ECE566 Enterprise Storage Architecture
Program: Intro to FUSE

For the course project, you'll have the option of developing a novel filesystem with FUSE (“Filesystem in
USErspace”). This assignment will introduce you to FUSE and walk you through some programming
exercises on it.

Directions:

e This assignment will be completed individually.
e Format:

o Software deliverables: You'll be asked to write some programs. Submit tarballs (.tgz
files) and a PDF to the Canvas locker for this assignment as directed.

1 Filesystems and FUSE

First, let’s discuss what a filesystem is at a high level (to be covered much deeper later in the course).
Your hard drive or SSD is a dumb storage device: you just tell it which block to read or write and it goes
there and does that: the interface is just the following (approximately):

e char* read block(int blocknum)

e void write block(int blocknum, char* data)

We could just live with that — just making a note that block 42 is my tax records and blocks 43-49 is a
picture of my dog, but that gets cumbersome.

A filesystem stores information about which blocks correspond to which pieces of information (files) on
the hard drive itself. It provides the hierarchical directory abstraction, the permissions abstraction, and
other metadata things (timestamps, etc.). The filesystem uses the block device’s

read block/write block interfacein order to provide a richer interface that includes OS
primitives you’re used to: open, close, read, write, mkdir, delete, etc.

The usual architecture for a modern filesystem is a module within the OS kernel. When a user program
tries to do an 10 call, it is passed to a handler in the OS that follows the filesystem’s algorithm to
perform that operation using a given block device. On modern systems, you may have multiple
filesystems available (“mounted”) at a time. For example, you might have your laptop’s hard drive
mounted (formatted on Windows as the NTFS standard) as well a USB stick (formatted in the FAT32
standard). The modern OS allows many different handlers to all have the same file |0 interface —the
pivot that selects among them is called the Virtual Filesystem (VFS). In this example, NTFS and FAT32 are
the actual filesystems.

It is possible to write your own filesystem code as a kernel module, but writing kernel code can be
troublesome and hard to debug. The Linux kernel provides an interesting facility called FUSE
(“Filesystem in USErspace”) that can mitigate this. In this system, kernel functions to do filesystem
things are redirected back into a user program for handling — one that you will write.

This is illustrated in the figure to the right; a call to
the usual 1s command goes down to the kernel /rgllo /tmp/fuse] |
VFS, is routed back into userspace to the example Is -I /tmp/fuse | | [libfuse]
hello filesystem shown, which decides how to (Slibe J (Sibe]
handle the call. The answer is piped back through Userspace Lo P ;
the kernel to the original caller. In this way, user

Kernel

code written in C, Python, or any other language :LI
with FUSE bindings can act as a fully-fledged NFS

filesystem. There’s a performance cost for this, but vre
for this class, that’s a cost we’re willing to play for
the simplicity of writing user code vs. kernel code.

In this assignment, you’ll go through a FUSE tutorial and write a few small example FUSE programs.

2 Get comfortable with FUSE

Let’s get acquainted with FUSE using some example code. Do the following:
First, reserve an Ubuntu Linux 22.04 VM in the Duke Virtual Computing Manager (VCM) environment?.
Second, update and install some important pre-regs:

sudo apt update
sudo apt dist-upgrade
sudo apt install build-essential pkg-config libfuse-dev

Third, create a directory for this assignment (and hopefully a private git repo, but that’s up to you), and
within it, a subdirectory called “hellofs”.

Fourth, the FUSE development package (1ibfuse-dev) comes with an example filesystem we’re
going to examine. Copy the “hello” filesystem into your “hellofs” directory:

cp /usr/share/doc/libfuse-dev/examples/hello.c

! This is the same version of Linux deployed to your class servers, so code and build environments you
set up now will be portable to your server, which may help with the course project later on.

Note that this path also includes HTML documentation for FUSE. To make it easier to browse, this very
documentation has been mirrored within the course site here.

The hello.c code does include the command to compile it, but to avoid typing this long command
repeatedly, create the following Makefile:

Makefile for FUSE projects in C
all: hello

clean:
rm -f hello

note: the pkg-config automatically generates the appropriate
compiler flags for use with fuse
hello: hello.c
gcc -Wall $~ “pkg-config fuse --cflags --libs’ -o $@
If you’re not familiar with make and Makefiles, take a quick detour to learn the basics to understand the
above. With this file, you can now compile the hello filesystem simply by typing:

make

At this point, please watch this introductory video I've prepared. Summary of key takeaways:

e Mountpoints are directories to which we attach the root of another filesystem, such as one
provided by a FUSE project.

e You can list current mounts with mount, possibly filtering with grep.

e Can mount the hello filesystem with “. /hello mountpoint”; will background and go silent.

e Canunmount with “fusermount -u mountpoint”.

e Can mount the hello filesystem with “. /hello -d mountpoint” forinteractive debug
mode (recommended during development).

e Walked the hello code, including the FUSE getattr operation and its relationship to the UNIX
stat system call (including fields of struct stat), as well as Linux error numbers (errno).

If you want an alternative introduction to FUSE, see the tutorial linked from section 0 of this document.

https://people.duke.edu/~tkb13/courses/ece566-2026sp/resources/libfuse-dev-2.9.9-html/
https://people.duke.edu/~tkb13/courses/ece566-2026sp/resources/libfuse-dev-2.9.9-html/
https://youtu.be/Tpa-5R6OV-M
https://people.duke.edu/~tkb13/courses/ece566-2025sp/resources/libfuse-dev-2.9.9-html/structfuse__operations.html#ac39a0b7125a0e5001eb5ff42e05faa5d
https://linux.die.net/man/2/stat
https://linux.die.net/man/2/stat
https://www.thegeekstuff.com/2010/10/linux-error-codes/

3 Creating the hellotime filesystem

Create a variant of the hello filesystem called hellotime.c:

cp hello.c hellotime.c

Further, edit the Makefile so it builds both (i.e., add “hellotime” to the “all” target, and add a
new recipe to build “hellotime” from “hellotime. c” by copying the existing “hel10” recipe).

You must modify hellotime. c to add the following features:

A new directory “time” is introduced under the root directory.

A new file “now. txt” is present within the “t ime” directory.

The “now. txt” will, when read, contain a 20-byte timestamp showing the current local time.
The file size of “now. txt” will be 20.

The modification time (mt ime) of “now. txt” will be the current time when checked via the

vk wnN e

“ls -1"or“stat” commands.
6. The UID owner of “now. txt” will be the current user checking the file.

Tips:
e Here is code to generate the exact timestamp we’re looking to see inside “now.txt”:

const int TIMESTAMP LEN = 20;
/*‘k
* Write the current local time to the given character buffer,
* which must be at least TIMESTAMP LEN+1 bytes long.
* The timestamp itself (excluding null terminator) will be
* exactly TIMESTAMP LEN bytes long.
*/
void timestamp (char *output) {
// Get the current time
time t raw time;
struct tm *time info;
time (&raw_time) ;
time info = localtime (&raw_time);

// Format the timestamp
strftime (output, TIMESTAMP LEN+1,
"$Y-%m-%d $H:%$M:%$S\n", time info);

e The stat mt ime field uses “epoch time” (seconds since Jan 1, 1970 UTC), and the current epoch
time is found by the time () function.

e The UID of the current user making a request can be found via the fuse get context ()
function.

The screenshot below shows correct operation of hellotime and demonstrates all its features:

E tkb13@vem-453465 ~/program-fuse/hellofs/mountpoint/time

: % make
gce -Wall hello.c "“pkg-config fuse --cflags --1libs™ -0 hello
gce -Wall hellotime.c ~pkg-config fuse --cflags --1libs™ -0 hellotime
: ./hellotime mountpoint
cd mountpoint/
$ 1s -1

$
$

total @
- 1969 hello
1969
cat hello
Hello World!
$ cd time
3 1s -1
total @
-r--r--r-- 1 ttkb13/ root 20/Jan 20 23:48 fhow.txt
; $ cat now.txt

2025-01-28 23:48:43

: % date
Mon Jan 20 11:48:45 PM EST 2025

Submit a file called hellotime . tgz with your code. It should be compiled with “make”. The
executable produced should be called hellotime, and it should have the same calling syntax as
hello.

4 Creating the twofs filesystem

Start a new FUSE program from scratch called two£s. This program will be much more like a traditional
filesystem: it will take a block device (or a file which we’ll treat as a block device) as its first argument,
then a mountpoint. The program will translate 10 calls to the filesystem to read/write calls on this block
device.

However, it will do so in a really, really simple way.

The filesystem always contains just two files, and they’re always called filel and file2. The
metadata for these files is static: owned by root, created on Jan 1 1970 at midnight UTC, read/write
permissions for everyone (0666).

filel represents the first half of the block device; £ile2 represents the second half. More formally, if
the size of the block device is N, £i1lel represents bytes [0,N/2) and £ile?2 represents bytes [N/2,N),
where the division shown is integer division. The size metadata for the files should reflect this.

This means that your filesystem will have no metadata stored on disk, which will make the job much
easier.

Attempts to read and write to filel and £ile2 should work accordingly, reading from or updating
the block device as appropriate. Attempts to write past the end of the files should fail (though a read or
write that is only partially out of bounds should succeed but be cut off). Attempts to truncate (set file
size to zero) or otherwise resize the file should be silently ignored. Attempts to do anything involving
other files or any directories should fail with error code ENOENT (a UNIX error code for “no such file”).

The program should have the calling syntax as follows:

twofs <blockdevice> <mountpoint>

Below is an example interaction with a twofs filesystem. In it, we create a filesystem image to act as our
block device (a 2 kB image file), create a mountpoint directory, mount a twofs filesystem, and interact
with the files we see. Typed commands and prompts are shown in

2+0 records in
2+0 records out
2048 bytes (2.0 kB, 2.0 KiB) copied, 0.002556 s, 801 kB/s

total 8
-rw-rw-rw— 1 root root 1024 Jan 01 1970 filel
-rw-rw-rw— 1 root root 1024 Jan 01 1970 file2

hi

00000000 68 69 0a 00 00 00 00 00O 00 00 00 00 00 00 00 00 |hi.....coveion... \
00000010 00 00O 00 00 0O OO 00 00O 00 00 OO OO0 00 00 00 00 Jewwererenennnnn.

*

00000400

-bash: otherfile: No such file or directory
total 8

-rw-rw-rw— 1 root root 1024 Jan 01 1970 filel
-rw-rw-rw— 1 root root 1024 Jan 01 1970 file2

When done, submit a file called twofs . tgz with your code. It should be compiled with “make”.

https://www.thegeekstuff.com/2010/10/linux-error-codes

5 Introducing the bbfs filesystem

To give you exposure to many more possible system calls handled by FUSE, we’ll be looking at a bit of an
odd filesystem, the Big Brother Filesystem by Dr. Joseph Pfeiffer of New Mexico State University. This
filesystem accepts a directory name and a mountpoint, then makes it appear as though all of the
content from the directory is also present in the mountpoint. It does so by passing each FUSE request it

receives to the corresponding “real” system call for the corresponding location in the underlying
directory. As a result, it serves to show us what kernel system calls correlate to each FUSE request

handler.

I've set up a variant of his code which has a simplified build environment based on Makefiles like we’ve
been using: this tweaked version is available here. The only difference from Dr. Pfeiffer’s original is that
you don’t need to run a “configure” script like in the original code; running make will be sufficient.

To help you get oriented, Dr. Pfeiffer provides a tutorial walkthrough here.

Build the “bb fs” example using my version of the code and run it.

Once you have bbfs working, do some experiments. Use it to mirror an empty directory, then use
common tools to create, read, modify, and delete files in the bbfs mountpoint, observing the bbfs log
as you go. Research the calls that are executed in the FUSE documentation and system manpages (you
may also need the UNIX error code list). Become comfortable with how filesystem calls work. Ask the
instructor for clarification on anything you don’t understand.

6 Benchmarking bbfs

One additional useful property of bbfs is that it will give us a good way to measure how much slower
using FUSE is, since it just acts as an extra layer on top of a normal filesystem. To be clear, running your
filesystem in userspace the way FUSE does is certain to add overhead, and bbfs also includes logging
code. Let’s compare the underlying filesystem to FUSE using the benchmark iozone. Install it as follows:

sudo apt install iozone3

I0zone has a lot of options and features, see the documentation here.

The key settings are:

e Modes: Which tests will be run? These include O=write/rewrite, 1=read/re-read, 2=random-
read/write, and many more. In automatic mode, it defaults to all possible tests.

o File size: How big of a file will we operate on? Among other things, this influences what caches
the file fits in (CPU caches, physical disk cache, OS buffer cache in RAM). In automatic mode,
defaults to a range in 64k to 512M.

e Record size: How big each 10 is, like the “bs” option in dd. Larger I0s are usually better, up to a
point. In automatic mode, defaults to a range in 4k to 16M.

https://people.duke.edu/~tkb13/courses/ece566-2026sp/resources/bbfs-simple.tgz
https://www.cs.nmsu.edu/~pfeiffer/fuse-tutorial/html/index.html
https://people.duke.edu/~tkb13/courses/ece566/resources/libfuse-dev-2.9.9-html/
https://linux.die.net/
https://www.thegeekstuff.com/2010/10/linux-error-codes
http://www.iozone.org/
http://www.iozone.org/docs/IOzone_msword_98.pdf

Let’s use automatic mode (—a), but constrain it to do only a basic read/write test (-1 0 -1 1). Let’s
only use a file size of exactly 4AMB (-s 4M). We'll let it do all the record sizes. We'll save output in Excel

format to the home directory (-b FILENAME).
To make a temp directory and run the test on the normal filesystem:

mkdir /tmp/test

cd /tmp/test

touch iozone.tmp

iozone -a -i 0 -1 1 -w -s 4M -b ~/iozone-real.xls

To make a mountpoint and run the test through the FUSE bbfs?:

mkdir ~/mountpoint

cd (path to your bbfs binary)
./bbfs /tmp/test ~/mountpoint
cd ~/mountpoint

touch iozone.tmp
iozone -a -i 0 -1 1 -w -s 4M -b ~/iozone-fuse.xls

Now, let’s do those tests again, but this time have iozone open the file in “SYNC” mode, so that the OS
does writethrough caching instead of writeback caching. You can do this by adding the —o option to

iozone.

2 NOTE: One quirk of IOzone is that it wants to create the test file with zero permissions to prevent other apps
interfering; this works on the native filesystem, but a quirk in FUSE makes this not work there. To get around this,
we pre-create the test file with normal permissions, and include the “—w” flag to iozone to prevent it deleting this
test file. This explains the touch command and “-w"” flag we used.

Prepare a line graph showing real versus FUSE performance for the write test for all record sizes with
SYNC both off and on; i.e. have lines for real+nosync, fuse+nosync, real+sync, fuse+sync. If your
real+nosync line dominates the graph, note the magnitude of the difference, then remove it so you can
see the other trends. Set the plot title and axes up appropriately so the plot speaks for itself. An example
of such a plot is shown below (though on different hardware than yours). Include this plot in your
submission as a PDF file called iozone-result.pd£. The lesson here is to observe (a) the strong
effects of caching and (b) the overhead of FUSE.

IOZONE performance an real filesystem versus FUSE bbfs
100000
90000
80000
70000
60000
50000

40000 ﬁd C W

30000

20000

Sequential write throughput (kB/s)

10000

0
4 8 16 32 64 128 256 512 1024 2048 4096
10 record size (kB)

=@=real+sync fuset+sync ==@=fuse

