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RAID

• Combine disks, 
• Striping to make aggregate scale in performance

• Redundancy to survive failures

• RAID levels
• RAID 0: Striping

• RAID 1: Mirroring

• RAID 4: Parity

• RAID 5: Distributed parity

• RAID 6: Dual parity

• RAID 10, 50, 60, etc.: Combinations

Block
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Filesystems

• Take open/close/read/write/mkdir/rm/etc,
translate to read block / write block

• Responsibilities:

• Allocation among files (files are created, grown, shrunk, destroyed)

• Identify and manage free blocks

• Metadata, including security (owner, timestamp, permissions, etc.)

• Directory hierarchy

• Key filesystem innovations:

• Inode-based layout (good efficiency/scalability)

• Journaling (recover from crashes safely)

• Logging (high-efficiency writes by appending everything)

• Indirected designs (snapshots, deduplication, etc.)
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Storage efficiency

• Find ways to put fewer bytes on disk
while still satisfying all IO requests

More efficient RAID

Snapshot/clone

Zero-block elimination

Thin provisioning

Deduplication

Compression

“Compaction” (partial zero block elimination)
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Deduplication

• Identify redundant data; only store it once

• Simplified algorithm:

• Split the file in to chunks

• Hash each chunk with a big hash

• If hashes match, data matches:

• Replace this with a reference to the matching data

• Else:

• It’s new data, store it.

• Lots of design decisions to look at in the details…

Figure from http://www.eweek.com/c/a/Data-Storage/How-to-Leverage-Data-Deduplication-to-Green-Your-Data-Center/
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Compression with compaction

• Compression with simple compaction

• Data block pointers are now {block_num, offset, length}

A B C D E

A’ B’ C’ D’ E’

C’A’ B’D’ E

Compact Compact Couldn’t compact,

not worth compressing

Compress:

Compact:
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High availability

• Eliminate single points of failure!

• Disk failure → RAID redundancy

• Server failure → Server clustering

• Link failure → Multipathing

• Etc…

• Interesting part is how the system works now that there’s 2+ 
of whatever there used to be one of…

Server A Server B

Client A Client B

Inter-server link

Inter-client link

Server

Client
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Disaster recovery

• If our high availability redundancy is overwhelmed, that’s a 
disaster. 

• How to recover? 

• Keep extra hardware (easy)

• Keep good backups (harder)

• Backups must:

• Be non-modifiable and record changes over time, in a 
separate place, automatically, with separate credentials, with 
continuous reports/alerts and testing.

Storage Array – Source site Storage Array – Remote site

REPLICATIONBackup
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Compute servers 

with hypervisor

Networking

Storage servers

Virtualization

• Virtualize each layer of stack to pool resources;
individual systems stop mattering

• Fundamental concept: 
aggregate physically and separate logically

Aggregate: Cluster disk-less interchangeable servers

Separate: Run virtual machines (VMs) that can freely migrate

Aggregate: Disks combined with RAID and linear mapping

Separate: Logical volumes created on top

Aggregate: Switches paired and interconnected with cables

Separate: Virtual LANs (VLANs) separate traffic flows
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Cloud

• Basically the virtualization stuff, but:

• You’re careful with separation security

• You rent pieces of the stack to users (either internal or external)

• Variety of cloud services out there – many ripe for an 
interesting project!

• Traditional Infrastructure-as-a-Service providers (Amazon, Azure, Vultr, 
Linode, Digital ocean, etc.)

• Amazon S3 (object storage)

• Amazon EBS and EFS (Amazon’s SAN and NAS offerings)

• Amazon has a ton of weird/specific offerings too…

https://aws.amazon.com/products/
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Security

• Kinds of encryption: 
  Secret key (symmetric)   &   Public key (asymmetric)

• SEPARETELY, two main places to use encryption: 
  In-flight (on network link)   &   At rest (on disk)

• Also have to worry about authentication (who are you?) and 
access control (are you allowed to do that?)



Course project discussion
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• Half-semester effort in some area of storage

• Several choices (plus choose-your-own)

• Instructor feedback at each stage

• Any stage can result in a need for resubmission 
(grade withheld pending a second attempt).

• See course site project page for details

Proposal

(initial)

The course project

Proposal

(final)

Report

Preso

DemoMilestone+Workday
(instructor check-in; 

show off milestone)

Milestone+Workday
(instructor check-in; 

show off milestone)

http://people.duke.edu/~tkb13/courses/ece590-stor/project.html
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Example projects

• Availability/recoverability

• RAID at the filesystem level

• Mirroring to second system (or cloud?)

• Network-accessibility

• Make a network filesystem

• Store to cloud service

• Storage efficiency

• Filesystem deduplication

• Filesystem compression

• Performance*

• Minimal-seek on disk data structures

• Caching with read-ahead

• Hybrid SSD+HDD filesystem

• Security

• Access control list support

• Per-user at-rest file encryption

Wildcard projects
• Special purpose file system 

(e.g. MP3 transcoding)
• Custom block device instead of 

file system:
• Custom RAID
• Custom SAN
• Block-level encryption
• Block-level compression
• Block-level deduplication

* Hard to realize 
benefit with 
FUSE/BUSE



Project idea
Write-once file system
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Write-once file system (WOFS)

• Normal file system

• Read/write

• Starts empty, evolves over time

• Simplest implementation isn’t simple

• Fragmentation and indirection

• Write-once file system

• Read-only

• Starts “full”, created with a body of data

• Simple implementation

• No fragmentation, little indirection
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What is a WOFS for?

• CD/DVD images

• “Master” the image with the content in /mydir
$ mkisofs -o my.iso /home/user/mydir

• Write the disc image directly onto the burner
$ cdrecord my.iso

• Ramdisk images (e.g. cramfs, squashfs, etc.)
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Major parts of a WOFS

• Mastering program:
$ mkwofs myfilesystem.img data/

• Mounting program (FUSE):
$ wofsmount myfilesystem.img dir/

$ ls dir/

   …

• Mounting program must not “extract” data at load time – data 
is retrieved from the image as read requests are handled!



Project idea
Dropbox “Smart sync” support for Linux



Project idea
Network file system with caching
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Network File System without Special Sauce

• Simple idea: 
  Put IO system calls over the network

• Complex consequences:

• Stateful or stateless?

• Caching? Cache coherency?

• What server? How many servers?

• Data compression?  

• Data reduction, e.g. “Low-bandwidth File System” 
(http://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf)

http://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf
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An interesting network file system

• A basic network filesystem is basic OS stuff

• Yours must also have one of:

• Read caching and write-behind caching

• Read caching and read-ahead optimization

• Distributed storage over multiple servers

• Compression

• “Low-bandwidth file system” features

• (Persistent disk cache, basically dedupe-on-the-wire)

• Something else?



Project idea
Deduplication
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Deduplication

• Will be covered later, here’s the short version

• Split the file in to chunks

• Hash each chunk with a big hash

• If hashes match, data matches:

• Replace this with a reference to the matching data

• Else:

• It’s new data, store it.

Figure from http://www.eweek.com/c/a/Data-Storage/How-to-Leverage-Data-Deduplication-to-Green-Your-Data-Center/
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Common deduplication data structures

• Metadata:

• Directory structure, permissions, size, date, etc.

• Each file’s contents are stored as a list of hashes

• Data pool:

• A flat table of hashes and the data they belong to

• Must keep a reference count to know when to free an entry
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Design decisions

• Eager or lazy?

• Fixed- or variable-sized blocks?

• Variable size via Rabin-Karp Fingerprinting



Project idea
Special-case file system
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Special-case file system

• Sometimes “general purpose” is too general

• Example motivations:

• Can we exploit a workload’s peculiar access pattern?

• Can we examine the data to present new organizational 
structures?

• Can we map non-filesystem information into the file 
system?
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Tips to keep in mind

• Performance: Disk seeks are the enemy!
• Often, “Minimize seeks” = “Optimize performance”

• Metadata: Many files have metadata not usually exposed to 
the file system, such as JPEG EXIF tags, MP3 ID3 tags, 
DOC/DOCX author tags, etc.

• Anything can be a filesystem.  You can have a file system 
represent:

• A git server

• An email account

• A web server

• A physical system (e.g. “Internet of Things”)

• A database (e.g. via the Duke registration system public API)

• More!

https://oit.duke.edu/service/streamer/


Project idea
File system performance survey



35

File system performance survey

• Storage systems are enormously complex with many pieces 
affecting overall performance

• Filesystem (ext3, ntfs, etc.)

• Filesystem configuration (journaling, alignment, etc.)

• Workload (benchmarks)

• Underlying devices (SSD, HDD, and also RAID)

• It is useful to characterize how different configurations 
perform under different workloads
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How to approach the problem

• Get hardware

• Such as your server!!

• Define your test variables

• Build a test harness

• Automate all testing, it will run for days!

• Automate data collation – don’t scrape numbers by hand!

• Get it all into a giant spreadsheet

• Data mining – find knowledge in the data

• Detailed write up of interesting conclusions



Project idea
Hybrid HDD/SSD system
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Hybrid storage

• SSD is expensive per GB, cheap for random IO performance

• HDD is the opposite

• Can develop a software that gets best of both worlds

• Examples:

• SSD as cache for HDD

• SSD as write buffer for HDD

• Auto-migrate “hot” data to SSD, “cold” data to HDD

• Identify random workloads, migrate to SSD

• Mechanism:

• File system (e.g. with FUSE)

• Virtual block device (e.g. via BUSE)
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Evaluation

• Must include:

• Benchmark of your system against pure HDD and pure SSD systems. 

• Measurement of FUSE overhead

• Cost/benefit analysis based on HDD and SSD costs

• All of the above must be conducted against a good cross-section of 
workloads



Project idea
Storage workload characterization
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Storage workload capture

• In storage sizing, need to characterize workload

• Workload may be confidential or too complex to migrate

• Project: Use a technique to record a storage workload 

• Example 1: take a trace of read/write ops; need to anonymize, then be 
able to replay operations with equivalent performance

• Example 2: monitor I/O ops, characterize nature of workload, then be 
able to simulate a request stream with similar characteristics

• Will need to prove the accuracy of your technique with 
statistical analysis across variety of workloads



Project idea
Cloud storage tiering



43

Cloud storage tier

• Cloud storage (e.g. Amazon S3) is useful, generally pretty 
cheap

• Downside: internet latency and bandwidth

• Can develop a storage system which migrates “cold” or 
otherwise lower-priority data out to a cloud service, brings it 
back live on demand without user interaction

• Optional enhancements:

• Intelligent prediction algorithm for migration

• Encryption for cloud-exported data

• Compression for cloud-exported data

• Can be implemented at block level or file system level
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BRAINSTORMING
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Brainstorming

• Take an existing storage paradigm

• Local storage (DAS)

• NAS

• SAN

• RAID

• Cloud storage (e.g. S3)

• Cluster filesystems

• …or take one of the project ideas given.

• SCAMPER it



46

SCAMPER



Where did that lead you?
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