
ECE566
Enterprise Storage Architecture

Spring 2025

The Rest-of-Course Overture
(Preparation for your project proposal)

Tyler Bletsch

Duke University

2

RAID

• Combine disks,
• Striping to make aggregate scale in performance

• Redundancy to survive failures

• RAID levels
• RAID 0: Striping

• RAID 1: Mirroring

• RAID 4: Parity

• RAID 5: Distributed parity

• RAID 6: Dual parity

• RAID 10, 50, 60, etc.: Combinations

Block

3

SAN Initiator / NAS Client

NAS and SAN block diagram

User program
open(), read(), mkdir(), etc.

Kernel

VFS
(Virtual File System)

ext4
FS driver

ext4
FS driver

nfs
FS driver

Local disk or

RAID array
SAN HBA NIC

SAN Ethernet

NAS Server

Kernel

Direct block request
(e.g. read of /dev/sda)

SAN Target
(server)

SAN HBA

Kernel

Disk routing
logic

Physical disks

NIC

Physical disks

ext4
FS driver

VFS
(Virtual File System)

iso
FS driver

4

Filesystems

• Take open/close/read/write/mkdir/rm/etc,
translate to read block / write block

• Responsibilities:

• Allocation among files (files are created, grown, shrunk, destroyed)

• Identify and manage free blocks

• Metadata, including security (owner, timestamp, permissions, etc.)

• Directory hierarchy

• Key filesystem innovations:

• Inode-based layout (good efficiency/scalability)

• Journaling (recover from crashes safely)

• Logging (high-efficiency writes by appending everything)

• Indirected designs (snapshots, deduplication, etc.)

5

Storage efficiency

• Find ways to put fewer bytes on disk
while still satisfying all IO requests

More efficient RAID

Snapshot/clone

Zero-block elimination

Thin provisioning

Deduplication

Compression

“Compaction” (partial zero block elimination)

6

Deduplication

• Identify redundant data; only store it once

• Simplified algorithm:

• Split the file in to chunks

• Hash each chunk with a big hash

• If hashes match, data matches:

• Replace this with a reference to the matching data

• Else:

• It’s new data, store it.

• Lots of design decisions to look at in the details…

Figure from http://www.eweek.com/c/a/Data-Storage/How-to-Leverage-Data-Deduplication-to-Green-Your-Data-Center/

7

Compression with compaction

• Compression with simple compaction

• Data block pointers are now {block_num, offset, length}

A B C D E

A’ B’ C’ D’ E’

C’A’ B’D’ E

Compact Compact Couldn’t compact,

not worth compressing

Compress:

Compact:

8

High availability

• Eliminate single points of failure!

• Disk failure → RAID redundancy

• Server failure → Server clustering

• Link failure → Multipathing

• Etc…

• Interesting part is how the system works now that there’s 2+
of whatever there used to be one of…

Server A Server B

Client A Client B

Inter-server link

Inter-client link

Server

Client

9

Disaster recovery

• If our high availability redundancy is overwhelmed, that’s a
disaster.

• How to recover?

• Keep extra hardware (easy)

• Keep good backups (harder)

• Backups must:

• Be non-modifiable and record changes over time, in a
separate place, automatically, with separate credentials, with
continuous reports/alerts and testing.

Storage Array – Source site Storage Array – Remote site

REPLICATIONBackup

10

Compute servers

with hypervisor

Networking

Storage servers

Virtualization

• Virtualize each layer of stack to pool resources;
individual systems stop mattering

• Fundamental concept:
aggregate physically and separate logically

Aggregate: Cluster disk-less interchangeable servers

Separate: Run virtual machines (VMs) that can freely migrate

Aggregate: Disks combined with RAID and linear mapping

Separate: Logical volumes created on top

Aggregate: Switches paired and interconnected with cables

Separate: Virtual LANs (VLANs) separate traffic flows

11

Cloud

• Basically the virtualization stuff, but:

• You’re careful with separation security

• You rent pieces of the stack to users (either internal or external)

• Variety of cloud services out there – many ripe for an
interesting project!

• Traditional Infrastructure-as-a-Service providers (Amazon, Azure, Vultr,
Linode, Digital ocean, etc.)

• Amazon S3 (object storage)

• Amazon EBS and EFS (Amazon’s SAN and NAS offerings)

• Amazon has a ton of weird/specific offerings too…

https://aws.amazon.com/products/

12

Security

• Kinds of encryption:
 Secret key (symmetric) & Public key (asymmetric)

• SEPARETELY, two main places to use encryption:
 In-flight (on network link) & At rest (on disk)

• Also have to worry about authentication (who are you?) and
access control (are you allowed to do that?)

Course project discussion

14

• Half-semester effort in some area of storage

• Several choices (plus choose-your-own)

• Instructor feedback at each stage

• Any stage can result in a need for resubmission
(grade withheld pending a second attempt).

• See course site project page for details

Proposal

(initial)

The course project

Proposal

(final)

Report

Preso

DemoMilestone+Workday
(instructor check-in;

show off milestone)

Milestone+Workday
(instructor check-in;

show off milestone)

http://people.duke.edu/~tkb13/courses/ece590-stor/project.html

15

Example projects

• Availability/recoverability

• RAID at the filesystem level

• Mirroring to second system (or cloud?)

• Network-accessibility

• Make a network filesystem

• Store to cloud service

• Storage efficiency

• Filesystem deduplication

• Filesystem compression

• Performance*

• Minimal-seek on disk data structures

• Caching with read-ahead

• Hybrid SSD+HDD filesystem

• Security

• Access control list support

• Per-user at-rest file encryption

Wildcard projects
• Special purpose file system

(e.g. MP3 transcoding)
• Custom block device instead of

file system:
• Custom RAID
• Custom SAN
• Block-level encryption
• Block-level compression
• Block-level deduplication

* Hard to realize
benefit with
FUSE/BUSE

Project idea
Write-once file system

17

Write-once file system (WOFS)

• Normal file system

• Read/write

• Starts empty, evolves over time

• Simplest implementation isn’t simple

• Fragmentation and indirection

• Write-once file system

• Read-only

• Starts “full”, created with a body of data

• Simple implementation

• No fragmentation, little indirection

18

What is a WOFS for?

• CD/DVD images

• “Master” the image with the content in /mydir
$ mkisofs -o my.iso /home/user/mydir

• Write the disc image directly onto the burner
$ cdrecord my.iso

• Ramdisk images (e.g. cramfs, squashfs, etc.)

19

Major parts of a WOFS

• Mastering program:
$ mkwofs myfilesystem.img data/

• Mounting program (FUSE):
$ wofsmount myfilesystem.img dir/

$ ls dir/

 …

• Mounting program must not “extract” data at load time – data
is retrieved from the image as read requests are handled!

Project idea
Dropbox “Smart sync” support for Linux

Project idea
Network file system with caching

25

Network File System without Special Sauce

• Simple idea:
 Put IO system calls over the network

• Complex consequences:

• Stateful or stateless?

• Caching? Cache coherency?

• What server? How many servers?

• Data compression?

• Data reduction, e.g. “Low-bandwidth File System”
(http://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf)

http://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf

26

An interesting network file system

• A basic network filesystem is basic OS stuff

• Yours must also have one of:

• Read caching and write-behind caching

• Read caching and read-ahead optimization

• Distributed storage over multiple servers

• Compression

• “Low-bandwidth file system” features

• (Persistent disk cache, basically dedupe-on-the-wire)

• Something else?

Project idea
Deduplication

28

Deduplication

• Will be covered later, here’s the short version

• Split the file in to chunks

• Hash each chunk with a big hash

• If hashes match, data matches:

• Replace this with a reference to the matching data

• Else:

• It’s new data, store it.

Figure from http://www.eweek.com/c/a/Data-Storage/How-to-Leverage-Data-Deduplication-to-Green-Your-Data-Center/

29

Common deduplication data structures

• Metadata:

• Directory structure, permissions, size, date, etc.

• Each file’s contents are stored as a list of hashes

• Data pool:

• A flat table of hashes and the data they belong to

• Must keep a reference count to know when to free an entry

30

Design decisions

• Eager or lazy?

• Fixed- or variable-sized blocks?

• Variable size via Rabin-Karp Fingerprinting

Project idea
Special-case file system

32

Special-case file system

• Sometimes “general purpose” is too general

• Example motivations:

• Can we exploit a workload’s peculiar access pattern?

• Can we examine the data to present new organizational
structures?

• Can we map non-filesystem information into the file
system?

33

Tips to keep in mind

• Performance: Disk seeks are the enemy!
• Often, “Minimize seeks” = “Optimize performance”

• Metadata: Many files have metadata not usually exposed to
the file system, such as JPEG EXIF tags, MP3 ID3 tags,
DOC/DOCX author tags, etc.

• Anything can be a filesystem. You can have a file system
represent:

• A git server

• An email account

• A web server

• A physical system (e.g. “Internet of Things”)

• A database (e.g. via the Duke registration system public API)

• More!

https://oit.duke.edu/service/streamer/

Project idea
File system performance survey

35

File system performance survey

• Storage systems are enormously complex with many pieces
affecting overall performance

• Filesystem (ext3, ntfs, etc.)

• Filesystem configuration (journaling, alignment, etc.)

• Workload (benchmarks)

• Underlying devices (SSD, HDD, and also RAID)

• It is useful to characterize how different configurations
perform under different workloads

36

How to approach the problem

• Get hardware

• Such as your server!!

• Define your test variables

• Build a test harness

• Automate all testing, it will run for days!

• Automate data collation – don’t scrape numbers by hand!

• Get it all into a giant spreadsheet

• Data mining – find knowledge in the data

• Detailed write up of interesting conclusions

Project idea
Hybrid HDD/SSD system

38

Hybrid storage

• SSD is expensive per GB, cheap for random IO performance

• HDD is the opposite

• Can develop a software that gets best of both worlds

• Examples:

• SSD as cache for HDD

• SSD as write buffer for HDD

• Auto-migrate “hot” data to SSD, “cold” data to HDD

• Identify random workloads, migrate to SSD

• Mechanism:

• File system (e.g. with FUSE)

• Virtual block device (e.g. via BUSE)

39

Evaluation

• Must include:

• Benchmark of your system against pure HDD and pure SSD systems.

• Measurement of FUSE overhead

• Cost/benefit analysis based on HDD and SSD costs

• All of the above must be conducted against a good cross-section of
workloads

Project idea
Storage workload characterization

41

Storage workload capture

• In storage sizing, need to characterize workload

• Workload may be confidential or too complex to migrate

• Project: Use a technique to record a storage workload

• Example 1: take a trace of read/write ops; need to anonymize, then be
able to replay operations with equivalent performance

• Example 2: monitor I/O ops, characterize nature of workload, then be
able to simulate a request stream with similar characteristics

• Will need to prove the accuracy of your technique with
statistical analysis across variety of workloads

Project idea
Cloud storage tiering

43

Cloud storage tier

• Cloud storage (e.g. Amazon S3) is useful, generally pretty
cheap

• Downside: internet latency and bandwidth

• Can develop a storage system which migrates “cold” or
otherwise lower-priority data out to a cloud service, brings it
back live on demand without user interaction

• Optional enhancements:

• Intelligent prediction algorithm for migration

• Encryption for cloud-exported data

• Compression for cloud-exported data

• Can be implemented at block level or file system level

44

BRAINSTORMING

45

Brainstorming

• Take an existing storage paradigm

• Local storage (DAS)

• NAS

• SAN

• RAID

• Cloud storage (e.g. S3)

• Cluster filesystems

• …or take one of the project ideas given.

• SCAMPER it

46

SCAMPER

Where did that lead you?

	Slide 1: ECE566 Enterprise Storage Architecture Spring 2025
	Slide 2: RAID
	Slide 3: NAS and SAN block diagram
	Slide 4: Filesystems
	Slide 5: Storage efficiency
	Slide 6: Deduplication
	Slide 7: Compression with compaction
	Slide 8: High availability
	Slide 9: Disaster recovery
	Slide 10: Virtualization
	Slide 11: Cloud
	Slide 12: Security
	Slide 13: Course project discussion
	Slide 14: The course project
	Slide 15: Example projects
	Slide 16: Project idea Write-once file system
	Slide 17: Write-once file system (WOFS)
	Slide 18: What is a WOFS for?
	Slide 19: Major parts of a WOFS
	Slide 20: Project idea Dropbox “Smart sync” support for Linux
	Slide 24: Project idea Network file system with caching
	Slide 25: Network File System without Special Sauce
	Slide 26: An interesting network file system
	Slide 27: Project idea Deduplication
	Slide 28: Deduplication
	Slide 29: Common deduplication data structures
	Slide 30: Design decisions
	Slide 31: Project idea Special-case file system
	Slide 32: Special-case file system
	Slide 33: Tips to keep in mind
	Slide 34: Project idea File system performance survey
	Slide 35: File system performance survey
	Slide 36: How to approach the problem
	Slide 37: Project idea Hybrid HDD/SSD system
	Slide 38: Hybrid storage
	Slide 39: Evaluation
	Slide 40: Project idea Storage workload characterization
	Slide 41: Storage workload capture
	Slide 42: Project idea Cloud storage tiering
	Slide 43: Cloud storage tier
	Slide 44: Brainstorming
	Slide 45: Brainstorming
	Slide 46: SCAMPER
	Slide 47: Where did that lead you?

