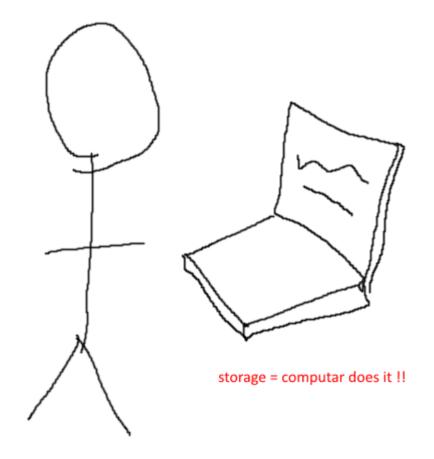
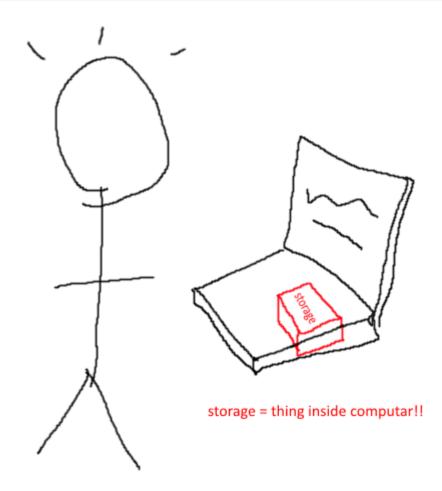
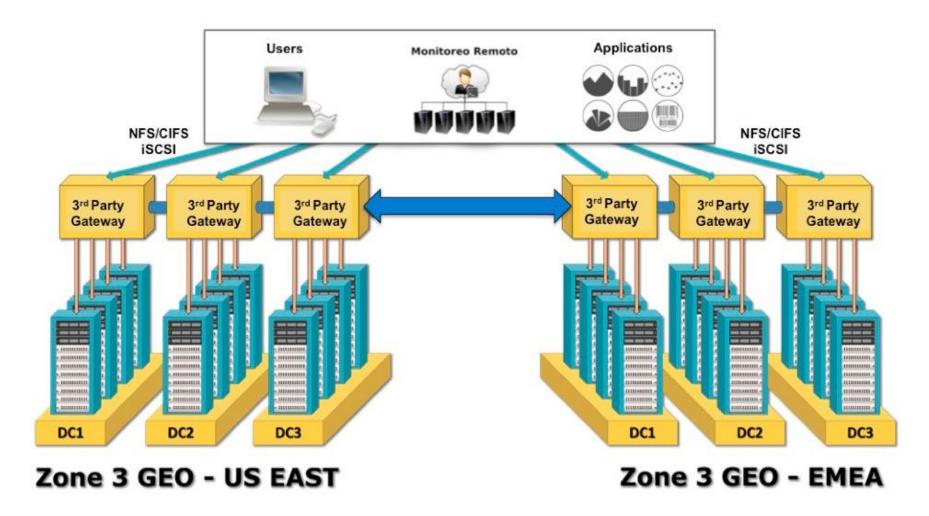
ECE590-03 Enterprise Storage Architecture


Fall 2016

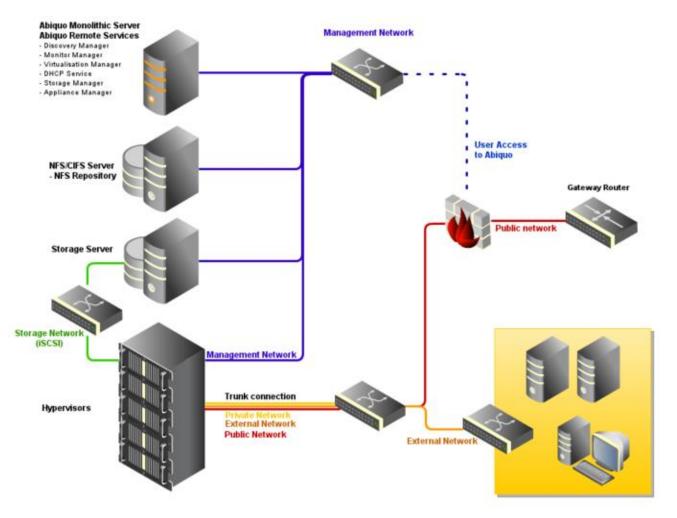
Introduction


Tyler Bletsch Duke University

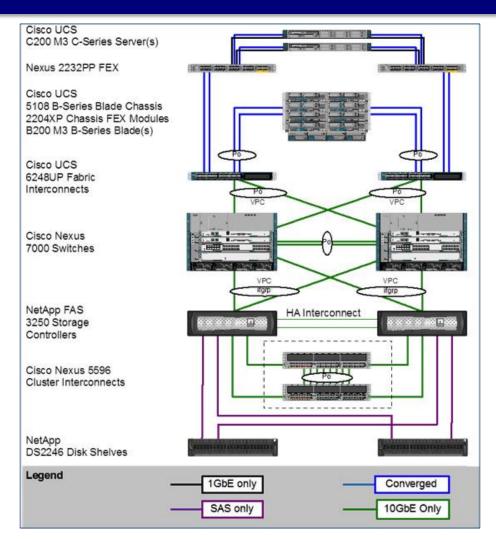
Slides include material from Vince Freeh (NCSU)


Average person's view of storage

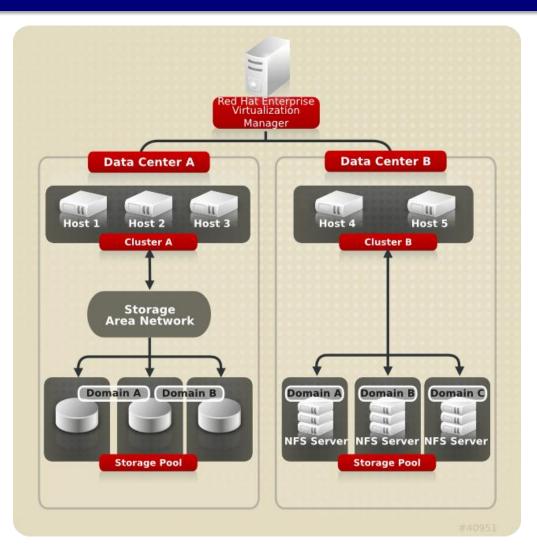
Average engineer's view of storage



A few enterprise storage architectures (1)


From: http://www.storagenewsletter.com/rubriques/software/massively-scalable-himalaya-architecture-by-amplidata/

A few enterprise storage architectures (2)


• From: http://wiki.abiquo.com/display/ABI20/Monolithic+Architecture

A few enterprise storage architectures (3)

• From: http://community.netapp.com/t5/Tech-OnTap-Articles/FlexPod-Innovation-and-Evolution/ta-p/85156

A few enterprise storage architectures (4)

• From: https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Virtualization/3.0/html/Technical_Reference_Guide/chap-Technical_Reference_Guide-Storage_Architecture.html

Why do all this? What problems are we solving?

- **Capacity**: Can it hold enough?
- **Performance**: Is it fast enough?
- **Cost**: Is it cheap enough?
- Accessibility: Can the data be accessed by everyone who needs it?
- **Security**: Is data protected from unauthorized access?
- **Reliability**: Is the downtime probability low enough?
- **Integrity**: Is data protected from hardware failures, disasters, and malicious attacks?
- **Compliance**: Do I keep data long enough safely?
- Accountability: Can I track all changes?
- **Space efficiency**: How much floor space do I need?
- **Power efficiency**: How many watts do I burn?

Why do all this? What problems are we solving?

- **Capacity**: Can it hold enough?
- **Performance**: Is it fast enough?
- **Cost**: Is it cheap enough?

Color code: how well can a simple drive in a laptop let you control these variables?

- Accessibility: Can the data be accessed by everyone who needs it?
- **Security**: Is data protected from unauthorized access?
- **Reliability**: Is the downtime probability low enough?
- **Integrity**: Is data protected from hardware failures, disasters, and malicious attacks?
- **Compliance**: Do I keep data long enough safely?
- Accountability: Can I track all changes?
- **Space efficiency**: How much floor space do I need?
- **Power efficiency**: How many watts do I burn?

Instructor and TAs

- Professor: Tyler Bletsch
 - Office: Hudson Hall 106
 - Email: <u>Tyler.Bletsch@duke.edu</u>
 - Office Hours: TBD
- TA:
 - Andrew Stevens (andrew.j.stevens@duke.edu)

Getting Info

- Course Web Page: static info
 - http://people.duke.edu/~tkb13/courses/ece590/
 - Syllabus, schedule, slides, assignments, rules/policies, prof/TA info, office hour info
 - Links to useful resources
- Piazza: questions/answers
 - Post all of your questions here
 - Questions must be "public" unless good reason otherwise
 - <u>No code</u> in public posts!
- Sakai: just assignment submission and gradebook

Where to get info

- This info is fairly industry-connected, no great textbook
 - Semi-exception: "Evolution of the Storage Brain" by Larry Freeman (not a required text)
- Course material will come from lectures and supplementary readings
 - See course site for resources
- Additional independent research on your part will likely be necessary!

Grading Breakdown

	Assignment	%
Project: 50% -	Project proposal	5%
	Project outline	5%
	Project milestone presentation	5%
	Project final presentation	15%
	Project demo	20%
	Homework	30%
	Final exam	20%

The Project

- **Proposal**: Group up and say what you're going to do.
 - Write-up plus 30-minute meeting scheduled out of class.
- **Outline**: Add detail. Say how you're going to do it.
 - Write-up plus 60-minute meeting scheduled out of class.
- Milestone presentation: Present work done so far to class.
 - 5-minute talk in class.
- Final presentation: Present complete project to class.
 - 15-minute talk in class.
- Final demo: Defend your project to the instructor.
 - 60+ minute meeting scheduled out of class.

• <u>Read course page for details!</u>

Homework

- Homework assignments **done individually**
- Partial credit is available provide detail in your answers to seek it!
- Late homework submissions incur penalties as follows:
 - Submission is 0-24 hours late: total score is multiplied by 0.9
 - Submission is 24-48 hours late: total score is multiplied by 0.8
 - Submission is more than 48 hours late: total score is multiplied by the <u>Planck</u> <u>constant</u> (in J·s)
- NOTE: If you feel *in advance* that you may need an extension, contact the instructor.

Grade Appeals

- All regrade requests must be in writing
 - Email the TA who graded the question (we'll indicate who graded what)
- After speaking with the TA, if you still have concerns, contact the instructor
- All regrade requests must be submitted no later than 1 week after the assignment was returned to you.

Academic Misconduct

- Academic Misconduct
 - Refer to Duke Community Standard
 - Homework is individual you do your own work
 - Common examples of cheating:
 - Running out of time and using someone else's output
 - Borrowing code from someone who took course before
 - Using solutions found on the Web
 - Having a friend help you to debug your program
- <u>I will not tolerate any academic misconduct!</u>
 - Software for detecting cheating is very, very good ... and I use it
 - 8 students were busted on Homework #1 in spring 2013, and 2 of them were referred to the Office of Student Conduct
- "But I didn't know that was cheating" is not a valid excuse

Our Responsibilities

- The instructor and TA will...
 - Provide lectures/recitations at the stated times
 - Set clear policies on grading
 - Provide timely feedback on assignments
 - Be available out of class to provide reasonable assistance
 - Respond to comments or complaints about the instruction provided
- Students are expected to...
 - Receive lectures/recitations at the stated times
 - Turn in assignments on time
 - Seek out of class assistance in a timely manner if needed
 - Provide frank comments about the instruction or grading as soon as possible if there are issues
 - Assist each other *within the bounds of academic integrity*

Course summary

- We have hard disks and solid-state drives (SSDs)
- We can use **RAID** to combine performance and capacity while masking effects of drive failure
- The concept of files and directories comes from **File Systems**, a rich field of study.
- We can provide virtual disks to users over **Storage Area Network (SAN)** protocols
- We can provide file access to users using **Network-Attached Storage (NAS)** protocols
- We can provide **storage as a service (SaaS)** via cloud-type protocols.
- Storage efficiency can be improved with **data deduplication** and **compression**.
- We need to preserve business continuity: avoid downtime and lost data through backups and high availability
- Storage arrays are deployed based on workload sizing.
- Storage is often folded into a complete hardware/software stack: **converged architecture**.
- Storage systems are large enough that **management/monitoring** is its own challenge.
- Storage architects need to understand **basic finance** and **legal/compliance issues**