
ECE566
Enterprise Storage Architecture

Spring 2025

Security

Tyler Bletsch

Duke University

2

What this lecture contains

• Included:

• Basic definitions

• Fundamental
cryptography primitives

• Where cryptography
can be used in
enterprise storage

• Access control models
applicable to storage

• Secure deletion

• Not included:

• Cryptography internals

• How to program using
cryptography primitives (it’s
easy to screw up!)

• The many other uses of
cryptography

• Database security (e.g. SQL
injection attacks)

• Intrusion detection and
prevention systems

• Software security (bugs and
exploits, e.g. buffer
overflow)

• Denial of service attacks

• Too many other things to
ever possibly list

3

Key Security Concepts

Confidentiality

• Preserving
authorized
restrictions on
information
access and
disclosure,
including
means for
protecting
personal
privacy and
proprietary
information

Availability

• Ensuring timely
and reliable
access to and
use of
information

Integrity

• Guarding
against
improper
information
modification or
destruction,
including
ensuring
information
nonrepudiation
and authenticity

From Computer Security: Principles and Practices by William Stallings and Lawrie Brown

4

Threat model

• Security is boolean:

• If (ANY exploitable flaw exists): system can be compromised
else: system cannot be compromised

• Can easily prove condition (existence proof);
cannot easily disprove condition

• Result: Cannot determine if a system is secure

• Scary/sad result

• To reason about security, need to identify threat model

• What do we assume potential attacker can do?

• Then, in that situation, what consequences can we prevent?

• Example: “Assume attacker can listen on this wire. Normally,
they can intercept user data, but we if we use encryption,
then they cannot.”

5

Cryptography primitives

6

Cryptography basics:
Symmetric encryption

• Given:

• Plaintext p (arbitrary size)

• Secret key k (fixed size)

• Encryption function E

• Decryption function D

• Can produce ciphertext c:

• c = E(p,k)

• Can recover plaintext:

• p = D(c,k)

(Also called shared-key encryption or
secret-key encryption)

7

Cryptography basics:
Symmetric encryption

• Ciphertext indistinguishable from random noise

• For a “good” algorithm, message cannot be recovered without
key; attacker would need to try all possible keys

• If k is big, that would take too long (longer than life of universe)

• Making a “good” algorithm is hard... a whole field of study

• Never, ever make your own algorithm!

• Common algorithms: AES, Twofish, Serpent, Blowfish

• If you’re unsure, AES is a fine choice
(unless these slides are old, then google it first...)

• Problem with this?

• Need to pre-share the key!

8

Cryptography basics:
Asymmetric encryption

• Sender has:

• Plaintext p (arbitrary size)

• Recipient’s public kpub (fixed size)
• Recipient makes this freely available (hence the name “public”)

• Encryption function E

• Decryption function D

• Can produce ciphertext c:

• c = E(p,kpub)

• Can recover plaintext:

• Need recipient private key kpriv

• Recipient keeps this hidden at
all costs (hence the name “private”)

• p = D(c,kpriv)

• Also works if you reverse the keys:

• D(E(p,kpriv),kpub) == p

(Also called public-key encryption)

9

Cryptography basics:
Asymmetric encryption

• Public and private keys mathematically related,
but one cannot be determined from the other

• Far slower than symmetric encryption

• Common trick: Use asymmetric to send a secret key,
then use symmetric with that key

• Common algorithms: RSA, Diffie-Hellman key exchange
• If you’re developing something with asymmetric encryption and you’re using these slides

as your reference, stop. You’re doing it wrong.

10

Cryptography basics:
Hashing

• You’re already familiar with hashing (right?)

• Usual hash function properties:

• Produces fixed size output for variable size input quickly (O(n))

• Statistically, any output is as likely as any other

^ Good enough to make a hash table

• Additional requirements for cryptography:

• Irreversibility: hash reveals absolutely nothing about input content

• Avalanche effect: small input change will completely alter hash

• No collisions: Big enough hash that collision probability is near-zero

^ Result: can’t determine input from hash except by brute force

• Given message p and hash function H, get hash value h:

• h = H(p)

• Common choices: SHA-2, SHA-3, RIPEMD-160
• Most lists also include MD5 and SHA-1, but serious vulnerabilities have been found in these – don’t use!

11

Cryptography basics:
Hashing to verify integrity

• Simple integrity check: send message p with h=H(p)

• Recipient verifies that H(preceived) = h

• Password verification: instead of password p, send h=H(p)

• Receiver verifies that hreceived=hstored

• Advantage: Server doesn’t store actual passwords, only hashes

• HEY YOU: never store passwords in plaintext! NEVER!
• Best solution: use a key-derivation function like PBKDF2 that does it right for you!

• Encryption by itself doesn’t verify that the encrypted message
isn’t tampered with, so let’s add hash verification:

• Given message p, send c=E(p,k) and h=H(p)

• Recipient verifies that H(D(c,k)) = h

• Can also combine with asymmetric encryption...

12

Cryptography basics:
Electronic signatures

• Integrity verification mixed with asymmetric encryption

Figure from Wikipedia: Electronic signature

13

Cryptography basics:
Web of trust

• “Web of trust” is a complex thing, here’s the short version

• Using electronic signatures, one can “prove” to others that they are the
holder of a given private key

• We assume that a few certain keyholders are “trusted” enough to verify
the identity of other keyholders

• The electronic signature that identifies someone in this manner is called a
certificate.

• Example:

• I go to Verisign and say (1) I’m Tyler Bletsch and (2) I own tylerbletsch.com.

• They require documentation to prove this, then they electronically sign a
certificate attesting to it.

• Any browser that connects to tylerbletsch.com will automatically download and
verify the certificate.

14

Applying cryptography to storage

15

• A basic enterprise storage deployment.

Common threat models in storage

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Server/Storage
iSCSI, FCP, NFS, CIFS

Back-end
SAS, SATA, NVMe

16

Common threat models in storage:
Eavesdropping

• Eavesdrop: attacker has a read-only tap on the wire. E.g.:

• Physical access

• Compromised user machine or maybe even server
(in the case of compromised storage controller, we’re dead no matter what, so we omit consideration of this case)

• Network spoofing or compromised switch; configured to forward traffic

Server
Storage

controller Disks

Eavesdrop:

User

Client/server
HTTP, IMAP, etc.

Server/Storage
iSCSI, FCP, NFS, CIFS

Back-end
SAS, SATA, NVMe

Attacker A Attacker B Attacker C

17

Common threat models in storage:
Man-in-the-middle

• Man-in-the-middle: attacker intercepts, can drop and spoof
packets.

• Similar attacks to gain this access; more visible to detection schemes

Server
Storage

controller Disks

MITM:

User

Client/server
HTTP, IMAP, etc.

Server/Storage
iSCSI, FCP, NFS, CIFS

Attacker A

Back-end
SAS, SATA, NVMe

Attacker B Attacker C

18

Securing the stack: client/server

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Client/server security

• A bit out of scope of this class

• Basically, it’s web-of-trust to verify identity, asymmetric key exchange
to get a shared key, then symmetric crypto on the payload

Verify identity with certificate (prevent MITM).

Encrypt, usually with encrypted variant of normal protocol.

(HTTP→HTTPS, IMAP→IMAPS, etc.)

Server/Storage
FCP, iSCSI, NFS, CIFS

19

Securing the stack: storage controller

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Storage controller security in general

• Sadly, it’s kind of worse than the client/server link...

• Primary defense: isolated network

• Physical isolation (separate switches, “air gap”) – expensive

• Virtual isolation (VLANs) – cheaper, but configuration mistakes can
break isolation

• Other defenses are protocol-specific and...not...really......good.........

Isolated network, protocol-dependent authorization, sometimes encryption

Server/Storage
FCP, iSCSI, NFS, CIFS

20

Securing the stack: storage controller
FCP

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Server/Storage
FCP, iSCSI, NFS, CIFS

Back-end
SAS, SATA, NVMe

• Storage controller security: FCP

• Identity verification: Zoning and world-wide names

• Switch limits access based on names (no actual secrets)

• If switch is secure and configured correctly, okay

• If not, well, there are no secrets, so no security... (bad)

• Encryption: hahahahaha what a mess, good lord

• Lots of proprietary bolt-on products that claim FCP encryption

• All are black-box mystery machines, leave a gap between the box
and your controller

Zoning, messy proprietary encryption

21

Securing the stack: storage controller
iSCSI

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Storage controller security: iSCSI

• Identity verification: CHAP protocol

• Basically it’s hash-based password checking; fairly weak

• Encryption (and also enhanced identity verification): IPSec

• IPSec is a generic encryption layer on IP

• Storage controller may do IPSec directly, or could add a tunnel
device

• (But if you have to add a tunnel, what about network between
tunnel and storage controller...)

CHAP authentication, bolt-on IPSec for encryption (rare)

Server/Storage
FCP, iSCSI, NFS, CIFS

22

Securing the stack: storage controller
NFS

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Storage controller security: NFS

• Identity verification: IP-based check or Kerberos

• IP-based check: garbage

• Kerberos: server authenticates with central login authority;
basically equivalent to hash-based password verification

• Encryption: IPSec

• No built-in encryption standard (or even cert verification)

• Instead we use generic IPSec again; similar tradeoffs as with iSCSI

IP/Kerberos authentication, bolt-on IPSec for encryption (rare)

Server/Storage
FCP, iSCSI, NFS, CIFS

23

Securing the stack: storage controller
CIFS

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Storage controller security: CIFS

• Identity verification: Windows certificates

• Similar certificate system to the client/server side, nice

• Encryption: CIFS encryption

• Historically had to do IPSec (similar to iSCSI/NFS)

• Windows server 2012+ and Windows 8+ can do CIFS-level
encryption

Windows Active Directory + certificate authentication, CIFS encryption (new) or bolt-on IPSec (rare)

Server/Storage
FCP, iSCSI, NFS, CIFS

24

Securing the stack: at-rest encryption

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Back-end security

• Not usually concerned with data “in-flight” from controller to disk

• If attacker has attached a wire to your SAS bus, game over

• More common concern: disk theft or inspection

• “At-rest” encryption: controller encrypts on way to physical media

• Typically symmetric encryption

• Question: Where does the key live???

Very isolated network, at-rest encryption

THEFT

?

Server/Storage
FCP, iSCSI, NFS, CIFS

25

Key management

• Fundamental problem with at-rest encryption:
Where does the key live?

• In RAM?

• How did it get there?

• How do I get it back after an outage?

• One solution: boot-time key storage (admin must insert cart to
provide key, key copied to RAM, admin takes card out and secures
it)

• The “LOL DRM” issue:

• Systems that store key with encrypted data

?

26

Securing the stack: end-to-end encryption

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Special case: end-to-end encryption

• Client encrypts data in app-specific manner

• Application on server understands this, doesn’t decrypt it (and can’t!)

• Some meta-data is visible

• Lands on disk with encryption intact

• Not generalizable – only applicable with app can ignore user content

• Example: secure email systems, cloud backup

Encryption from user to disk (in addition to previous techniques)

Server/Storage
FCP, iSCSI, NFS, CIFS

27

Securing the stack: server encryption

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Special case: server encryption

• Server runs encryption wrapper over storage controller’s NAS/SAN
volume

• Encrypted data is opaque to storage controller

• Simple to implement

• Negates storage efficiency features

Server encrypts, data is opaque to storage controller

Server/Storage
FCP, iSCSI, NFS, CIFS

28

Securing the stack: “one-off” encryption

Server
Storage

controller Disks

User

Client/server
HTTP, IMAP, etc.

Back-end
SAS, SATA, NVMe

• Special case: manual file encryption

• Can use a simple app to encrypt one or more files

• Encrypted files are otherwise stored normally

• With automation, a cheap “bolt on” solution

Manual one-off encryption

Server/Storage
FCP, iSCSI, NFS, CIFS

29

Encryption side-effects

• Encrypted content cannot be compressed or deduplicated

• Storage efficiency features have to be applied first

• What about metadata?

• Filenames, sizes, dates can be valuable information

• If you’re encrypting SAN traffic, you encrypt metadata for free

• If NAS, though...how to organize file system of encrypted metadata?

• Would have to add key semantics to file IO, break things, etc.

• Applying file system encryption above block device is not common

• Encryption makes backup harder

• Backup the plaintext? Security failure.

• Backup the ciphertext? Need to back up the key, too...

30

Access control

Includes content from Computer Security: Principles and Practices
by William Stallings and Lawrie Brown (the slate blue slides)

31

Subjects, Objects, Actions, and Rights

Subject
(initiator)

• The thing
making the
request
(e.g. the
user)

Verb
(request)

• The
operation to
perform
(e.g., read,
delete, etc.)

Right
(permission)

• A specific
ability for
the subject
to do the
action to
the object.

Object
(target)

• The thing
that’s being
hit by the
request
(e.g., a file).

UNIX File Access Control

•Control structures with key information needed for a particular file

• Several file names may be associated with a single inode

•An active inode is associated with exactly one file

• File attributes, permissions and control information are sorted in the
inode

•On the disk there is an inode table, or inode list, that contains the
inodes of all the files in the file system

•When a file is opened its inode is brought into main memory and
stored in a memory resident inode table

UNIX files are administered using inodes (index
nodes)

•May contain files and/or other directories

•Contains file names plus pointers to associated inodes

Directories are structured in a hierarchical tree

UNIX
File Access Control

⚫ Unique user identification
number (user ID)

⚫ Member of a primary group
identified by a group ID

⚫ Belongs to a specific group

⚫ 12 protection bits

⚫ Specify read, write, and
execute permission for the
owner of the file, members
of the group and all other
users

⚫ The owner ID, group ID, and
protection bits are part of the
file’s inode

Figure 4.5 UNIX File Access Control

(a) Traditional UNIX approach (minimal access control list)

rw- r-- ---

O
w

ner
 c
la

ss

G
ro

up c
la

ss

O
th

er
 c
la

ss

user: :rw-

group::r--

other::---

(b) Extended access control list

masked

entries

rw- rw- ---

O
w

ner
 c
la

ss

G
ro

up c
la

ss

O
th

er
 c
la

ss

user: :rw-

user:joe:rw-

group::r--

mask::rw-

other::---

Traditional UNIX
File Access Control

⚫ “Set user ID”(SetUID)

⚫ “Set group ID”(SetGID)
⚫ System temporarily uses rights of the file owner/group in

addition to the real user’s rights when making access
control decisions

⚫ Enables privileged programs to access files/resources not
generally accessible

⚫ Sticky bit
⚫ When applied to a directory it specifies that only the owner

of any file in the directory can rename, move, or delete
that file

⚫ Superuser
⚫ Is exempt from usual access control restrictions

⚫ Has system-wide access

35

File system access control lists (ACLs)

• Arbitrary list of rules governing access per-file/directory

• More flexible than classic UNIX permissions, but
more metadata to store/check

Windows ACL UI
Examples of Linux ACL commands

From Arch Wiki

https://wiki.archlinux.org/index.php/Access_Control_Lists

36

Secure deletion

37

Secure deletion

• Must destroy data when we need to (e.g. decommissioning a
storage system)

• Destroying is easy, right?

• When you spend all this effort preventing data loss,
intentionally losing data can get surprisingly hard.

• Things preventing data destruction:
• ‘Delete’ doesn’t destroy: it just updates metadata and marks blocks freed

• Journaling: we keep scraps of written data separate from the actual data
blocks; these aren’t affected by simple deletion

• Failed drives: If the drive dies enough to replace, we may not be able to tell
the drive to overwrite data, but it’s still there...

• Hardware redundancy: SSDs redirect blocks internally for wear leveling;
disks redirect blocks for bad sector compensation

• Snapshots: their whole purpose was to recover from accidental deletion

• Backups: We’ve replicated this data across the country...

38

How to overcome: technical/procedural

• Block-level IO: Overwrite raw disk below file system level
• Traditional: “dd if=/dev/zero of=/dev/sda”

(basically that means “cat /dev/zero > /dev/sda”)

• Gets around file system, snapshots, journaling.

• ATA security erasure: erase command built into drive

• Procedural: Documented, automated processes for snapshot
deletion, destruction of backups, etc.

• “Crypto-shredding”: Do at-rest encryption all along. Then,
to destroy data, simply lose the key.

39

How to overcome: physical

• Destroy!!!!!!

	Slide 1: ECE566 Enterprise Storage Architecture Spring 2025
	Slide 2: What this lecture contains
	Slide 3: Key Security Concepts
	Slide 4: Threat model
	Slide 5: Cryptography primitives
	Slide 6: Cryptography basics: Symmetric encryption
	Slide 7: Cryptography basics: Symmetric encryption
	Slide 8: Cryptography basics: Asymmetric encryption
	Slide 9: Cryptography basics: Asymmetric encryption
	Slide 10: Cryptography basics: Hashing
	Slide 11: Cryptography basics: Hashing to verify integrity
	Slide 12: Cryptography basics: Electronic signatures
	Slide 13: Cryptography basics: Web of trust
	Slide 14: Applying cryptography to storage
	Slide 15: Common threat models in storage
	Slide 16: Common threat models in storage: Eavesdropping
	Slide 17: Common threat models in storage: Man-in-the-middle
	Slide 18: Securing the stack: client/server
	Slide 19: Securing the stack: storage controller
	Slide 20: Securing the stack: storage controller FCP
	Slide 21: Securing the stack: storage controller iSCSI
	Slide 22: Securing the stack: storage controller NFS
	Slide 23: Securing the stack: storage controller CIFS
	Slide 24: Securing the stack: at-rest encryption
	Slide 25: Key management
	Slide 26: Securing the stack: end-to-end encryption
	Slide 27: Securing the stack: server encryption
	Slide 28: Securing the stack: “one-off” encryption
	Slide 29: Encryption side-effects
	Slide 30: Access control
	Slide 31: Subjects, Objects, Actions, and Rights
	Slide 32: UNIX File Access Control
	Slide 33: UNIX File Access Control
	Slide 34: Traditional UNIX File Access Control
	Slide 35: File system access control lists (ACLs)
	Slide 36: Secure deletion
	Slide 37: Secure deletion
	Slide 38: How to overcome: technical/procedural
	Slide 39: How to overcome: physical

