
ECE590-03 
Enterprise Storage Architecture 

 
Fall 2016 

RAID 
Tyler Bletsch 

Duke University  
 
 

Slides include material from Vince Freeh (NCSU) 



2 

A case for redundant arrays of inexpensive disks 

• Circa late 80s..  

• MIPS = 2year-1984       Joy’s Law  

• There seems to be plenty of main-memory available (multi 
mega-bytes per machine). 

• To achieve a balanced system 
Secondary storage system has to match the above developments. 

• Caches  
• provide a bridge between memory levels 

• SLED (Single Large Expensive Disk)  had shown modest 
improvement…  

• Seek times improved from 20ms in 1980 to 10ms in 1994 

• Rotational speeds increased from 3600/minute in 1980 to 7200 in 1994 



3 

Core of the proposal 

• Build I/O systems as ARRAYS of inexpensive disks. 

• Stripe data across multiple disks and access them in parallel to achieve 
both higher data transfer rates on large data accesses and… 

• higher I/O rates on small data accesses 

 

• Idea not entirely new… 

• Prior very similar proposals [Kim 86, Livny et al, 87, Salem & Garcia-
Molina 87] 

• 75 inexpensive disks versus one IBM 3380  

• Potentially 12 times the I/O bandwidth 

• Lower power consumption 

• Lower cost 



4 

Original Motivation 

• Replacing large and expensive mainframe hard drives (IBM 
3310) by several cheaper Winchester disk drives 

• Will work but introduce a data reliability problem: 

• Assume MTTF of a disk drive is 30,000 hours 

• MTTF for a set of n  drives is 30,000/n 

• n = 10 means MTTF of 3,000 hours 



5 

Data sheet 

IBM 3380 Conner CP 3100 

14’’ in diameter 3.5’’ in diameter 

7,500 Megabytes 100 Megabytes 

$135,000 $1,000 

120-200 IO’s/sec 20-30 IO’s/sec 

3 MB/sec 1MB/sec 

24 cube feet .03 cube feet 

• Comparison of two disk of the era 

• Large differences in capacity & cost 

• Small differences in I/O’s & BW 

• Today 

Difference are different ;) 



6 

Reliabilty 

• MTTF: mean time to failure  

• MTTF for a single disk unit is long..  

• For IBM 3380 is estimated to be 30,000 hours ( > 3 years) 

• For CP 3100 is around 30,000 hours as well..  

• For an array of 100 CP3100 disk the… 

  MTTF = MTTF_for_single_disk / Number_of_disk_in_the_Array 

 

 I.e.,   30,000 / 100  = 30 hours!!!  (or once a day!) 

• That means that we are going to have failures very frequently  

 



7 

A better solution 

• Idea:  make use of extra disks for reliability! 

• Core contribution of paper (in comparison with prior work):  

• Provide a full taxonomy (RAID-levels) 

• Qualitatively outlines the workloads that are “good” for every 
classification 

• RAID ideas are applicable to both hardware and software 
implementations 



8 

Basis for RAID 

• Two RAID aspects taken into consideration: 

• Data striping : leads to enhanced bandwidth 

• Data redundancy : leads to enhanced reliability 

• Mirroring, parity, or other encodings 



9 

Data striping 

• Data striping: 

• Distributes data transparently over multiple disks 

• Appears as a single fast large disk 

• Allows multiple I/Os to happen in parallel. 

• Granularity of data interleaving 

• Fine grained  (byte or bit interleaved) 

• Relatively small units; High transfer rates 

• I/O requests access all of disks in the disk array. 

• Only one logical I/O request at a time 

• All disks must waste time positioning for each request: bad! 

• Coarse grained (block-interleaved) 

• Relatively large units 

• Small I/O requests only need a small number of disks 

• Large requests can access all disks in the array 



10 

Data redundancy 

• Method for computing redundant information 

• Parity (3,4,5), Hamming (2) or Reed-Solomon (6) codes  

• Method for distributing redundant information 

• Concentrate on small number of disks vs. distribute uniformly across all 
disks 

• Uniform distribution avoids hot spots and other load balancing issues. 

 

• Variables I’ll use: 

• N = total number of drives in array 

• D = number of data drives in array 

• C = number of “check” drives in array (overhead) 

• N = D+C 

• Overhead = C/N   
(“how many more drives do we need for the redundancy?”) 



11 

RAID 0 

• Non-redundant 

• Stripe across multiple disks 

• Increases throughput 

• Advantages 

• High transfer 

• Cost 

• Disadvantage 

• No redundancy 

• Higher failure rate 

RAID 0 (“Striping”) 
Disks: N≥2, typ. N in {2..4}. C=0. 
SeqRead:  N 
SeqWrite:  N 
RandRead:  N 
RandWrite:  N 
Max fails w/o loss: 0 
Overhead: 0 



12 

RAID 1 

• Mirroring 

• Two copies of each disk block 

• Advantage 

• Simple to implement 

• Fault-tolerant 

• Disadvantage 

• Requires twice the disk capacity 

RAID 1 (“Mirroring”) 
Disks: N≥2, typ. N=2. C=1. 
SeqRead:  N 
SeqWrite:  1 
RandRead:  N 
RandWrite:  1 
Max fails w/o loss: N-1 
Overhead: (N-1)/N       (typ. 50%) 



13 

RAID 2 

• Instead of duplicating the data blocks we use an error 
correction code (derived from ECC RAM) 

• Need 3 check disks, bad performance with scale. 

RAID 2 (“Bit-level ECC”) 
Disks: N≥3 
SeqRead:  depends 
SeqWrite:  depends 
RandRead:  depends 
RandWrite:  depends 
Max fails w/o loss: 1 
Overhead: ~ 3/N (actually more complex) 



14 

XOR parity demo 

• Given four 4-bit numbers: [0011, 0100, 1001, 0101] 

 

 

 

 

 

 

 

 

 

 

• Given N values and one parity,  
can recover the loss of any of the values 

 0011 

 0100 

 1001 

  0101 

 1011 

XOR them 
Lose one and  

XOR what’s left 

 1011 

 0100 

 1001 

  0101 

 0011 
Recovered! 



15 

RAID 3 

• N-1 drives contain data, 1 contains parity data 

• Last drive contains the parity of the corresponding bytes of 
the other drives. 

• Parity: XOR them all together 

p[k] = b[k,1]   b[k,2]  ...   b[k,N] 

RAID 3 (“Byte-level parity”) 
Disks: N≥3, C=1 
SeqRead:  N 
SeqWrite:  N 
RandRead:  1 
RandWrite:  1 
Max fails w/o loss: 1 
Overhead: 1/N 

Byte 



16 

RAID 4 

• N-1 drives contain data , 1 contains parity data 

• Last drive contains the parity of the corresponding blocks of the other 
drives. 

• Why is this different? Now we don’t need to engage ALL the drives to do a 
single small read!  

• Drive independence improves small I/O performance 

• Problem: Must hit parity disk on every write 

 

RAID 4 (“Block-level parity”) 
Disks: N≥3, C=1 
SeqRead:  N 
SeqWrite:  N 
RandRead:  N 
RandWrite:  1 
Max fails w/o loss: 1 
Overhead: 1/N 

Block 



17 

RAID 5 

• Distribute the parity: 
Every drive has (N-1)/N data and 1/N parity 

• Now two independent writes will often engage two separate sets of disks. 

• Drive independence improves small I/O performance, again 

 

RAID 5 (“Distributed parity”) 
Disks: N≥3, C=1 
SeqRead:  N 
SeqWrite:  N 
RandRead:  N 
RandWrite:  N 
Max fails w/o loss: 1 
Overhead: 1/N 

Block 



18 

RAID 6 

• Distribute more parity: 
Every drive has (N-2)/N data and 2/N parity 

• Second parity not the same; not a simple XOR. Various possibilities (Reed-
Solomon, diagonal parity, etc.) 

• Allowing two failures without loss has huge effect on MTTF 

• Essential as drive capacities increase – the bigger the drive, the longer RAID 
recovery takes, exposing a longer window for a second failure to kill you 

RAID 6 (“Dual parity”) 
Disks: N≥4, C=2 
SeqRead:  N 
SeqWrite:  N 
RandRead:  N 
RandWrite:  N 
Max fails w/o loss: 2 
Overhead: 2/N 

Block 



19 

Nested RAID 

• Deploy hierarchy of RAID 

• Example shown: RAID 0+1 

RAID 0+1 (“mirror of stripes”) 
Disks: N>4, typ. N1=2 
SeqRead:  N0*N1 

SeqWrite:  N0 

RandRead:  N0*N1 
RandWrite:  N0 
Max fails w/o loss: N0*(N1-1)  (unlikely) 
Mins fails w/ possible loss: N1 
Overhead: N1 



20 

RAID 1+0 

• RAID 1+0 is commonly deployed. 

• Why better than RAID 0+1? 

• When RAID 0+1 is degraded, lose 
striping (major performance hit) 

• When RAID 1+0 is degraded, it’s still 
striped 

RAID 1+0 (“RAID 10”, “Striped mirrors”) 
Disks: N>4, typ. N1=2 
SeqRead:  N0*N1 

SeqWrite:  N0 

RandRead:  N0*N1 
RandWrite:  N0 
Max fails w/o loss: N0*(N1-1)  (unlikely) 
Mins fails w/ possible loss: N1 
Overhead: N1/N

 



21 

Other nested RAID 

• RAID 50 or 5+0 

• Stripe across 2 or more block-parity RAIDs 

 

• RAID 60 or 6+0 

• Stripe across 2 or more dual-parity RAIDs 

 

• RAID 10+0 

• Three-levels 

• Stripe across 2 or more RAID 10 sets 

• Equivalent to RAID 10 

• Exists because hardware controllers can’t address that many drives, so 
you do RAID-10s in hardware, then a RAID-0 of those in software 



22 

The small write problem 

• Specific to block level striping 

• Happens when we want to update a single block 

• Block belongs to a stripe 

• How can we compute the new value of the parity block 

... b[k+1] p[k] b[k+2] b[k] 



23 

First solution 

• Read values of N-1 other blocks in stripe 

• Recompute 

p[k] = b[k]   b[k+1]  ...   b[k+N-1] 

• Solution requires 

• N-1 reads 

• 2 writes (new block and parity block) 



24 

Second solution 

• Assume we want to update block b[m] 

• Read old values of b[m] and parity block p[k] 

• Compute 

p[k] =  new_b[m]   old_b[m]   old_p[k] 

• Solution requires 

• 2 reads (old values of block and parity block) 

• 2 writes (new block and parity block) 



25 

Picking a RAID configuration 

• Just need raw throughput, don’t care about data loss? 
(e.g., scratch disk for graphics/video work) 

• RAID 0 

• Small deployment? Need simplicity? 
(e.g., Local boot drives for servers) 

• RAID 1, n=2 

• Small deployment but need low overhead? 
(e.g., Home media storage) 

• RAID 5, n=4..6 

• Danger: big drives with large RAID-5’s increase risk of double failure during 
repair 

• Need simplicity and big throughput? 

• RAID 1+0 

• Large capacity? 

• RAID 6 or RAID 6+0, n=15..30 

• Simplicity when workload never has small writes? 

• RAID 4, n=4..6 



26 

High availability vs. resiliency 

• Main purpose of RAID is to build fault-tolerant file systems for 
high availability 

• However, 

RAID DOES 
NOT REPLACE 

BACKUPS 



27 

What RAID can’t do 

• RAID does not protect against: 

• Human error (e.g. accidental deletion) 

• Malware 

• Non-drive hardware failure (I/O card, motherboard, CPU, RAM, etc.) 

• Undetected read errors from disk  

• Unless you’re reading all disks and checking against parity every time... 

• But that’s performance-prohibitive. 

• Even then you wouldn’t know which drive’s data was bad. 

• Data corruption due to power outage 

• In fact, RAID makes it worse...what if you lose power when only some of 
the drives in a stripe have been updated? The “write hole” 

• Catastrophic destruction of the system, rack, building, city, continent, 
or planet 



28 

Recovering from failure 

• When a disk fails in an array, the array becomes degraded 

• While array is degraded, it is at risk of additional disk failures! 

• Remember, for RAID 1/4/5, double disk failure = death! 

• When the disk is replaced, the degraded array can be rebuilt 

• For RAID-1, re-copy data. For RAID-4/5/6, reconstruct from parity. 

• Hot spares: Disks that don’t participate in the array 

• On failure, system immediately disabled bad disk, promotes a spare, 
and begins rebuilding. 

• Reduces time spent in degraded state. 

• Administrator can remove and replace bad disk at leisure (no urgency). 



29 

Issues 

• What happens when new disks are added into the system? 

• Usually have to change layout, rearrange data  

• (More advanced techniques can avoid/minimize this) 

• How to “grow” the array by replacement with bigger disks? 

• Must replace every disk in turn, rebuilding between each 

• Only a consideration for small deployments – large deployments just 
add whole shelves of disks at a time 



30 

Optimizations in the Array Controller 

• Access Coalescing  

• Determine whether several disk I/Os on same disk are coalesced into a 
single disk I/O. 

• Load Balancing 

• How the disk controller distributes the load between a disk and its 
mirror.  

• E.g. read from 3 disks or submit requests to 6 ( 3+ mirrors). 

• Advantage: Reduced transfer time 

• Disadvantage: Queue length longer at all disks. (Consider 2 3s vs. 2 
6s). 



31 

More Array Controller Optimizations 

• Adaptive Prefetching 

• Based on automatic detection of sequential I/O streams.  

• Write-back Caching Policy 

• When are dirty data written from cache to disk 

• Parameter: max number of dirty blocks that can be held in cache 
without triggering disk writes. 


