Intro to CI/CD

Tara Gu
Software Engineer at Google

About me

Duke undergrad BME 13’, masters ECE 15’
Google internship

—> |BM fulltime

—> briefly at Wish

—> back at IBM

—> Red Hat

—> Twitter

—> Google

Please feel free to connect with me:
tara.weiging@agmail.com
https://linkedin.com/in/taraguduke

mailto:tara.weiqing@gmail.com
https://linkedin.com/in/taraguduke

Agenda

e Whatis CI?
e Whatis CD?
e \Why does CI/CD matter to you?

What is Cl (Continuous Integration)

e Goal: Quickly check if the changes you make will
break anything
e Each "changeset" is verified by an automated

build
o Style checkers
o Testing

m Unit tests
m Integration tests
o Unit test change in coverage

e Saves time on code review

B

g

\»‘ _
ATI 0 " HISTORY.COM |

memecrunchcom

AUTO

Testing

e Unit tests
o Test individual functions
o Code-level
e Integration tests
o Also known as end-to-end or e2e tests
o Test a user-facing functionality
o System-level

e Unit test change in coverage
e Flaky tests: non-consistent failure
o Why would flaky tests occur

m Race conditions
m An underlying dependency being unreliable

Cl — Continuous Integration (cont.)

e Test automation is a
pre-req

o Not everything can be
(easily) tested in an Cost
automated fashion (e.qg. of Chﬂ:;e
ul)

o How consistent are the
test results? (e.g. flaky
test)

e Reducing cost of change
Requirements Analysis and Coding Testing in the Production

Design Large

| Time >
Coppright 20032 Scott W. Ambler

http://www.agilemodeling.com/essays/costOfChange.htm

Cl — Continuous Integration (cont.)

e Example pull request in an open source project
(Kubernetes):
https://github.com/kubernetes/kubernetes/pull/117043

o What are "jobs"?
m A collection of tests or verification
m A Kubernetes concept
o Job logs/history
m Many of these jobs can be run locally (project README should
include instructions)
m Shortest jobs run first WHY?
m Logs: helpful for debugging test failures and errors
o Commands to interact with prow bot
m Start running all jobs required to pass
m Rerun certain test jobs
o Dashboard showing flaky tests: https://testgrid.k8s.io/sig-release-
master-blocking

https://github.com/kubernetes/kubernetes/pull/117043
https://testgrid.k8s.io/sig-release-master-blocking
https://testgrid.k8s.io/sig-release-master-blocking

Dashboards for Cl (of an open source project)

e Deck: prow.k8s.io
o audience? developer, release manager that's tracking progress of a release
o kubernetes project (not the product, but the kubernetes source repository)
e Testgrid: https://testgrid.k8s.io

o what are all these blocks: sub projects or teams
o Release blocking dashboard
o Flaky tests

http://prow.k8s.io/
https://testgrid.k8s.io/

Up until this point, the code only
exists on a feature branch...

When we want to deploy a code change, how do we
make sure the change is problem-free and ready for
customer usage?

Environments

e What's an environment?
o A group of machines that has its own:
m Hardware
m Software deployed
m Permission of who/when can push new software
versions
e Different kinds:
o Development/dev/autopush

o Staging More

o Pre-production ‘perfected"
o Canary

o Production

CD - Continuous Delivery

e Once your code is merged (the end

result of Cl), actually deploy your code
o Ensure it's packaged with everything it needs
(into a docker image for example) to deploy
to any environment at any time
o Deploy to pre-production environment or
canary before production

e Feature flags: incomplete features do
not affect customers in production

e Should be so routine and low-risk that
the team is comfortable doing them
anytime

S CANT/HAVE A FAILED PRODUCT
DEPLOYMENT

»

IF.YOU DONT EVER DEPLOY TO
PRODUCTION

The non-code aspects of "delivery"

e Ifit's a user facing product, may need to coordinate with
media/press department for a public announcement and
blog posts

e Documentation needs to be up-to-date

e A plan to quickly rollback if things go wrong

e How to tell the state of the app?
o Monitoring dashboards
o Collect metrics in the app (next slide)
o Log collection

Monitoring

e Collect meaningful metrics that tells the state of the application

e Example metrics
o CPU and memory, network traffic
o Calling an API:
m Ratio of request error count / total number of requests
m Request/response time duration
o Dependency on other libraries:
m Number of instance running which versions of a dependent software

e Metrics + alerts

o Each metric have a threshold for when alerts will be triggered
m Oncall

How does CI/CD relate to agile?

e Agile focuses on fast and continuous

) Soorate Ful:::l;n‘o:my integrate
deliver to customers and Toat . Demo
Bl Release
Functionality 2
. Feedback

e Perform each stage efficiently

Make Changes

.
Develop Ag
Functionality 1 ' I e

Development

=y

Agile
software

\

All Functionalities
Complete?

No

Next |teratio™

Why does CI/CD matter to you?

swe hour

Also known as: SWEh, SWEhr

A convenient and somewhat arbitrary unit for comparing the costs of different resources. This is
not a real hour of SWE time (a legacy decision set it at 9 hours per day), but it's in the ballpark.

Better CI/CD

== More SWE hours saved

== Money saved for your employer
== More impact

== Potential promotion

Useful tools to learn

e Source control: Git
e Cl tool: Docker, Gitlab CI/CD, Github Action, Kubernetes
e Automated provisioning tools: Ansible, Terraform

e Monitoring tools: Grafana

How to learn:

- Try them out in a Hackathon (and put in your resume)
- Side projects

Useful tools to learn

Source control: Git
Cl tool: Docker, Gitlab CI/CD, Github Action, Kubernetes

Automated provisioning tools: Ansible, Terraform

Monitoring tools: Grafana BUT Why Shou‘d I ‘ear‘n "(’jhise
How to learn: ins-\-ead Of dOiﬂg ‘88'\'C0 e:

Try them out in a Hackathon (and put in your resume)
Side projects

Alex Chiou (He/Him) - 1st

= Co-Founder @ joinTaro.com, Making
Software Engineers Better At Their Jobs
>~ 1Mh - ®

A weird phenomenon | have noticed across software
engineers is that they develop Stockholm Syndrome
with LeetCode.

Even after getting the job, they'll continue regularly
doing data structures and algorithms (DSA) problems
to "keep their skills sharp".

LeetCode is not a real skill. It's parasitic activity that
wastes your time and isn't relevant towards the actual
craft of software engineering.

True growth comes from staying on a job for a
prolonged period of time, fully integrating yourself
into the team and learning how to add value to others.

This means that you shouldn't be on your toes
constantly, grinding DSA to preemptively prepare for
your next interview with an eye on the exit door.

To learn how you can move past LeetCode to actually
level up as a software engineer, check out our in-
depth explainer which contains great insights from
Xue Hua and Josh Yu: https://Inkd.in/]gGFSTSRp

Questions to ask your future employer

e How often do you need to manually test your code change?
e How and how often are code changes deployed to production?
e |s there any manual config/button pushing to deploy to production?

e Do you have a team of infrastructure engineers you work with to design/improve developer workflow and
deployment process?

e Are all configurations stored in code repositories and are used directly for deployment without manual
changes?

e Do you do test-driven development?

e How long does it take for the longest pre-submit pull request job to finish?
e How long does the CD pipeline take?

e What's the longest it took for your pull request to be merged?

e How is agile development integrated in your team/company?

e What collaboration tools do you use for development?

	Slide 1: Intro to CI/CD
	Slide 2: About me
	Slide 3: Agenda
	Slide 4: What is CI (Continuous Integration)
	Slide 5: Testing
	Slide 6: CI – Continuous Integration (cont.)
	Slide 7: CI – Continuous Integration (cont.)
	Slide 8: Dashboards for CI (of an open source project)
	Slide 9: Up until this point, the code only exists on a feature branch…
	Slide 10: Environments
	Slide 11: CD - Continuous Delivery
	Slide 12: The non-code aspects of "delivery"
	Slide 13: Monitoring
	Slide 14
	Slide 15: How does CI/CD relate to agile?
	Slide 16: Why does CI/CD matter to you?
	Slide 17: swe hour
	Slide 18: Useful tools to learn
	Slide 19: Useful tools to learn
	Slide 20
	Slide 21: Questions to ask your future employer
	Slide 22

