solution: boot-time key storage (admin must insert cart to 
provide key, key copied to RAM, admin takes card out and secures 
it)

• The “LOL DRM” issue:

• Systems that store key with encrypted data

?
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Securing the stack: end-to-end encryption

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Special case: end-to-end encryption

• Client encrypts data in app-specific manner

• Application on server understands this, doesn’t decrypt it (and can’t!)

• Some meta-data is visible

• Lands on disk with encryption intact

• Not generalizable – only applicable with app can ignore user content

• Example: secure email systems, cloud backup

Encryption from user to disk (in addition to previous techniques)

Server/Storage
FCP, iSCSI, NFS, CIFS
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Securing the stack: server encryption

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Special case: server encryption

• Server runs encryption wrapper over storage controller’s NAS/SAN 
volume

• Encrypted data is opaque to storage controller

• Simple to implement

• Negates storage efficiency features

Server encrypts, data is opaque to storage controller

Server/Storage
FCP, iSCSI, NFS, CIFS
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Securing the stack: “one-off” encryption

Server
Storage 

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Special case: manual file encryption

• Can use a simple app to encrypt one or more files

• Encrypted files are otherwise stored normally

• With automation, a cheap “bolt on” solution

Manual one-off encryption

Server/Storage
FCP, iSCSI, NFS, CIFS
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Encryption side-effects

• Encrypted content cannot be compressed or deduplicated

• Storage efficiency features have to be applied first

• What about metadata?

• Filenames, sizes, dates can be valuable information

• If you’re encrypting SAN traffic, you encrypt metadata for free

• If NAS, though...how to organize file system of encrypted metadata?

• Would have to add key semantics to file IO, break things, etc. 

• Applying file system encryption above block device is not common

• Encryption makes backup harder

• Backup the plaintext? Security failure.

• Backup the ciphertext? Need to back up the key, too...
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Access control

Includes content from Computer Security: Principles and Practices 
by William Stallings and Lawrie Brown (the slate blue slides)
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Subjects, Objects, Actions, and Rights

Subject
(initiator)

• The thing 
making the 
request 
(e.g. the 
user)

Verb
(request)

• The 
operation to 
perform 
(e.g., read, 
delete, etc.)

Right
(permission)

• A specific 
ability for 
the subject 
to do the 
action to 
the object.

Object
(target)

• The thing 
that’s being 
hit by the 
request 
(e.g., a file).



UNIX File Access Control

•Control structures with key information needed for a particular file

• Several file names may be associated with a single inode

•An active inode is associated with exactly one file

• File attributes, permissions and control information are sorted in the 
inode

•On the disk there is an inode table, or inode list, that contains the 
inodes of all the files in the file system

•When a file is opened its inode is brought into main memory and 
stored in a memory resident inode table

UNIX files are administered using inodes (index 
nodes)

•May contain files and/or other directories

•Contains file names plus pointers to associated inodes

Directories are structured in a hierarchical tree



UNIX 
File Access Control

⚫ Unique user identification 
number (user ID)

⚫ Member of a primary group 
identified by a group ID

⚫ Belongs to a specific group

⚫ 12 protection bits

⚫ Specify read, write, and 
execute permission for the 
owner of the file, members 
of the group and all other 
users

⚫ The owner ID, group ID, and 
protection bits are part of the 
file’s inode

Figure 4.5   UNIX File Access Control

(a) Traditional UNIX approach (minimal access control list)
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Traditional UNIX 
File Access Control

⚫ “Set user ID”(SetUID)

⚫  “Set group ID”(SetGID)
⚫ System temporarily uses rights of the file owner/group in 

addition to the real user’s rights when making access 
control decisions

⚫ Enables privileged programs to access files/resources not 
generally accessible

⚫ Sticky bit 
⚫ When applied to a directory it specifies that only the owner 

of any file in the directory can rename, move, or delete 
that file

⚫ Superuser 
⚫ Is exempt from usual access control restrictions

⚫ Has system-wide access
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File system access control lists (ACLs)

• Arbitrary list of rules governing access per-file/directory

• More flexible than classic UNIX permissions, but
more metadata to store/check

Windows ACL UI
Examples of Linux ACL commands

From Arch Wiki

https://wiki.archlinux.org/index.php/Access_Control_Lists
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Secure deletion
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Secure deletion

• Must destroy data when we need to (e.g. decommissioning a 
storage system)

• Destroying is easy, right?

• When you spend all this effort preventing data loss, 
intentionally losing data can get surprisingly hard.

• Things preventing data destruction:
• ‘Delete’ doesn’t destroy: it just updates metadata and marks blocks freed

• Journaling:  we keep scraps of written data separate from the actual data 
blocks; these aren’t affected by simple deletion

• Failed drives: If the drive dies enough to replace, we may not be able to tell 
the drive to overwrite data, but it’s still there...

• Hardware redundancy: SSDs redirect blocks internally for wear leveling; 
disks redirect blocks for bad sector compensation

• Snapshots: their whole purpose was to recover from accidental deletion

• Backups: We’ve replicated this data across the country...
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How to overcome: technical/procedural

• Block-level IO: Overwrite raw disk below file system level
• Traditional: “dd if=/dev/zero of=/dev/sda”

(basically that means “cat /dev/zero > /dev/sda”)

• Gets around file system, snapshots, journaling.

• ATA security erasure: erase command built into drive

• Procedural: Documented, automated processes for snapshot 
deletion, destruction of backups, etc.

• “Crypto-shredding”: Do at-rest encryption all along. Then, 
to destroy data, simply lose the key.
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How to overcome: physical

• Destroy!!!!!!
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