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Abstract

Server virtualization is accelerating the already existing
need for shared storage area network (SAN) infrastructure
for the associated benefits of migration, flexible manage-
ment and economies of sharing. Understanding the charac-
teristics of a workload in terms of access locality, IO sizes,
read write ratio etc. is crucial for effective placement and
consolidation. The lack of visibility into workload details
and placement often leads to design inefficiencies and over-
provisioning.

This paper presents workload characterization study of
three top-tier enterprise applications using VMware ESX
server hypervisor. We further separate out different compo-
nents (for example data, index and redo log in a database)
of these workloads to understand their behavior in isola-
tion. We find that most workloads show highly random ac-
cess patterns. Next, we study the impact of storage con-
solidation on workloads (both random and sequential) and
their burstiness. Our experiments show that its beneficial
to put random workloads together because it improves uti-
lization and reduces latency without hurting performance.
In case of consolidating random and sequential workloads,
we see performance degradation for the sequential work-
load. Burst analysis reveals that most workloads are very
bursty and the rate can change by as much as 50% within
a few seconds. This makes it even more important to have
the ability to absorb bursts and exploit benefits of statistical
multiplexing by doing consolidation of workloads, when-
ever possible.

1 Introduction

Most organizations are dependent on multiple IO cen-
tric applications for their day-to-day business. Mail servers,
transaction processing and decision support systems with
tens of terabytes of data volumes are quite common. The
space required to store the data associated with these ap-
plications and the IO performance required to transport the
data to/from processing node (CPU) to the permanent stor-
age (hard disks) has necessitated the need for a dedicated

external storage infrastructure. But the cost and complexity
of such an infrastructure prohibits having dedicated infras-
tructure for each of the applications. The best option in this
situation is to share the storage infrastructure across multi-
ple applications.

In spite of a lot of existing work on storage performance
analysis, automatic data placement and storage allocation
[6,7,9–11], most storage administrators rely on ad hoc tech-
niques and rules of thumb for both configuration of storage
and data layout on different volumes. For example, one of
the common ways to place two top-tier workloads is to cre-
ate separate RAID groups on disjoint sets of disks. Over
provisioning is another technique commonly used to miti-
gate real or perceived performance issues. These techniques
although helpful in some cases cannot be generalized for all.
Since over provisioning and hard partitioning can be ineffi-
cient and expensive, the placement of workloads should be
guided by detailed workload characterization and analysis.
Multiplexing of various workloads in virtualized environ-
ments, is causing enormous pressure on SAN infrastructure
due to a complex mix of IO workloads. Good understanding
of IO characteristics of applications in shared environment
and the effect of storage consolidation on their IO perfor-
mance is paramount to designing an efficient storage infras-
tructure.

This paper takes a first step towards a comprehensive
workload characetrization of three top-tier applicationsand
studies the impact of storage consolidation on workloads.
Investigated workloads include a large mail server, multiple
OLTP loads, a non-comparable implementation of TPC-C
business model and a decision support system. The disk
IO for these top-tier enterprise applications can be broken
into various components such as data access, index access,
log writing and so on, which can be supported by differ-
ent back-end storage devices. Existing studies have often
looked at these in a more coarse grained manner, which hide
some of the useful characteristics of these components that
can help in improving performance by better placement. In
this study, we capture their individual IO patterns.

To understand the effect of sharing IO devices we com-
pare the two cases of running workloads in isolation and
then running them simultaneously while combining the un-
derlying devices. Such combined access patterns also rep-



resent a workload that an array may see from multiple ap-
plications running on various hosts (in a virtualized envi-
ronment or otherwise). Finally, we analyze the degree of
burstiness of workloads by looking at the arrivals with time
using detailed tracing. Our preliminary results show that:
(1) Different components of these well known workloads
have very different IO characteristics and it helps to place
them accordingly, (2) Workloads show high degrees of ran-
domness and are bursty in nature (arrivals can change by
almost 50% in few seconds) (3) Sharing underlying devices
for random workloads is a good way to improve utilization
and reduce latency especially in case of bursts.

In the rest of the paper, we first discuss our methodol-
ogy in Section 2. Extensive workload characterization of
our workloads is provided in Section 3. Section 4 presents
the study of storage consolidation followed by burst char-
acteristics of workloads in Section 5. Section 6 provides a
survey of previous work related to workload analysis and
finally we conclude with some directions for future work in
Section 7.

2 Characterization Methodology

Figure 1. Shared storage access in virtual-
ized environments

To characterize workloads we make use of virtualization
technology by running workloads inside virtual machines
(VMs) and observing the IO patterns from the hypervisor.
Figure 1 shows an example setup which is quite common for
virtualized data centers and which we used for this study. In
this setup, the storage array is carved up into groups of disks
in a RAID configuration. On each of the RAID groups, mul-
tiple logical units of storage (LUNs) are allocated, which
are then assigned to the applications. Our characterization
technique is from previous work [12] which uses a utility
calledvscsiStatsin the VMware ESX Server hypervisor to
efficiently track a comprehensive set of IO characteristics.
The utility is very light-weight, transparent to the VMs run-
ning on top and generates histograms for the following IO
parameters:
Seek distance:a measure of the spatial locality in the work-
load measured as the minimum distance in terms of sec-

tors or LBN (logical block number) from among the lastk
number of IOs (k=1 in the data presented here). In the his-
tograms, small distances signify high locality.
IO data length: in different bins of size 512 Bytes, 1KB,
2KB and so on.
Interarrival period: histogram of the time interval (mi-
croseconds) between subsequent IO requests.
Outstanding IOs: these denote the IO queue length that
the hypervisor sees from a VM.
IO latency: measured for each IO from the time it gets
issued by the VM till the VM is interrupted for its comple-
tion.
Read/Write: All of these data points are maintained for
both reads and writes to clearly show any anomaly in the
application’s or device’s behavior towards different request
types.

These parameters provide information in great detail to
understand and reason about workload behavior. Further-
more, instead of computing averages over large intervals,
histograms are kept so that a full distribution is available
for later analysis. For example, knowing the average IO
size of 23 KB for an application is not as useful as know-
ing that the application is doing 8 and 64KB IOs in cer-
tain proportion. The characterization tool can also collect
a complete trace of IOs as well, keeping detailed informa-
tion about arrival time, starting block, IO size, destination
device, etc. for each individual IO. We use traces only to
collect high resolution burst characteristics because, unlike
online histograms, enabling traces has an observable per-
formance effect. Examples in the next section will help in
understanding the ease and power of this technique.

3 Workload Characterization

In this section, we introduce all the applications that
we studied and their main characteristics. Our applica-
tion benchmark workloads include Swingbench [4], DVD-
Store [1], Microsoft Exchange [2] and a TPC-C like work-
load running on top of a top-tier commercial database (Or-
acle [3]). Now we will explain each of them in more detail.

3.1 DVDStore (Oracle)

DVDStore version 2.0 is an online e-commerce test applica-
tion with a backend database component, and a client pro-
gram to generate workload. We used the largest dataset op-
tion for DVDStore (100 GB), which includes 200 million
customers, 10 million orders/month and 1 million products.
The server ran in a RHEL4-U4 64 bit VM with 4 CPUs,
32 GB of memory and a storage backend of 5 disk RAID 5
configuration. The client ran on a native Windows machine.
We separated out the data, index and redo log portions of the
database onto separate virtual disks. Figure 2 shows the re-
sults for DVDStore data virtual disk. We observe that most
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Figure 2. DVDStore Data disk characteristics

IOs are random (Figure 2a, 2b), 8KB in size (Figure 2c, 2d)
with ≤15ms latency (Figure 2g, 2h). Most of the time, the
number of outstanding IOs that are reads is less than 5 (Fig-
ure 2e) whereas many more writes (Figure 2f) are outstand-
ing at any given time (up to 32). An interesting oddity is that
the seek distances observed for writes are heavily biased in
the positive direction. This is probably due to the buffering
of asynchronous writes and periodic flushing which allows
IO scheduling of writes by an elevator or SCAN based al-
gorithm. This doesn’t happen for reads because they need
to be issued right away. Read latencies are less than 15 ms,
and write latencies are≤5 ms (due to write caching at the
storage array). The index LUN (Figure 3) has largely sim-
ilar characteristics as the data LUN. Redo logs (Figure 4)
show very sequential writes with size varying from 0.5 to
64 KB with peak around 16KB and the IO latencies are also
very small (≤ 1ms) in all cases. Also note that log disk al-
ways has only one IO outstanding in comparison to multiple
outstanding IOs for data and index disks.

3.2 Microsoft Exchange Server

Microsoft Exchange Server is a scalable and popular com-
mercial mail server supporting thousands of users per in-
stance. It is also one of the popular applications used in
virtualized data centers. As such, it is highly valuable to
determine its IO characteristics. We picked a standard en-
terprise configuration of Exchange 2007 SP1 and ran it on
Windows Server 2008 in a VM on top of VMware ESX
server. Loadgen, which is a well known Exchange work-

load generator, was used to simulate Exchange workload.
The VM was configured with 1 vCPU and 7 GB of mem-
ory. Loadgen was configured to create 1200 heavy users
in two databases (160 GB, 600 users each). The data LUN
was put on RAID 0 with 13 disks and log LUN was put on
RAID 0 with 6 disks. The CPU was not fully utilized on
the ESX server running the Windows VM. See Figures 5, 6
for histograms for the Microsoft Exchange workload. In
the workload configuration, we placed log files in a sepa-
rate virtual disk. The data disk saw a lot of random reads
but they exhibit a bimodal behavior in their spatial locality:
read IOs arrive either at large random offset from previous
reads or have a 32KB offset from previous IOs (20% within
32KB). This is indicative of some sort of a stride pattern.
Data writes on the other hand show a wide range of seek dis-
tance patterns (16KB and above). Again writes are mostly
in the forward direction likely because of buffering and IO
scheduling. Data reads are always 8KB while writes vary
from 8 to 32KB, with almost 75% at 8KB. The read and
write histograms clearly show significant burstiness in this
workload (Figure 5e-f). Writes undergo more bursts pre-
sumably due to periodic flushing of buffers. Also the IO la-
tencies move in line with the burst sizes (compare Figure 5f
and 5h), which shows that it is quite important to under-
stand and handle bursty behavior while doing scheduling
in shared environments. This shows that sharing underlying
disks will absorb bursts better due to statistical multiplexing
of IO request patterns. As expected, the log disk doesn’t re-
ceive any reads. For writes, log IO is completely sequential
(Figure 6). Log writes sizes are predominantly 512 Bytes.
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Figure 3. DVDStore Index disk characteristics
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Figure 4. DVDStore Redo Log disk characteristics

3.3 TPC-C (Oracle)

This workload is a non-comparable implementation of
TPC-C business model. It is run in a closed loop, where
a small number of processes generate requests with zero
think time between the completion of a request and issue
of next request. Also the setup is a two tier environment,
where load is generated on the first tier (client) and submit-
ted to the back end database. These runs are against 2500
warehouse database, with 80 users. The number of users
is large enough to keep the CPU fully utilized, and adding
more users won’t increase the performance.

Characteristics were collected for one data and one log
LUN, each on 3 disk RAID 0 configuration. There were
14 data LUNs in the experiment but we report numbers for
only one because they are mostly identical. The seek dis-
tance histogram (Figure 7) shows that data LUN has mostly
random accesses and log LUN (Figure 8) is mostly sequen-
tial. Between reads and writes, its interesting to note that
reads are done both in forward and backward direction but

write are again mostly done to higher block numbers. Data
LUN has both reads and writes in ratio 2:1 and the sizes are
mostly 2KB per IO (consistent with the value set in applica-
tion). In terms of IO latency, reads see a higher IO latency
of ˜15 ms whereas writes only see a latency of around 5ms.
We believe this is due to the caching of writes in the storage
controller’s cache. Concurrency is relatively high for this
workload, getting tens of reads outstanding per-LUN (more
than 100 overall). Log LUN (Figure 8) shows very sequen-
tial writes with zero reads. The IO sizes are quite variable
and the most common sizes are 16 and 32KB. The latency
of these writes is around 5 ms, which is most likely due to
bigger IO sizes.

3.4 Swingbench DSS (Oracle)

Swingbench is a free workload generator that can produce
transaction processing and decision support type of work-
loads. It is designed to stress an underlying Oracle database.
Swingbench DSS represents a decision support system type
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Figure 5. Microsoft Exchange Data disk characteristics. OIO and I/O latency histograms are shown
over time to illustrate the variability in the workload over time.
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Figure 6. Microsoft Exchange Redo Log disk characteristics

of application. A typical decision support application usu-
ally processes large amounts of data in a batch in order to
produce nightly, weekly (i.e. periodic) reports. The appli-
cation usually generates a lot of reads that are sequential in
nature. This is one of the main reasons for us to choose this
application, so that we can compare it with others with ran-
dom access pattern. The benchmark takes number of users,
minimum and maximum delay between transactions, and
percentage of each type of transactions as input parameters.
For this testing we chose a set of six queries (i.e. sales roll
up by month, top sales by quarter, period to period sales
comparison) with equal percentage. The database was di-
vided into data and index LUNs. The data and index were
placed on separate 5 disk RAID 5 LUNs with capacity 75
and 20GB respectively. Figure 9 shows the results for data
LUN for this workload. The data seeks show an interest-

ing bi-modal distribution, where they are either sequential
or are 1-2 MB apart. There are very few seeks that are fur-
ther away. This is expected since the workload tries to go
through complete tables instead of a set of rows. Writes are
almost non-existent in the workload. The IO sizes are 8KB
and latency is mostly 500 microseconds. Few requests see
a high latency of 50-100 ms. Index LUN (not shown) in-
terestingly doesn’t exhibit much IO activity. This is again
because most queries require full table reads and don’t need
to use index for specific data location. Redo logs again gen-
erated sequential writes of size from 512 bytes to 16KB and
very few large writes of size> 16KB. The redo log IO la-
tency is mainly 0.5 to 1 ms with worst case latency of 100
ms.



0

50

100

150

200

250

300

-…
-5

00
00

-5
00

0
-5

00 -6
4

-1
6 -6 -2 0 2 6 16 64 50
0

50
00

50
00

0
50

00
00

F
req

u
en

cy

Distance (sectors)

Seek Distance Histogram 
(Reads)

0
50

100
150
200
250
300
350
400
450
500

51
2

10
24

20
48

40
95

40
96

81
91

81
92

16
38

3

16
38

4

32
76

8

49
15

2

65
53

5

65
53

6

81
92

0

13
10

72

26
21

44

F
req

u
en

cy

Length (bytes)

IO Length Histogram (Reads)

0

20

40

60

80

100

120

140

160

180

1 2 4 6 8 12 16 20 24 28 32

F
req

u
en

cy

#Outstanding IOs

Outstanding IOs Histogram 
(Reads)

0

50

100

150

200

250

300

350

50
0

10
00

50
00

15
00

0

30
00

0

50
00

0

F
req

uency

Latency (microseconds)

IO Latency Histogram (Reads)

(a) (c) (e) (g)

0

50

100

150

200

250

-…
-5

00
00

-5
00

0
-5

00 -6
4

-1
6 -6 -2 0 2 6 16 64 50
0

50
00

50
00

0
50

00
00

F
req

u
en

cy

Distance (sectors)

Seek Distance Histogram 
(Writes)

0

50

100

150

200

250

51
2

10
24

20
48

40
95

40
96

81
91

81
92

16
38

3

16
38

4

32
76

8

49
15

2

65
53

5

65
53

6

81
92

0

13
10

72

26
21

44

F
req

u
en

cy

Length (bytes)

IO Length Histogram (Writes)

0

20

40

60

80

100

120

140

1 2 4 6 8 12 16 20 24 28 32

F
req

u
en

cy

#Outstanding IOs

Outstanding IOs Histogram 
(Writes)

0

50

100

150

200

250

300

50
0

10
00

50
00

15
00

0

30
00

0

50
00

0

F
req

u
ency

Latency (microseconds)

IO Latency Histogram (Writes)

(b) (d) (f) (h)

Figure 7. TPC-C (Oracle RDBMS) Data disk characteristics
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Figure 8. TPC-C (Oracle RDBMS) Redo Log disk characteristics

3.5 Swingbench OLTP (Oracle)

Swingbench OLTP (officially called order entry workload)
represents an online transaction processing type of applica-
tion. It takes number of users, think time between transac-
tions, and a set of transactions as input to generate a work-
load. The transaction set can be selected from a pool of
pre-defined types and a percentage can be attached to each
of them. This allows us to vary the workload with different
degree of CPU and IO needs. For this workload, we used 30
users, zero think time between requests and we used all five
transaction types (i.e. new customer registration, browse
products, order products, process orders and browse orders
with variable percentages). Each user issues a transaction
in a closed loop. The timeout for a transaction is set to 60
seconds. We noticed that 30 users was sufficient to keep the

CPU fully utilized. Adding more users just increased the
overall latency without further improving the overall trans-
actions per second. The data files related to the workload
are divided into two components - data and index. The
database itself has system and redo logs. In this study, we
focus on data, index and redo logs only because accesses
to system log are very few and intermittent. Figures 10, 11
show the results for the data and index components. The
seek distance histograms again showed mostly random ac-
cess with some locality in writes. IO sizes are always 8KB
and latency of reads vary from 5 to 15 ms, whereas the la-
tency of writes varies from 1 to 5 ms. Index LUN shows
the similar characteristics with even higher degree of ran-
domness in both reads and writes. This is expected by the
very nature of index lookups. IO sizes are again 8KB and
latency shows a very distinct tri-modal distribution: 33%
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Figure 9. Swingbench Decision Support System (DSS) Benchmark Data disk characteristics
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Figure 10. Swingbench OLTP Data disk characteristics

reads finish within 500 microseconds, 33% within 5 ms and
remaining within 15 ms. IO latency for writes mostly varies
from 1 to 5 ms.

Redo log data (not shown) has the familiar pattern for
variable sized (512 bytes to 48 KB) sequential writes with
average latency of 0.5 to 1 ms.

4 Impact of Storage Consolidation

In order to evaluate the impact of sharing devices on dif-
ferent applications, we conducted experiments with a com-
bination of random and sequential workloads sharing the
same IO devices. These workloads were run in separate
VMs on top of VMware ESX Server 3.5 [21].

We ran two workloads each on an isolated 3-disk RAID 5

group. Then we ran them together on 6-disk RAID 5 group
to evaluate the gain or loss from sharing. This compari-
son keeps the total number of disks identical which ensure
that the baseline available performance from sheer spindle
count, cost, power and reliability profiles don’t change dra-
matically.

First we tested two workloads that both exhibit random
IO seek patterns: DVDStore and Swingbench OLTP. To
evaluate the effect of sharing, we ran them in isolation and
then together. Table 1 shows the comparison in terms of
average IOPS and 90th percentile latency for the two cases.
The IOPS achieved by each applicaton remains largely the
same in the isolated and shared cases (some variance is
within the margin of experimental error). The application
metric of transactions per minute (TPM) shows similar be-
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Figure 11. Swingbench OLTP Index disk characteristics

havior. Note that latency is reduced in case of sharing be-
cause there are higher number of disks to absorb the bursts.

Random workloads are additive in their load and do not
destructively interfere with each other. This data clearly
shows that as long as the underlying performance from spin-
dle count is scaled up to match, overall achieved perfor-
mance will also scale as workloads are added. The im-
provement in latency alone makes the case for consolidating
random IO streams onto unified sets of spindles. Another
significant benefit of moving away from hard partitioning
is work conservation: if one workload is experiencing a
transient burst of IO, it is able to expand its footprint out
to a much larger number of disks thus allowing absorbtion
of spare capacity from other workloads resulting in much
higher burst scaling.

Next we tested two workloads one with random and an-
other with sequential IO access pattern: DVDStore and
Swingbench Decision support system. To evaluate the ef-
fect of sharing, we first ran them with separate 3 disk LUNs.
Then we put them together on 6 disk LUNs to see the
change in performance. As shown in Table 2, latency im-
proved for both workloads because of higher number of
disks. Whereas the throughput of the random workload is
improved, the sequential workload suffers a 30% degrada-
tion. (Note that the DSS workload transactions are very
large and therefore the number of completed ones in our
10 minute test period is small.) In case of purely sequen-
tial IO streams smaller IO requests from the applications
are coalesced into fewer larger IO requests (>256K) that

are serviced by underlying storage. This results in higher
throughput with higher access latencies. In case of inter-
leaved random and sequential IO access smaller sequen-
tial IO requests are not coalesced (remain 8K in our case)
as the IO access pattern as seen by storage is no longer
purely sequential. Thus even though the acces latencies are
smaller in this case, throughput drops. This data suggests
that mixing sequential workloads with random ones needs
to be evaluated carefully. In this respect, consider that most
realistic workloads are actually random and that our char-
acterization technique can help identify the sequential ones
that might need different treatment. Furthermore, we be-
lieve that an IO scheduler can be employed to restore the
sequential workload to its isolated performance thus elim-
inating this limitation. Finally, the improved latency can
help handle bursts for either storage workload.

5 Burst Analysis

In this section we look at arrival pattern and burst char-
acteristics of workloads at a fine grained level. This data
is lost from previous results due to aggregation over longer
time intervals. We collected the complete trace of IO re-
quests coming from a VM in ESX server usingvscsiStats.
The data consists of IO length, location, arrival time and
device Id. Figure 12 shows the arrivals in every second for
a 300 second window within the runs of DSS, OLTP and
DVD store workloads. This shows that all workloads are
very bursty and the rate can change by as much as 50%



Workload LUN configuration IOPS IO latency Application Metric
DVDStore 2+1 130 100 6132 TPM

OLTP 2+1 141 30 5723 TPM
DVDStore (Shared) 5+1 144 30 7630 TPM

OLTP (Shared) 5+1 135 30 5718 TPM

Table 1. Comparison of DVDStore and OLTP when run in isolation and shared mode

Workload LUN configuration Throughput 95% tile latency Application Metric
DVDStore 2+1 130 IOPS 100 6132 TPM

DSS 2+1 44 MB/s 30 6 completed transactions
DVDStore (Shared) 5+1 164 IOPS 15 7630 TPM

DSS (Shared) 5+1 31 MB/s 1 3 completed transactions

Table 2. Comparison of DVDStore and DSS when run in isolation and shared mode

within a few seconds. This observation reinforces the case
for consolidation: previous data has shown that having a
larger number of disks available lowers IO latencies thus
creating some extra headroom for the bursty workloads.

6 Related Work

The work related to workload characterization and place-
ment falls into two broad categories: first are the tools
for automation and reconfiguration of storage infrastructure
and second are the studies on workload characterization,
storage array modeling.

Hippodrome [7] tries to automate storage system con-
figuration by iterating over three stages: analyze workload,
design system and implement design. Similarly Minerva [6]
uses a declarative specification of application requirements
and device capabilities to solve a constraint based optimiza-
tion problem for storage system design. The main issue
with these is the lack of good models for storage systems
that can be easily used for various optimizations. Also they
look at the overall workload and capacity issues, whereas
we try to provide more fine grained information about the
various components of the workloads. We believe that such
tools are complimentary to our work and would work better
with the knowledge gained by our workload characteriza-
tions.

Many previous studies have looked into file system ac-
cess patterns [5, 15, 18] and IO patterns at disks [16],
mostly in context of user workloads in an organization. Al-
though these are quite useful for file system level analy-
sis, we mainly focus on real applications that are heavily
used in businesses today for day to day operations. Also
many commercial workloads bypass some of the file sys-
tem level functionality and do their own cache manage-
ment. Other studies have looked into IO access patterns
for specific supercomputing applications and specific ma-

chines [13,14,19].
Studying RAID performance for different workloads has

been an active area of research. Chen et. al. [8–10] have
shown that stripe size, IO sizes and RAID level can have
a wide impact on overall performance. They also showed
that applications with large accesses do better with RAID 5
and application using large number of smaller accesses such
as OLTP, perform better using mirrored RAID. We instead
study the workload characteristics and the impact of device
sharing for various applications, which is not considered in
previous studies.

Researchers have also tried to model disk drives [17] and
storage arrays [11, 20] to automate the analysis and predic-
tion of workload behaviors. This is especially hard given
the device characteristics of disks and all the complexity
built into an array in terms of service processors, buses, con-
troller caches etc. Getting better device models and work-
load charactistics should work in conjunction with doing
better capacity planning.

Most exisitng commercial products such as EMC
CLARiiON, HP SureStore, IBM Tivoli, Equallogic PS se-
ries provide a layer of abstraction for storage devices and
management tools to partition and configure devices as
needed. Some of them also do automatic load balancing by
moving data within or across arrays. However, configuring
storage arrays using these tools is still a difficult task. We
provide some insights and guidelines in this paper to config-
ure various workloads, so as to acheive better performance
and utilization of resources.

7 Conclusions and Future Work

This paper presented a survey of IO characerisitcs of real
application workloads: OLTP, DSS and mail server. We
studied the different components (i.e. data, index and logs)
of these workloads separately, and collected detailed infor-
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Figure 12. Arrivals/sec observed by various workloads showing the burstiness of them. The arrivals
change by almost 50% over a period of few seconds.

mation about their seek pattern, IO sizes, burstiness, IO la-
tency and so on. Such a study is very helpful in enabling
users to generate realistic impressions of real workloads for
their research. We also studied the impact of storage con-
solidation on workloads and showed that putting random
workloads together can help improve overall utilization and
reduce latency. Consolidation provides benefits of statis-
tical multiplexing and helps in absorbing bursts in these
cases. However, putting a random and a sequential work-
load together can lead to performance degradation for the
sequential workload. Based on these findings, we are look-
ing at automating this task of consolidation and workload
placement across LUNs for better load balancing and hot-
spot avoidance.
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