
Introduction to Web Development 

Tyler Bletsch

ECE 458
Engineering Software for Maintainability



2

The “back end”The “front end”

Client server topology

• Can get much fancier (middleware, clustering, proxies, etc.)

Web server
Apache, nginx, etc.

Web browser

Database 

server
PostgreSQL, MySQL, 

MongoDB, etc.

(Chrome, Safari, Firefox, etc.)



3

Part 1:
Nuts and bolts

A level of abstraction below where you’ll be working, 
but you need to know what’s going on



4

HTTP: Web request/response
(requesting http://example.com/)

Web

Browser

Web

Server

Establish TCP connection

HTTP request
GET / HTTP/1.1 ← Request

Host: example.com ← Headers

Connection: close

HTTP response
HTTP/1.1 200 OK ← Response

Content-Type: text/html ← Headers

Content-Length: 1256

Connection: close

<!doctype html> ← Body

<html>

<head>

<title>Example Domain</title>

... Read more

https://www.freecodecamp.org/news/http-and-everything-you-need-to-know-about-it/


5

HTTP: Web request/response
(requesting http://example.com/)

Web

Browser

Web

Server

HTTP request
GET / HTTP/1.1 ← Request

Host: example.com ← Headers

Connection: close

HTTP response
HTTP/1.1 200 OK ← Response

Content-Type: text/html ← Headers

Content-Length: 1256

Connection: close

<!doctype html> ← Body

<html>

<head>

<title>Example Domain</title>

...

Request verb: What are we asking of the server? 



6

HTTP: Web request/response
(requesting http://example.com/)

Web

Browser

Web

Server

HTTP request
GET / HTTP/1.1 ← Request

Host: example.com ← Headers

Connection: close

HTTP response
HTTP/1.1 200 OK ← Response

Content-Type: text/html ← Headers

Content-Length: 1256

Connection: close

<!doctype html> ← Body

<html>

<head>

<title>Example Domain</title>

...

Request URI: What path on the server do we want?



7

HTTP: Web request/response
(requesting http://example.com/)

Web

Browser

Web

Server

HTTP request
GET / HTTP/1.1 ← Request

Host: example.com ← Headers

Connection: close

HTTP response
HTTP/1.1 200 OK ← Response

Content-Type: text/html ← Headers

Content-Length: 1256

Connection: close

<!doctype html> ← Body

<html>

<head>

<title>Example Domain</title>

...

Headers: Metadata about our request



8

HTTP: Web request/response
(requesting http://example.com/)

Web

Browser

Web

Server

HTTP request
GET / HTTP/1.1 ← Request

Host: example.com ← Headers

Connection: close

HTTP response
HTTP/1.1 200 OK ← Response

Content-Type: text/html ← Headers

Content-Length: 1256

Connection: close

<!doctype html> ← Body

<html>

<head>

<title>Example Domain</title>

...

Status code: Overall outcome?

Most common status codes

200: OK

• Success.

301/302: Redirect

• Forward the browser to another URL.

404: Not Found

• Couldn't find the requested thing, bad 

URL?

500: Internal Server Error

• An error on the server side. Likely cause: 

your server-side code errored out.

Reference link.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status


9

HTTP: Web request/response
(requesting http://example.com/)

Web

Browser

Web

Server

HTTP request
GET / HTTP/1.1 ← Request

Host: example.com ← Headers

Connection: close

HTTP response
HTTP/1.1 200 OK ← Response

Content-Type: text/html ← Headers

Content-Length: 1256

Connection: close

<!doctype html> ← Body

<html>

<head>

<title>Example Domain</title>

...

Headers: Metadata about response

Content-Type in particular 

tells what kind of data will be 

found in the body.



10

HTTP: Web request/response
(requesting http://example.com/)

Web

Browser

Web

Server

HTTP request
GET / HTTP/1.1 ← Request

Host: example.com ← Headers

Connection: close

HTTP response
HTTP/1.1 200 OK ← Response

Content-Type: text/html ← Headers

Content-Length: 1256

Connection: close

<!doctype html> ← Body

<html>

<head>

<title>Example Domain</title>

...

Body: Actual data returned

Note: Some types of requests 

can have a body, too.



11

Two main purposes of a request

• The browser can load site-authored code written in 
Javascript; this code can itself make web requests.

• This gives rise to two categories of request:

• The browser directly requesting content

• Done as part of document request process (when you click link)

• Gets you content that’s consumed by the browser.

• Data types: HTML, CSS, JS code, images, etc.

• Example: “Show me the HTML and any content I need to display it”

• Javascript on the site requesting content (often API calls)

• Could be requesting anything, but usually requesting Javascript-
parsable content

• Data types: JSON data objects, XML data objects

• Example: “Look up the student list”, “Create a student object”, etc.

• Often this is done as part of a “RESTful API” (covered later)



12

Request verbs and their semantics

Verb Purpose Note

GET Retrieve data Must not alter server state; read-only. 

POST Add/modify data Request includes a body.

PUT Add new data object Request includes a body.

DELETE Remove a data object

There are a few more verbs than this, but they’re usually handled automatically by your framework or aren’t in common use. 

Examples of browser-based requests

GET /about.html

• Request the about.html document, 

which may refer to the image “/logo.png”, 

the stylesheet “/styles/main.css”, and the 

javscript “/js/site.js”. The browser would 
then GET each of those in turn.

POST /contactform

• Send form-based content to the given 

URL, which would process it and do 

something. Returns an HTML document.

Note: Browsers do not typically issue PUT 

and DELETE directly.

Examples of javascript-based requests

GET /students

• Request a JSON list of students, like

[{“name”: “Jimmy”, “age”: 14}, …]
PUT /students

• Body is JSON of a student, adds that 

student to the server’s database
POST /students/251

• Body is JSON of an updated version of 

student number 251; server commits 

these changes
DELETE /students/251

• Student 251 is deleted from the server’s 

databaseRead more in general.

Read more with respect to REST.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.restapitutorial.com/lessons/httpmethods.html#:~:text=The%20primary%20or%20most%2Dcommonly,but%20are%20utilized%20less%20frequently.


13

Types of content

• Remember the Content-Type header? Common types:

• Hypertext Markup Language (HTML): Describes structure and 
content of a web document, marked up with <tags>.

• Cascading Stylesheets (CSS): Describes how the HTML content 
should be shown (color, spacing, etc.).

• Javascript (JS): Code to be run in the web browser.

• Images (PNG, JPEG, GIF, etc.): Pictures

• Javascript Object Notation (JSON): A text-based record format

• Has plain numbers, strings in “quotes”, lists in brackets [1,2,3], and 
dictionaries in braces {“key”: “value”, …}

• Lists/dictionaries can nest, so you can represent whole data 
structures.

• Extensible Markup Langauge (XML): An older text-based record 
format. Uses <tags> like HTML, but customizable. Thankfully dying.



14

Examples of types of content

HTML CSS JS

JSON XML JPEG

Read more Read more Read more

Read more

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/css/css_intro.asp
https://www.w3schools.com/js/js_intro.asp
https://www.w3schools.com/js/js_json_intro.asp


15

Types of HTTP

• This shouldn’t matter a ton day-to-day, 
but will come up when deploying your webserver

• HTTP Versions:

• HTTP 1.1: Classic. Still most common.

• HTTP 2: Newer standard, more efficient. 

• HTTPS: HTTP Secure

• Applies certificates and encryption to ensure confidentiality & integrity

• Will skip details here, but you’ll need to set it up

• Only tricky bit: you need a certificate for your site

• Rolling your own server? Lets Encrypt can do this for you

• Using a cloud service? If they can’t do this for you, they’re clowns

Read more

https://letsencrypt.org/
https://www.cloudflare.com/learning/ssl/why-is-http-not-secure/


16

Knowing who you’re talking to

• HTTP is anonymous by default: “Some rando sent a request”

• We want authentication: recognition of a specific user

• How to identify distinct users?

• Cookies: Server can ask browser to include a bit of text in every 
subsequent request

• Example: SESSION=123

• Server remembers what this means (see next slide)

• Storage: Javascript provides SessionStorage (kept as long as the tab 
is open) and LocalStorage (kept indefinitely)

• Not automatically sent by browser to server, but 
can be included when Javascript makes a request

• Can achieve authentication, also other stuff

• When doing authentication, use LocalStorage
(closing a tab shouldn’t log you out)

Read more

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage


17

What to store in cookies / storage?

• Classic: If using cookies, you can just have some kind of 
session identifier, and have the server keep a list of those

• Cookie: “SESSION=123”

• Database: “Session 123 was created when user ‘bob’ logged in”

• Conclusion: “This is bob”

• Modern: Store a JSON Web Token (JWT) in a cookie or 
LocalStorage

• Server can provide a bit of JSON that is cryptographically signed by the 
server (can’t be tampered with)

• Can be used to hold login info

• Example: {“logged_in_user”: “bob”}

• Server need not remember what it means, 
because client cannot fabricate it

Read more

Read more

https://dev.to/cotter/localstorage-vs-cookies-all-you-need-to-know-about-storing-jwt-tokens-securely-in-the-front-end-15id
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies


18

Client computer 2

Even lower level: networking details

Web

Browser

Web server computer

Web

Server

IP address: 91.5.2.1

IP address: 26.3.2.1

Has hostnames: example.com, dogs.com

Client computer 1

Web

Browser

IP address: 10.2.54.33

DNS server

Q: What is the IP address 

for example.com?

A: It’s 26.3.2.1

GET / HTTP/1.1

Host: example.com

(Sends the example.com page)

GET / HTTP/1.1

Host: dogs.com

(Sends the dogs.com page)

Domain Name System (DNS) 

translates hostnames to IP addresses.

The Host header allows the same web server to handle 

multiple domains. This may or may not come up in 

deployment, so I wanted to let you know.



19

Web application architecture



20

Types of web applications

• Two main types of web applications:

• Content generation: 

• Browser makes requests for HTML, server renders HTML that 
addresses the request

• Google Search works this way

• API driven: 

• Browser loads static HTML content and JS code

• Javascript in browser makes data requests of the server;
javascript updates the document displayed in the browser, thus 
showing new content

• Google Maps works this way

• The API in this case is often a RESTful API
(it follows certain rules and design patterns for simplicity)



21

Content generation example: Google Search

• The form data hits the server, 
server generates HTML response

Simple HTML form

... 

<form action="/search" method="GET">

<input name="q" type="text">

<input type="submit" value="Google Search"> 

<input type="submit" value="I'm Feeling Lucky">

</form>

...

...

<a href=“https://www.petfinder.com/dog-breeds/”>

List of Dog Breeds | Petfinder

</a>

...

Simple HTML results



22

API driven example: Google Maps

• Document is generated 
and updated dynamically, 
calls server as needed

Click and drag the map?
• Java script repositions image tiles, 

updates browser view

• Can load landmark metadata as JSON,

can load new map tiles as images



23

Hybrid approaches

• You can mix the two approaches. Example:

• Google homepage has a classic form for search

• Also has a menu widget with my face on it

Renders a menu 

on this page

Navigates to a

new page



24

About API-driven sites

• On API-driven sites, tons of software abstraction is used

• Examples:

• Entities on page are widgets, often created an managed as separate 
software modules

• Calls to server-side API are often wrapped in abstraction

• You don’t “issue an request for a JSON object”, 
rather “this table has its data sync’d to the server’s”
(lots of magic hidden behind the scenes)

• You typically use client-side frameworks for this, like React



25

Don’t break the browser!

• A common pitfall of API-driven sites:
breaking URLs and breaking the back button 

• Once Javascript is rendering your page content rather than it 
being loaded as HTML from the server, it’s easy to forget that 
URLs are useful and should still work! 

Good site: Google Maps

Panning/zooming changed the URL ☺

Bad site: Sakai

Two different assignments, same URL.

Can’t bookmark, back button breaks, etc. 



26

Asynchronous web programming

• For API-driven sites, much of interaction is asynchronous

• Doesn’t happen in sequential order, but rather as several requests, 
each with their own delays

• This can make code nasty. Common solutions:

• Callbacks: Your code provides a function that another module calls 
back when something happens (such as data being ready)

• Promises: An object representing a request in progress, will either 
resolve to the complete answer or be rejected as an error

• Async/await: Javascript semantics to help with using promises; can 
make async code look more like regular sync code

• We won’t go deeper now, but this article covers it well.

https://www.loginradius.com/blog/async/callback-vs-promises-vs-async-await/


27

Where does data live?



28

The “back end”The “front end”

Client server topology

• Can get much fancier (middleware, clustering, proxies, etc.)

Web server
Apache, nginx, etc.

Web browser

Database 

server
PostgreSQL, MySQL, 

MongoDB, etc.

(Chrome, Safari, Firefox, etc.)



29

Storing data server-side

• Most data we care about is all about relationships

• This ISBN refers to a book

• This book is in this purchase order and that sales reconciliation

• All these purchase orders of that book add up to this sum

• Etc.

• Two main approaches:

• Relational database: Tables of data expressing relationships 
between entities. Enforces constraints. Speaks Structured Query 
Language (SQL). 

• NoSQL database: JSON documents expressing similar facts. May or 
may not enforce constraints. 

Read more about the tradeoffs

https://www.geeksforgeeks.org/difference-between-sql-and-nosql/


30

SQL database example

• Tables often have primary keys
(a column that uniquely identifies 
each entry)

• Records can refer to primary keys 
of other tables, this is a foreign 
key

• Using these relationship, can 
describe whole situation with no 
data duplication

• When tables are created, 
relationships and constraints are 
expressed.

Did Did Eid

Eid

4 15 2345

2345

5088

5088

6127092485

6127092485

human resources

human resources

528221 Robin

Robin

23

13 6127092246

6127092246

Neil

Neil

12

4 7712

7712

6127099348

6127099348

Jasmine

Jasmine

26

15 9664

9664

6127093148

6127093148

Cody

Cody

22

8 3054

3054

6127092729

6127092729

Holly

Holly

23

8 2976

2976

6127091945

6127091945

Robin

Robin

24

9 4490

4490

6127099380

6127099380

Smith

Smith

21

8 education

education

education

202035

9 accounts

accounts

709257

13 public relations 755827

15

primary

key

services

public relations

services

services

223945

Dname

Dname

Ename

Ename

Salarycode Ephone

Ephone

Department Table

Dacctno

Employee Table

foreign

key

(a) Two tables in a relational database

(b) A view derived from the database

Figure 5.4  Relational Database Example

primary

key

Read more

https://www.tutorialspoint.com/sql/index.htm


31

NoSQL database example: MongoDB

• Stores JSON Documents in Collections

• Not focused on relationships

• Faster setup, more flexibility

• Can usually add constraints with add-on middleware

Read more

https://docs.mongodb.com/manual/introduction/


32

Object Relational Mapper (ORM)

• DO NOT USE DATABASES DIRECTLY! No need for that in the modern age!

• Use a framework with an Object Relational Mapper (ORM)

• Automatically converts object-oriented operations to database operations

• Applicable to both SQL and NoSQL

• Example: Django’s ORM

Define the database
Make a new database entry

Update it

Query for stuff

Amount of SQL written: zero!



33

Bring it all together



34

Big picture

• Most of this stuff you will not worry about day-to-day!

• Why? You will use a framework that abstracts most of it

• Ideal development mindset: only program the unique things 
about your problem, avoid boilerplate (stock common code)



35

Example stacks

• Classic Python web app: 

• Back end: Python + Flask framework + PostgreSQL database

• Front end: Custom HTML+CSS and standalone Javascript modules

• Modern Python web app:

• Back end: Python + Django framework + Django-REST module 
+ PostgreSQL database

• Front end: Javascript + React UI framework

• Modern Javascript web app: 

• “MERN Stack”: MongoDB, Express, React, NodeJS

• Back end: NodeJS + Express framework + MongoDB database

• Front end: Javascript + React UI framework

• Modern Ruby web app:

• Back end: Ruby + Rails framework + PostgreSQL database

• Front end: Javascript + Angular UI framework

NodeJS is server-side Javascript

These are just examples! 

Other combos are possible! 

There are fine technologies not listed! 

Do your own research!



36

Questions?


	Slide 1: ECE 458 Engineering Software for Maintainability
	Slide 2: Client server topology
	Slide 3: Part 1: Nuts and bolts
	Slide 4: HTTP: Web request/response (requesting http://example.com/)
	Slide 5: HTTP: Web request/response (requesting http://example.com/)
	Slide 6: HTTP: Web request/response (requesting http://example.com/)
	Slide 7: HTTP: Web request/response (requesting http://example.com/)
	Slide 8: HTTP: Web request/response (requesting http://example.com/)
	Slide 9: HTTP: Web request/response (requesting http://example.com/)
	Slide 10: HTTP: Web request/response (requesting http://example.com/)
	Slide 11: Two main purposes of a request
	Slide 12: Request verbs and their semantics
	Slide 13: Types of content
	Slide 14: Examples of types of content
	Slide 15: Types of HTTP
	Slide 16: Knowing who you’re talking to
	Slide 17: What to store in cookies / storage?
	Slide 18: Even lower level: networking details
	Slide 19: Web application architecture
	Slide 20: Types of web applications
	Slide 21: Content generation example: Google Search
	Slide 22: API driven example: Google Maps
	Slide 23: Hybrid approaches
	Slide 24: About API-driven sites
	Slide 25: Don’t break the browser!
	Slide 26: Asynchronous web programming
	Slide 27: Where does data live?
	Slide 28: Client server topology
	Slide 29: Storing data server-side
	Slide 30: SQL database example
	Slide 31: NoSQL database example: MongoDB
	Slide 32: Object Relational Mapper (ORM)
	Slide 33: Bring it all together
	Slide 34: Big picture
	Slide 35: Example stacks
	Slide 36: Questions?

