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The file system layer 

HDD / SSD 

User code 

 

Kernel 

VFS layer 

ext4 fat nfs ... 

Disk driver NIC driver 

open, read, write, seek, close, stat, mkdir, rmdir, unlink, ... 

read_block, write_block packets 

File system drivers 

Could be a single drive or a RAID 
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Disk file systems 

• All have same goal: 

• Fulfill file system calls (open, seek, read, write, close, mkdir, etc.) 

• Store resulting data on a block device 

• The big (non-academic) file systems 

• FAT (“File Allocation Table”): Primitive Microsoft filesystem for use on floppy disks 
and later adapted to hard drives 

• FAT32 (1996) still in use (default file system for USB sticks, SD cards, etc.) 

• Bad performance, poor recoverability on crash, but near-universal and easy for 
simple systems to implement 

• ext2, ext3, ext4: Popular Linux file system.  

• Ext2 (1993) has inode-based on-disk layout – much better scalability than FAT 

• Ext3 (2001) adds journaling – much better recoverability than FAT 

• Ext4 (2008) adds various smaller benefits 

• NTFS: Current Microsoft filesystem (1993). 

• Like ext3, adds journaling to provide better recoverability than FAT 

• More expressive metadata (e.g. Access Control Lists (ACLs)) 

• HFS+: Current Mac filesystem (1998). Probably good I guess? 

• “Next gen” file systems: ZFS (2005), btrfs (2009), WAFL (1998), and others 

• Block indirection allows snapshots, copy-on-write clones, and deduplication 

• Often, file system handles redundancy itself – no separate RAID layer 
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FAT 
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FAT 

• FAT: “File Allocation Table” 

• 3 different varieties, FAT12, FAT16, FAT32 in order to 
accommodate growing disk capacity 

 

• Allocates by clusters (a set of contiguous disk sectors) 

• Clusters number is a power of two < 216 

 

• The actual File Allocation Table (FAT): 

• Resides at the beginning of the volume 

• Two copies of the table 

• For a given cluster, gives next cluster (or FFFF if last) 

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ) 
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Directories 

• Root directory: 

• A fixed length file (in FAT16, FAT32) 

• Subdirectories are files of same format, but arbitrary size  
(extend via the FAT) 

• Consist of 32B entries: 

 Offset Length Meaning 

0x00 8B File Name 

0x08 3B Extension 

0x0b 1B File Attribute 

0x0c 10B Reserved:  

(Create time, date, access date in FAT 32) 

0x16 2B Time of last change 

0x18 2B Date of last change 

0x1a 2B First cluster 

0x1c 4B File size. 

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ) 
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FAT Principle 

• Directory gives first cluster 

• FAT gives subsequent ones in a simple table 

• Use FFFF to mark end of file. 

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ) 
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Tradeoffs 

• Cluster size 

• Large clusters waste disk space because only a single file can live in a 
cluster. 

• Small clusters make it hard to allocate clusters to files contiguously and 
lead to large FAT. 

 

• FAT entry size 

• To save space, limit size of entry, but that limits total number of 
clusters. 

• FAT 12: 12 bit FAT entries 

• FAT 16: 16 bit FAT entries 

• FAT 32: 32 bit FAT entries 

 

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ) 
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Long file names 

• Needed to add support for filenames longer than 8+3 

• Also needed to be backward compatible 

 

• Result: ridiculous but it works 

• Store a bunch of extra “invalid” entries after the normal one just to 
hold the long file name 

• Set up these entries in such a way that old software will just ignore 
them 

• Every file has a long name and a short (8+3) name; short name is 
auto-generated 

Adapted from “Computer Forensics: Hard Drive Format” by Thomas Schwarz (Santa Clara Univ) 
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Problems with FAT 

1. Scalability/efficiency:  

• Every file uses at least one cluster: internal fragmentation 

• No mechanism to optimize data locality (to reduce seeks): external 
fragmentation 

• Fixed size FAT entries mean that larger devices need larger clusters; 
problem gets worse 

2. Consistency: What happens when system crashes/fails 
during a write? Nothing good... 

3. Like a billion other things: Seriously, did you see the long 
filename support? It’s awful. And there is literally no security model – no 
permissions or anything. There’s just a “hidden” bit (don’t show this unless the 
user really wants to see it) and a “system” bit (probably don’t delete this but you 
can if you want to). It’s impossible to support any kind of multi-user system on FAT, so Windows 
basically didn’t until NT, which didn’t become mainstream until Windows 2000 and later XP. Also, the way 
you labeled a whole file system was a special file that had a special permission bit set – that’s right, there’s a permission bit for “this 
file is not really a file but rather the name of the file system”. Also, the directory entries literally contain a “.” entry for the current directory, which is 
completely redundant. Speaking of redundant data, the duplicate FAT has no parity or error recovery, so it only helps you if the hard drive explicitly fails to read a 
FAT entry, not if there’s a bit error in data read. Even so, if the disk does fail to read the first FAT, the second only helps if the duplicate has the entry you need 
intact. But recall that bad sectors tend to be clustered, so a failure of one part of the FAT usually means the whole FAT region is dead/dying. This meant scores of 
FAT data was lost to relatively small corruptions, because file recovery is almost impossible if all disk structure information is lost. In any case, we haven’t even got to the 
other backwards compatibility stuff in FAT32. In that format, the bytes that make up the cluster number aren’t even contiguous! They sacrified some of the reserved region, so just to compute the cluster 
number you have to OR together two fields. Worst thing of all is that despite all this, FAT32 is still alive and well with no signs of going away, because it’s so common that every OS supports it and it’s so simple 
that cheap embedded hardware can write to it. We live in a nightmare. 
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ext2 
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• Allocation of disk space to files is done with blocks. 

• Choice of block size is fundamental 

• Block size small: Needs to store much location information 

• Block size large: Disk capacity wasted in partially used blocks (at the 
end of file) 

• Typical Unix block sizes are 4KB and 8KB 

Disk Blocks 

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ) 
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Disk layout 

• Super block: Filesystem-wide info (replicated a lot) 

• Group descriptors: addresses of the other parts, etc. 

• Data block bitmap: which blocks are free? 

• Inode bitmap: which inodes are free? 

• Inode table: the inodes themselves 

• Data blocks: actual file data blocks 

From “Understanding the Linux Kernel, 3e” by Marco Cesati, Daniel P. Bovet. 

Original UNIX filesystem basically 

had one of this for the whole disk, 

which meant that metadata was 

always really far from data. This 

more modern “block group” idea 

drastically reduces the average 

distance between the two. 
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• Inodes are fixed sized metadata describing the layout of a file 

•  Inode structure: 

• i_mode (directory IFDIR, block special file (IFBLK), character special file 
(IFCHR), or regular file (IFREG) 

• i_nlink  

• i_addr (an array that holds addresses of blocks) 

• i_size (file size in bytes) 

• i_uid (user id) 

• i_gid (group id) 

• i_mtime (modification time & date) 

• i_atime (access time & date) 

 

Inodes 

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ) 
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• Metadata in Inode is space-limited 

• Limited NUMBER of inodes: 

• Inode storing region of disk is fixed when the file system is created 

• Run out of inodes -> can’t store more files -> 
Can get “out of disk” error even when capacity is available 

• Limited SIZE of inode: 

• Number of block addresses in a single inode only suffices for small 
files 

• Use (single and double) indirect inodes to find space for all blocks 
in a file 

Inodes 

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ) 
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Inode indirection 

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ) 
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Inode indirection 

From “File Systems Indirect Blocks and Extents” by Cory Xie (link)  

  Triple 

http://www.coderplay.org/filesysdev/File-Systems-Indirect-Blocks-And-Extents.html
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Directories and hard links 

• Directories are special files that list file names and inode 
numbers  
(and some other minor metadata) 

 

• What if two directories refer to the same inode number? 

• Two “files” that are actually the same content 

• This is called a hard link 

• Need to track “number of links” – deallocate inode when zero 

• This is an early example of filesystem-based storage efficiency: 

• Can store same data “twice” without actually storing more data! 

• Example: “Rsnapshot” tool can create multiple point-in-time 
backups while eliminating redundancy in unchanged files 

• We’ll see more advanced forms of filesystem-based storage 
efficiency later on! 
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EXT Allocation Algorithms 

• Allocation – selecting block group: 
• Non-directories are allocated in the same block group as parent 

directory, if possible. 

• Directory entries are put into underutilized groups. 

 

• Deallocation - deleted files have their inode link value 
decremented.   

• If the link value is zero, then it is unallocated.   

 

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ) 
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Soft links 

• Soft link: an additional file/directory name. 

• Also called symbolic link or symlink. 

• A special file whose contents is the path to another file/directory. 

• Path can be relative or absolute 

• Can traverse file systems 

• Can point to nonexistent things 

• Can be used as file system organization “duct tape” 

• Organize lots of file systems in one place (e.g., cheap NAS namespace 
virtualization) 

• Symlink a long, complex path to a simpler place, e.g.: 
$ ln -s /remote/codebase/projectX/beta/current/build ~/mybuild 

$ cd ~/mybuild 

Figure from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ) 
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EXT Details: Two time issues 

• Time Values 

• Are stored as seconds since January 1, 1970, Universal Standard Time 

• Stored as 32-bit integer in most implementations 

• Remember Y2k? Get ready for the Year 2038 problem. 

• Linux updates (in general) 

• A-time, when the content of file / directory is read. 

• This can be very bad: every read implies a write!! 

• Can be disabled: “noatime” option (atime field becomes useless) 

• Can be mitigated: “relatime” option – only update atime if file modified 
since current atime or if atime difference is large 

Adapted from “Computer Forensics: Unix File Systems” by Thomas Schwarz (Santa Clara Univ) 
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Problems with ext2 

• We solved the scalability/efficiency problem from FAT 

 

• We still have one big problem left: 

 

Consistency: What happens when system crashes/fails 
during a write? Nothing good... 
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Journaling:  
ext3, NTFS, and others 
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Why Journaling? 

• Problem: Data can be inconsistent on disk 

• Writes can be committed out of order 

• Multiple writes to disk need to all occur and “match” (e.g. metadata of 
file size, inode listing of disk blocks, actual data blocks) 

 

• How to solve? 

• Write our intent to disk ahead of the actual writes 

• These “intent” writes can be fast, as they can be ganged together (few 
seeks) 

• This is called journaling 
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Design questions 

• Where is journal? 

• Same drive, separate drive/array, battery backed RAM, etc. 

 

• What to journal? 

• Logical journal 

• Metadata journaling: Only log meta data in advance 

• Physical journal 

• Data journaling: Log advanced copy of the data 
(All data written twice!) 

 

• What are the tradeoffs? 

• Costs vs. benefits 

 

From “Journaling Filesystems” by Vince Freeh (NCSU) 
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Journaling 

• Process:  

• record changes to cached metadata blocks in journal 

• periodically write the journal to disk 

• on-disk journal records changes in metadata blocks that have not yet 
themselves been written to disk 

• Recovery:  

• apply to disk changes recorded in on-disk journal 

• resume use of file system 

• On-disk journal: two choices 

• maintained on same file system as metadata, OR 

• stored on separate, stand-alone file system 

From “Operating Systems: File systems” by Dennis Kafura (Virginia Tech) 



27 

Journaling File System 

Journaling File System 

Journal Fixed-block FS 

Write “hello world” to 

file 

1. Meta-data for file 

2. Write “hello world” 

Client 

3. Write commit  

From “Analysis and Evolution of Journaling File Systems” by Vijayan Prabhakaran, Andrea and Remzi Arpai-Dusseau, and Andrew Quinn (Univ. Michigan), 2016 
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Journaling Transaction Structure 

• A journal transaction  

• consists of all metadata updates related to a single operation 

• transaction order must obey constraints implied by operations 

• the memory journal is a single, merged transaction 
 

• Examples 

• Creating a file 

• creating a directory entry (modifying a directory block),  

• allocating an inode (modifying the inode bitmap),  

• initializing the inode (modifying an inode block) 

• Writing to a file 

• updating the file’s write timestamp ( modifying an inode block) 

• may also cause changes to inode mapping information and block 
bitmap if new data blocks are allocated 

From “Operating Systems: File systems” by Dennis Kafura (Virginia Tech) 
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Journaling in Linux (ext3) 

• Given the (merged) transaction from memory 

• Start flushing the transaction to disk 

• Full metadata block is written to journal 

• Descriptor blocks are written that give the home disk location for each 
metadata block 

• Wait for all outstanding filesystem operations in this 
transaction to complete 

• Wait for all outstanding transaction updates to be completely 

• Update the journal header blocks to record the new head/tail  

• When all metadata blocks have been written to their home 
disk location, write a new set of journal header blocks to free 
the journal space occupied by the (now completed) 
transaction 

 

From “Operating Systems: File systems” by Dennis Kafura (Virginia Tech) 
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Journaling modes (ext3) 

1. Write-back: meta-data 
journaled – no enforced 
ordering between fixed location 
data and journal writes. *only 
guarantees meta-data crash 
consistency* 

2. Ordered: meta-data journaled 
– enforces that data is written 
out before journal commit. 
*guarantees consistency 
recovery* 

3. Data-journaling mode: meta-
data and data are journaled: 
typically writes data twice!  

 

 

• Check-pointing: writing the 
journaled meta-data/data to the 
fixed - locations 

 

From “Analysis and Evolution of Journaling File Systems” by Vijayan Prabhakaran, Andrea and Remzi Arpai-Dusseau, and Andrew Quinn (Univ. Michigan), 2016 
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Who does journaling? 

• Everyone does journaling. 

• Microsoft Windows: NTFS 

• Linux: ext3, ext4, jfs, reiserfs 

• Apple OSX: HFS+ 

• Full list: 
GFS   

GPFS   

HPFS   

NTFS   

HFS   

HFS Plusline 

FFS   

UFS1   

UFS2   

LFS   

ext2   

ext3   

ext4   

Lustre   

NILFS   

ReiserFS 

Reiser4  

OCFS   

OCFS2   

XFS   

JFS   

QFS   

Be File  

NSS   

NWFS   

ODS-2   

ODS-5   

UDF   

VxFS   

Fossil   

ZFS   

VMFS2   

VMFS3   

Btrfs  
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Can we go further? 

• If journaling is so great, what if we just NEVER wrote to fixed 
blocks, and used the journal for EVERYTHING???? 

 

 

 

Journaling 
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Can we go further? 

• Yes! 

Journaling 

Journaling 

 Logging!  
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Log-structured file systems 
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Why LFS? 

• CPU speed increasing faster than disk access is decreasing 

• What is impact of this? 

• Read will be satisfied by cache (?) 

• Read performance does not matter 

• According to authors 

• Disk accesses are mostly writes 

• Optimize for the common case 

• Benefits of LFS 

• Faster write performance 

• Same read performance (?) 

• Faster crash recovery 

M. Rosenblum and J. K. Ousterhout. The design 
and implementation of a Log-structured File 
system. ACM TOCS, 10(1):26–52, 1992. 

From “Journaling Filesystems” by Vince Freeh (NCSU) 



36 

Existing systems 

• Four observations 

• Processor speeds are up 

• Disk seek time is not improving fast enough 

• Main memory & cache sizes are growing 

• Number of processors is increasing 

• Workloads – what kinds, how to model 

• Different loads 

• Most difficult (for performance) is office load 

• Small files 

• Random disk I/O 

• Much creation/deletion → access to metadata 

• Regular, predictable workloads are not interesting 

From “Journaling Filesystems” by Vince Freeh (NCSU) 
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Two general problems 

• Information is spread around 

• Many small accesses 

• Why is this bad? 

• How it is happening 

• Eg, 5 I/O to create file in FFS (predecessor to ext2) 

• Synchronous writes 

• What: process waits for write to complete 

• Why: consistency 

• Why is it a problem 

• Process runs at disk speed 

• Does not benefit from CPU/memory increases 

• Poor write performance 

• Getting worse (relatively) 

From “Journaling Filesystems” by Vince Freeh (NCSU) 
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Key to LFS 

• How does LFS achieve high write bandwidth? 

• Bundling writes 

• That’s it…that’s the whole idea of LFS 

• How 

• Delay writes 

• Write large contiguous extents 

• Key implementation issues 

• Retriving information from log 

• Managing free space 

From “Journaling Filesystems” by Vince Freeh (NCSU) 
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Log-structured file system 

log 

write 

read 

at end of log 

from end of log 

More recently written block renders obsolete a version of that block written earlier. 

Issue Approach 

How to structure data/metadata  segments 

How to manage disk space  segment cleaning 

Concept 

From “Operating Systems: File systems” by Dennis Kafura (Virginia Tech) 
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File location and reading 

• Goal: match read performance of Unix (why match?) 

• How is it done: 

• Inodes written to log 

• Inode location stored in inode map 

• Keys 

• Inode is not at fixed location 

• Inode map is cached 

From “Journaling Filesystems” by Vince Freeh (NCSU) 



41 

Free space 

• Goal – maintain large free extents 

• Circular log 

• Fill in 

• When get to end, go to beginning 

• If no room on disk, you’re done (same as any FS) 

• Problem – fragmentation due to long-lived blocks 

From “Journaling Filesystems” by Vince Freeh (NCSU) 
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Solution space 

• Link live blocks 

• Blocks are static 

• Problem 

• Over time it will be 
fragmented 

• Will not be different 
from FFS 

 

• Copying & 
compacting 

• Move long-lived files to 
head of log 

• Compact the log 

• Problem 

• Too much copying 

From “Journaling Filesystems” by Vince Freeh (NCSU) 
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Solution: Segments 

• Segments: a level of indirection 

• A combination of linking and copying/compacting 

• Compaction is confined to a segment 

• How big should a segment be? 

From “Journaling Filesystems” by Vince Freeh (NCSU) 
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LFS structure 

superblock 
checkpoint  

region 

segment 

segment 

segment 

segment 

segment 

segment 

segment 

LFS 

Superblock - list: (segment, size) 

Checkpoint region:  

inode map – list: (inode location, version#) 

segment usage table – list: (live bytes, modified time) 

segment 

inode map seg. usage table map 

segment segment 

Segment summary block – list: (inode, version, block) 

From “Operating Systems: File systems” by Dennis Kafura (Virginia Tech) 
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Segment cleaning 

• 3-step process 

• Read a number of segments into main memory 

• Find live data 

• Write back live data, re-claim segments 

• Problems: Uses cache, locks FS 

• Segment summary block 

• Identifies live data 

• Eliminates need for freelists 

From “Journaling Filesystems” by Vince Freeh (NCSU) 
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Segment cleaning 

LFS 

1. read 

3. update 

• When to execute the segment cleaner? 
• Clean segments  are below a threshold 

• How many segments to clean at once? 
• Until clean segments exceeds a threshold 

• Which segments to clean? 

• How should live blocks be grouped? 

2. clean 

From “Operating Systems: File systems” by Dennis Kafura (Virginia Tech) 
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Use of log-structured filesystems 

• In the role of a traditional filesystem – not a lot: 

• Original Ousterhout & Rosemblum LFS in Sprite OS (1992) 

• Various academic projects, some small commercial ventures 

• The NetApp “Write Anywhere File Layout (WAFL)”  
(we’ll cover this one next) 

 

• Specific to flash or optical media – more common 
(recall that those mediums have trouble with in-place writes): 

• UDF (commonly used on CD/DVD) 

• JFFS, JFFS2 (commonly used in for flash in embedded Linux systems) 

• Others (mostly focused around flash) 

 

Note: “flash” above means raw flash, not SSDs – the data-hiding, wear-
leveling, etc. done by SSDs obviates many of the benefits 
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Remaining problem 

• We’ve solved performance/efficiency issues with inodes and 
chunks (ext2) 

• We’ve solved consistency with journaling (and perhaps 
logging) 

• Remaining problem: 

• Lack of magical superpowers that make you millions of dollars 
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Highly indirected filesystems 
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Desires 

• We want snapshots: point-in-time read-only replicas of 
current data which can be taken in O(1) time and space 

 

• We want clones: point-in-time writable replicas of current 
data which can be taken in O(1) time and space, and we only 
store changes between clone and original 

 

• We want various other features, like: 

• Directory-level quotas (capacity limits),  

• Deduplication (identify redundant data and store it just once), and  

• Thin-provisioning (provide storage volumes with a total capacity 
greater than actual disk storage available) 
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Write Anywhere File Layout (WAFL) 

• Copy-on-Write File System 

• Inspired ZFS, HAMMER, btrfs 

• Core Idea: Write whole snapshots to disk 

• Snapshots are virtually free! 

• Snapshots accessible from .snap directory in root 

 

6 File System Design for An NFS File Server Appliance - Rev. C 3/95

2. Introduction To Snapshots
WAFL's primary distinguishing characteristic is Snapshots, which are read-only copies

of the entire file system. WAFL creates and deletes Snapshots automatically at

prescheduled times, and it keeps up to 20 Snapshots on-line at once to provide easy

access to old versions of files.

Snapshots use a copy-on-write technique to avoid duplicating disk blocks that are the

same in a Snapshot as in the active file system. Only when blocks in the active file

system are modified or removed do Snapshots containing those blocks begin to

consume disk space.

Users can access Snapshots through NFS to recover files that they have accidentally

changed or removed, and system administrators can use Snapshots to create backups

safely from a running system. In addition, WAFL uses Snapshots internally so that it

can restart quickly even after an unclean system shutdown.

2.1. User Access to Snapshots

Every directory in the file system contains a hidden sub-directory named

.snapshot that allows users to access the contents of Snapshots over NFS.

Suppose that a user has accidentally removed a file named todo and wants to

recover it. The following example shows how to list all the versions of todo

saved in Snapshots:

spike% ls -lut .snapshot/*/todo

-rw-r--r-- 1 hitz  52880 Oct 15 00:00

.snapshot/nightly.0/todo

-rw-r--r-- 1 hitz  52880 Oct 14 19:00

.snapshot/hourly.0/todo

-rw-r--r-- 1 hitz  52829 Oct 14 15:00

.snapshot/hourly.1/todo

...

-rw-r--r-- 1 hitz  55059 Oct 10 00:00

.snapshot/nightly.4/todo

-rw-r--r-- 1 hitz  55059 Oct  9 00:00

.snapshot/nightly.5/todo

With the -u option, ls shows todo's access time, which is set to the time when

the Snapshot containing it was created. The user can recover the most recent

version of todo by copying it back into the current directory:

spike% cp .snapshot/hourly.0/todo .

From “Advanced File Systems” by Ali Jose Mashtizadeh (Stanford) 

https://gnunet.org/sites/default/files/10.1.1.40.3691.pdf


File System Design for an NFS File 
Server Appliance 

Dave Hitz, James Lau, and Michael Malcolm 
Technical Report TR3002 

 NetApp 

2002 

http://www.netapp.com/us/library/white-papers/wp_3002.html  
(At WPI: http://www.wpi.edu/Academics/CCC/Help/Unix/snapshots.html) 

 

http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.netapp.com/us/library/white-papers/wp_3002.html
http://www.wpi.edu/Academics/CCC/Help/Unix/snapshots.html
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About the authors 

• Dave Hitz, James Lau, and Michael Malcolm 

 

• Founded NetApp in 1992 

 

• NetApp is now a fortune 500  
company worth $10 billion 

 

• Malcolm left early, other two stuck around 

• Current pics: 

 

Hitz 

Lau 

Malcolm 



Introduction 

• In general, appliance is device designed to 
perform specific function 

• Distributed systems trend has been to use 
appliances instead of general purpose computers. 
Examples: 
– routers from Cisco and Avici 
– network terminals 
– network printers 

• For files, not just another computer with your 
files, but new type of network appliance 
 Network File System (NFS) file server 



Introduction: NFS Appliance 

• NFS File Server Appliances have different 
requirements than those of general purpose 
file system 
– NFS access patterns are different than local file 

access patterns 

– Large client-side caches result in fewer reads than 
writes 

• Network Appliance Corporation uses Write 
Anywhere File Layout (WAFL) file system 



Introduction: WAFL 

• WAFL has 4 requirements 
– Fast NFS service 

– Support large file systems (10s of GB) that can grow (can add 
disks later) 

– Provide high performance writes and support Redundant 
Arrays of Inexpensive Disks (RAID) 

– Restart quickly, even after unclean shutdown 

• NFS and RAID both strain write performance:  
– NFS server must respond after data is written 

– RAID must write parity bits also 



Outline 

• Introduction    (done) 

• Snapshots : User Level  (next) 

• WAFL Implementation 

• Snapshots: System Level 

• Performance 

• Conclusions 



Introduction to Snapshots 

• Snapshots are copy of file system at given point in time 

• WAFL creates and deletes snapshots automatically at preset 
times 
– Up to 255 snapshots stored at once 

• Uses copy-on-write to avoid duplicating blocks in the active 
file system 

• Snapshot uses: 
– Users can recover accidentally deleted files 

– Sys admins can create backups from running system 

– System can restart quickly after unclean shutdown 
• Roll back to previous snapshot 



User Access to Snapshots 

• Example, suppose accidentally removed file named “todo”: 

CCCWORK3% ls -lut .snapshot/*/todo 

-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42 

.snapshot/2011_10_26_18.15.29/todo 

-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42 

.snapshot/2011_10_26_19.27.40/todo 

-rw-rw---- 1 claypool claypool 4319 Oct 24 18:42 

.snapshot/2011_10_26_19.37.10/todo 

• Can then recover most recent version: 

CCCWORK3% cp .snapshot/2011_10_26_19.37.10/todo todo 

• Note, snapshot directories (.snapshot) are hidden in that they 
don’t show up with ls (even ls -a) unless specifically requested 



Snapshot Administration 

• WAFL server allows sys admins 
to create and delete 
snapshots, but usually 
automatic 

• At WPI, snapshots of /home.  
Says: 
– 3am, 6am, 9am, noon, 3pm, 

6pm, 9pm, midnight 
– Nightly snapshot at midnight 

every day 
– Weekly snapshot is made on 

Saturday at midnight every 
week 

 But looks like every 1 hour 
(fewer copies kept for older 
periods and 1 week ago max) 

claypool 168 CCCWORK3% cd .snapshot  
claypool 169 CCCWORK3% ls -1  
home-20160121-00:00/ 
home-20160122-00:00/ 
home-20160122-22:00/ 
home-20160123-00:00/ 
home-20160123-02:00/ 
home-20160123-04:00/ 
home-20160123-06:00/ 
home-20160123-08:00/ 
home-20160123-10:00/ 
home-20160123-12:00/ 
… 
home-20160127-16:00/ 
home-20160127-17:00/ 
home-20160127-18:00/ 
home-20160127-19:00/ 
home-20160127-20:00/ 
home-latest/ 



Snapshots at WPI (Windows) 
• Mount UNIX space (\\storage.wpi.edu\home), add \.snapshot 

to end 

• Can also right-click on file and 
choose “restore previous version” 

Note, files in .snapshot 
do not count against quota 
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WAFL File Descriptors 

• Inode based system with 4 KB blocks 

• Inode has 16 pointers, which vary in type depending upon file 
size 
– For files smaller than 64 KB: 

• Each pointer points to data block 

– For files larger than 64 KB: 

• Each pointer points to indirect block 

– For really large files: 

• Each pointer points to doubly-indirect block 

• For very small files (less than 64 bytes), data kept in inode 
itself, instead of using pointers to blocks 



WAFL Meta-Data 

• Meta-data stored in files 
– Inode file – stores inodes 
– Block-map file – stores free blocks 
– Inode-map file – identifies free inodes 

 



Zoom of WAFL Meta-Data  
(Tree of Blocks) 

• Root inode must be in fixed location 

• Other blocks can be written anywhere 

                                                                                                                                  

                   



Snapshots (1 of 2) 
• Copy root inode only, copy on write for changed data blocks 

                                                                                                               

           

• Over time, old snapshot references more and more data blocks 
that are not used 

• Rate of file change determines how many snapshots can be stored 
on system 



Snapshots (2 of 2) 
• When disk block modified, must modify 

meta-data (indirect pointers) as well 

                                                                                         

               

•  Batch, to improve I/O performance 



Consistency Points (1 of 2) 

• In order to avoid consistency checks after unclean 
shutdown, WAFL creates special snapshot called 
consistency point every few seconds 

– Not accessible via NFS 

• Batched operations are written to disk each 
consistency point 

– Like journal 

• In between consistency points, data only written 
to RAM 



Consistency Points (2 of 2) 
• WAFL uses NVRAM (NV = Non-Volatile): 

– (NVRAM is DRAM with batteries to avoid losing during 
unexpected poweroff, some servers now just solid-state or 
hybrid) 

– NFS requests are logged to NVRAM 
– Upon unclean shutdown, re-apply NFS requests to last 

consistency point 
– Upon clean shutdown, create consistency point and turnoff 

NVRAM until needed (to save power/batteries) 

• Note, typical FS uses NVRAM for metadata write cache 
instead of just logs 
– Uses more NVRAM space (WAFL logs are smaller) 

• Ex: “rename” needs 32 KB, WAFL needs 150 bytes 
• Ex: write 8 KB needs 3 blocks (data, inode, indirect pointer), WAFL 

needs 1 block (data) plus 120 bytes for log 

– Slower response time for typical FS than for WAFL (although 
WAFL may be a bit slower upon restart) 



Write Allocation 

• Write times dominate NFS performance 
– Read caches at client are large 
– Up to 5x as many write operations as read operations at 

server 
• WAFL batches write requests (e.g., at consistency 

points) 
• WAFL allows “write anywhere”, enabling inode next to 

data for better perf 
– Typical FS has inode information and free blocks at fixed 

location 
• WAFL allows writes in any order since uses consistency 

points 
– Typical FS writes in fixed order to allow fsck to work if 

unclean shutdown 
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The Block-Map File 
• Typical FS uses bit for each free block, 1 is allocated and 0 is free 

– Ineffective for WAFL since may be other snapshots that point to 
block 

• WAFL uses 32 bits for each block 
– For each block, copy “active” bit over to snapshot bit 



Creating Snapshots 
• Could suspend NFS, create snapshot, resume NFS 

– But can take up to 1 second 

• Challenge: avoid locking out NFS requests 

• WAFL marks all dirty cache data as IN_SNAPSHOT.  
Then: 
– NFS requests can read system data, write data not 

IN_SNAPSHOT 

– Data not IN_SNAPSHOT not flushed to disk 

• Must flush IN_SNAPSHOT data as quickly as 
possible 

IN_SNAPSHOT 

Can be used 
new 

flush 



Flushing IN_SNAPSHOT Data 

• Flush inode data first 
– Keeps two caches for inode data, so can copy system cache to 

inode data file, unblocking most NFS requests  
• Quick, since requires no I/O since inode file flushed later 

• Update block-map file 
– Copy active bit to snapshot bit 

• Write all IN_SNAPSHOT data 
– Restart any blocked requests as soon as particular buffer flushed 

(don’t wait for all to be flushed) 

• Duplicate root inode and turn off IN_SNAPSHOT bit 

 

• All done in less than 1 second, first step done in 100s of ms 
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Performance (1 of 2) 

• Compare against other NFS systems 

• How to measure NFS performance? 
– Best is SPEC NFS 

• LADDIS: Legato, Auspex, Digital, Data General, Interphase 
and Sun 

• Measure response times versus throughput 
– Typically, servers quick at low throughput then 

response time increases as throughput requests 
increase 

• (Me: System Specifications?!) 



Performance (2 of 2) 

                                                                                                                   

                    

(Typically, look for “knee” in curve) 

Notes: 
+ FAS has only 8 file systems, and others have dozens 
- FAS tuned to NFS, others are general purpose 
 

best 
response 

time 

best 
through-

put 



NFS vs. Newer File Systems 
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10 MPFS Clients

5 MPFS Clients & 5
NFS Clients

10 NFS Clients

• Remove NFS server as bottleneck 
• Clients write directly to device 

MPFS = multi-path file system 
Used by EMC Celerra 



Conclusion 

• NetApp (with WAFL) works and is stable 

– Consistency points simple, reducing bugs in code 

– Easier to develop stable code for network 
appliance than for general system 

• Few NFS client implementations and limited set of 
operations so can test thoroughly 

• WPI bought one  
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Later NetApp/WAFL capabilities 

• What if we make a big file on a WAFL file system, then treat that file as a 
virtual block device, and we make a WAFL file system on that? 

• Now file systems can dynamically grow and shrink (because they’re really files) 

• Can do some optimizations to reduce the overhead of going through two file 
system layers: inner file system can be “aware” that it’s hosted on an outer file 
system 

• Result: thin provisioning – Allocate more storage than you’ve got 

 

• Similarly, LUNs are just fixed-size files  

• Result: SAN support 

 

• Multiple files can refer to same data blocks with copy-on-write semantics 

• Result: writable clones 
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ZFS 

• Copy-on-Write functions similar to WAFL 

• Similar enough that NetApp sued Sun over it... 

• Integrates Volume Manager & File System 

• Software RAID without the write hole 

• Integrates File System & Buffer Management 

• Advanced prefetching: strided patterns etc. 

• Use Adaptive Replacement Cache (ARC) instead of LRU 

• File System reliability 

• Check summing of all data and metadata 

• Redudant Metadata 

From “Advanced File Systems” by Ali Jose Mashtizadeh (Stanford) 

https://en.wikipedia.org/wiki/Adaptive_replacement_cache
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Conclusion 

• File system design is a major contributor to overall 
performance 

 

• File system can provide major differentiating features 

• Do things that you didn’t know you wanted to do (snapshots, clones, 
etc.) 


