
Intro to CI/CD
Tara Gu

Software Engineer at Google

About me

Duke undergrad BME 13’, masters ECE 15’

Google internship

–> IBM fulltime

–> briefly at Wish

–> back at IBM

–> Red Hat

–> Twitter

–> Google

Please feel free to connect with me:

tara.weiqing@gmail.com

https://linkedin.com/in/taraguduke

mailto:tara.weiqing@gmail.com
https://linkedin.com/in/taraguduke

Agenda

● What is CI?

● What is CD?

● Why does CI/CD matter to you?

What is CI (Continuous Integration)

● Goal: Quickly check if the changes you make will

break anything

● Each "changeset" is verified by an automated

build

○ Style checkers

○ Testing

■ Unit tests

■ Integration tests

○ Unit test change in coverage

● Saves time on code review

Testing

● Unit tests
○ Test individual functions

○ Code-level

● Integration tests
○ Also known as end-to-end or e2e tests

○ Test a user-facing functionality

○ System-level

● Unit test change in coverage

● Flaky tests: non-consistent failure
○ Why would flaky tests occur

■ Race conditions

■ An underlying dependency being unreliable

CI – Continuous Integration (cont.)

● Test automation is a

pre-req
○ Not everything can be

(easily) tested in an

automated fashion (e.g.

UI)

○ How consistent are the

test results? (e.g. flaky

test)

● Reducing cost of change

http://www.agilemodeling.com/essays/costOfChange.htm

CI – Continuous Integration (cont.)

● Example pull request in an open source project

(Kubernetes):

https://github.com/kubernetes/kubernetes/pull/117043
○ What are "jobs"?

■ A collection of tests or verification

■ A Kubernetes concept

○ Job logs/history

■ Many of these jobs can be run locally (project README should

include instructions)

■ Shortest jobs run first WHY?

■ Logs: helpful for debugging test failures and errors

○ Commands to interact with prow bot

■ Start running all jobs required to pass

■ Rerun certain test jobs

○ Dashboard showing flaky tests: https://testgrid.k8s.io/sig-release-

master-blocking

https://github.com/kubernetes/kubernetes/pull/117043
https://testgrid.k8s.io/sig-release-master-blocking
https://testgrid.k8s.io/sig-release-master-blocking

Dashboards for CI (of an open source project)

● Deck: prow.k8s.io
○ audience? developer, release manager that's tracking progress of a release

○ kubernetes project (not the product, but the kubernetes source repository)

● Testgrid: https://testgrid.k8s.io
○ what are all these blocks: sub projects or teams

○ Release blocking dashboard

○ Flaky tests

http://prow.k8s.io/
https://testgrid.k8s.io/

Up until this point, the code only

exists on a feature branch…

When we want to deploy a code change, how do we

make sure the change is problem-free and ready for

customer usage?

Environments

● What's an environment?

○ A group of machines that has its own:

■ Hardware

■ Software deployed

■ Permission of who/when can push new software

versions

● Different kinds:

○ Development/dev/autopush

○ Staging

○ Pre-production

○ Canary

○ Production

More
"perfected"

CD - Continuous Delivery

● Once your code is merged (the end

result of CI), actually deploy your code
○ Ensure it’s packaged with everything it needs

(into a docker image for example) to deploy

to any environment at any time

○ Deploy to pre-production environment or

canary before production

● Feature flags: incomplete features do

not affect customers in production

● Should be so routine and low-risk that

the team is comfortable doing them

anytime

The non-code aspects of "delivery"

● If it's a user facing product, may need to coordinate with

media/press department for a public announcement and

blog posts

● Documentation needs to be up-to-date

● A plan to quickly rollback if things go wrong

● How to tell the state of the app?
○ Monitoring dashboards

○ Collect metrics in the app (next slide)

○ Log collection

Monitoring

● Collect meaningful metrics that tells the state of the application

● Example metrics
○ CPU and memory, network traffic

○ Calling an API:

■ Ratio of request error count / total number of requests

■ Request/response time duration

○ Dependency on other libraries:

■ Number of instance running which versions of a dependent software

● Metrics + alerts
○ Each metric have a threshold for when alerts will be triggered

■ Oncall

CI CD

How does CI/CD relate to agile?

● Agile focuses on fast and continuous

deliver to customers

● Perform each stage efficiently

Why does CI/CD matter to you?

swe hour
Also known as: SWEh, SWEhr

A convenient and somewhat arbitrary unit for comparing the costs of different resources. This is
not a real hour of SWE time (a legacy decision set it at 9 hours per day), but it's in the ballpark.

Better CI/CD

== More SWE hours saved

== Money saved for your employer

== More impact

== Potential promotion

Useful tools to learn

● Source control: Git

● CI tool: Docker, Gitlab CI/CD, Github Action, Kubernetes

● Automated provisioning tools: Ansible, Terraform

● Monitoring tools: Grafana

How to learn:

- Try them out in a Hackathon (and put in your resume)
- Side projects

Useful tools to learn

● Source control: Git

● CI tool: Docker, Gitlab CI/CD, Github Action, Kubernetes

● Automated provisioning tools: Ansible, Terraform

● Monitoring tools: Grafana

How to learn:

- Try them out in a Hackathon (and put in your resume)
- Side projects

Questions to ask your future employer

● How often do you need to manually test your code change?

● How and how often are code changes deployed to production?

● Is there any manual config/button pushing to deploy to production?

● Do you have a team of infrastructure engineers you work with to design/improve developer workflow and
deployment process?

● Are all configurations stored in code repositories and are used directly for deployment without manual
changes?

● Do you do test-driven development?

● How long does it take for the longest pre-submit pull request job to finish?

● How long does the CD pipeline take?

● What’s the longest it took for your pull request to be merged?

● How is agile development integrated in your team/company?

● What collaboration tools do you use for development?

	Slide 1: Intro to CI/CD
	Slide 2: About me
	Slide 3: Agenda
	Slide 4: What is CI (Continuous Integration)
	Slide 5: Testing
	Slide 6: CI – Continuous Integration (cont.)
	Slide 7: CI – Continuous Integration (cont.)
	Slide 8: Dashboards for CI (of an open source project)
	Slide 9: Up until this point, the code only exists on a feature branch…
	Slide 10: Environments
	Slide 11: CD - Continuous Delivery
	Slide 12: The non-code aspects of "delivery"
	Slide 13: Monitoring
	Slide 14
	Slide 15: How does CI/CD relate to agile?
	Slide 16: Why does CI/CD matter to you?
	Slide 17: swe hour
	Slide 18: Useful tools to learn
	Slide 19: Useful tools to learn
	Slide 20
	Slide 21: Questions to ask your future employer
	Slide 22

