
ECE590-03
Enterprise Storage Architecture

Fall 2016

Storage Efficiency
Tyler Bletsch

Duke University

2

Two views of file system usage

• User data view:

• “How large are my files?” (bytes-used metric)
or
“How much capacity am I given?” (bytes-available metric)

• Bytes-used: Total size = sum of all file sizes

• Bytes-available: Total size = volume size or “quota”

• Ignore file system overhead, metadata, etc.

• In pay-per-byte storage (e.g. cloud), you charge based bytes-used

• In pay-for-container storage (e.g. a classic webhost), you charge based on
bytes-available

• Stored data view:

• How much actual disk space is used to hold the data?

• Total usage is a separate measurement from file size or available space!

• “ls –l” vs. “du”

• Includes file system overhead and metadata

• Can be reduced with trickery

• If you’re the service provider, you buy enough disks for this value

3

Storage efficiency

• StorageEfficiency =
𝑈𝑠𝑒𝑟𝐷𝑎𝑡𝑎

𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎

• Without storage efficiency features, this value is < 1.0. Why?

• File system metadata (inodes, superblocks, indirect blocks, etc.)

• Internal fragmentation (on a file system with 4kB blocks, a 8193 byte
file uses three data blocks; the last block is almost entirely unused)

• RAID overhead (e.g. a 4-disk RAID5 has 25% overhead)

• Can we add features to storage system to go above 1.0?

• Yes (otherwise I wouldn’t have a slide deck called “storage efficiency”)

4

Why improve storage efficiency?

• Why do we want to improve storage efficiency?

• Buy fewer disks! Reduce costs!

• If we’re a service provider, you charge based on user data, but your
costs are based on stored data.
Result: More efficiency = more profit
(and the customer never has to know)

• Note: all these techniques depend on workload

5

Techniques to improve storage efficiency

More efficient RAID

Snapshot/clone

Zero-block elimination

Thin provisioning

Deduplication

Compression

“Compaction” (partial zero
block elimination)

6

RAID efficiency

• What’s the overhead of a 4-disk RAID5?

• 1/4 = 25%

• How to improve?

• More disks in the RAID

• What’s the overhead of a 20-disk RAID5?

• 1/20 = 5%

• Problem with this?

• Double disk failure very likely for such a large RAID

• How to fix?

• More redundancy, e.g. RAID-6
(Odds of triple disk failure are << odds of double disk failure,
because we’re ANDing unlikely events over a small timespan)

• What’s the overhead of a 20-disk RAID6?

• 2/20 = 10%

• Result: Large arrays can achieve higher efficiency than small
arrays

7

Techniques to improve storage efficiency

More efficient RAID

Snapshot/clone

Zero-block elimination

Thin provisioning

Deduplication

Compression

“Compaction” (partial zero
block elimination)

8

Snapshots and clones

• This one is simple.

• If you want a copy of some data, and you don’t need to write
to the copy: snapshot.

• Example: in-place backups to restore after accidental deletion,
corruption, etc.

• If you want a copy of some data, and you do need to write to
the copy: clone.

• Example: copy of source code tree to do a test build against

9

Techniques to improve storage efficiency

More efficient RAID

Snapshot/clone

Zero-block elimination

Thin provisioning

Deduplication

Compression

“Compaction” (partial zero
block elimination)

10

Zero block elimination

• This one is also simple.

• If the user writes a block of all zeroes, just note this in
metadata; don’t allocate any data blocks

• Why would the user do that?

• Initializing storage for random writes (e.g. databases, BitTorrent)

• Sparse on-disk data structures (e.g. large matrices, big data)

• A “secure erase”: overwrite data blocks to prevent recovery*

* Note that this form of secure erase only works if you’re actually overwriting blocks in-place. We’ve learned
that this isn’t the case in log-structured and data-journaled file systems as well as inside SSDs. Secure data
destruction is something we’ll discuss when we get to security...

11

Techniques to improve storage efficiency

More efficient RAID

Snapshot/clone

Zero-block elimination

Thin provisioning

Deduplication

Compression

“Compaction” (partial zero
block elimination)

12

Thin provisioning

• Technique to improve efficiency for the bytes-available metric

• Based on insight in how people size storage requirements

• System administrator:

• “I need storage for this app. I don’t know exactly how much it needs.”

• “If I guess too low, it runs out of storage and fails, and I get yelled at.”

• “If I guess too high, it works and has room for the future.”

• Conclusion: Always guess high.

13

Thin provisioning

• Storage provider:

• “Four sysadmins need storage, each says they need 40 TB.”

• “I know they’re all over-estimating their needs.”

• “Therefore, the odds that all of them need all their storage is very low.”

• “I can’t tell them I think they’re lying and give them less, or they’ll yell
at me.”

• “Therefore, each admin must think they have 40TB to use”

• “I don’t want to pay for 4*40=160TB of storage because I know most
of it will remain unused.”

• “I will pool a lesser amount of storage together, and everyone
can pull from the same pool (thin provisioning)”

14

Thin provisioning

• Result:

• Buy 100TB of raw storage

• For each sysadmin, make a 40TB file system (NAS) or LUN (SAN)

• When used, all four containers use blocks from the 100TB pool

Physical storage, 100TB

NAS volume
“40TB”

NAS volume
“40TB”

SAN LUN
“40TB”

SAN LUN
“40TB”

15

Managing thin provisioning

• Storage is “over-subscribed” (more allocated than available)

• Need to monitor usage and add capacity ahead of running out

• Administrator can set their risk level:
• More over-subscribed = cheaper, but more risk of running out if a

sudden burst in usage happens

• Less over-subscribed = more expensive, less risk

16

Managing thin provisioning

0

20

40

60

80

100

120

0 10 20 30 40 50 60

S
to

ra
g

e
 u

s
e

d
 (

T
B

)

Days

Usage

Raw capacity

(100TB)

Storage system blows

up if no action taken

Time it takes to purchase and install more disks

Last day to order storage

to avoid running out of capacity

(don’t wait this long!)

Order storage earlier to have a margin of safety

17

Reservations

• Per-user guarantees: “reservations”

• Can set controller to guarantee a certain capacity per user

• Reservations must add up to less than total capacity

• Example: Every user guaranteed 100/4=25TB

• Limits damage if capacity runs out

• Example: Priority app guaranteed 40TB,
rest have no reservation

• Priority app will ALWAYS get its full capacity, even if system otherwise
fills up

18

Techniques to improve storage efficiency

More efficient RAID

Snapshot/clone

Zero-block elimination

Thin provisioning

Deduplication

Compression

“Compaction” (partial zero
block elimination)

19

Deduplication

• Basic concept:

• Split the file in to chunks

• Hash each chunk with a big hash

• If hashes match, data matches:

• Replace this with a reference to the matching data

• Else:

• It’s new data, store it.

Figure from http://www.eweek.com/c/a/Data-Storage/How-to-Leverage-Data-Deduplication-to-Green-Your-Data-Center/

20

Common deduplication data structures

• What I said at the start of the course about the dedupe project:
• Metadata:

• Directory structure, permissions, size, date, etc.

• Each file’s contents are stored as a list of hashes

• Data pool:

• A flat table of hashes and the data they belong to

• Must keep a reference count to know when to free an entry

^ A perfectly fine way to make a simple dedupe system in FUSE

• But now we know more:
• Rather than files being a list of hashes, a deduplicating file system can use

the inode’s usual block pointers!

• Difference: multiple block pointers can point to the same block

• Blocks have reference counts

• Block hash -> block number table stored on disk
(and cached in memory as hash table)

21

Inline vs. post-process

• From the project intro: Eager or lazy?

• Real terms: inline vs post-process

• Inline:

• When a write occurs, determine the resulting block hash and deduplicate at
that time.

+ File system is always fully deduplicated

+ Simple implementation

– Writes are slowed by additional computation

• Post-process

• Write committed normally, background daemon periodically hashes unhashed
blocks to deduplicate them.

+ Low overhead to the write itself

– More overall writes to disk (write + read + possible change)

– Disk not fully deduplicated until later (increased average space usage)

– Need to synchronize user I/Os versus background daemon I/Os for
 consistency

22

LOL industry

• Choice between inline and post-process is clear tradeoff,
no one right answer.

• That doesn’t stop industry vendors from using it to spread
FUD (Fear, Uncertainty, and Doubt).

EMC product slide

“Post-process dedupe will ruin your

storage and punch your dog!”

NetApp-friendly article

“Post-process dedupe makes writes faster,

anything that lacks it must be slow!”

http://www.techdata.com/business/emc/files/6 Presentations/Data Domain Products - Overview (customer presentation).ppt
http://www.techdata.com/business/emc/files/6 Presentations/Data Domain Products - Overview (customer presentation).ppt
http://searchstorage.techtarget.com/report/NetApp-Post-process-deduplication-limits-performance-hit-in-primary-storage-data-deduplication
http://searchstorage.techtarget.com/report/NetApp-Post-process-deduplication-limits-performance-hit-in-primary-storage-data-deduplication
http://searchstorage.techtarget.com/report/NetApp-Post-process-deduplication-limits-performance-hit-in-primary-storage-data-deduplication

23

Fixed vs. variable-sized blocks

• Insertion/deletion: A common modification.

(Side note: you can’t literally “insert” or “delete” stuff to a file
and have it shift like this – your text editor reads the whole file,
you change it in RAM, then you save the whole file. The actual

file system only supports in-place changes; no shifts.)

MY TEXT FILE
This is my text file.
It contains bytes.
I like my text file.
It is a very good text file.
01234567890123456789...

MY TEXT FILE
By Tyler Bletsch
This is my text file.
It contains bytes.
I like my text file.
It is a very good text file.
01234567890123456789...

Copy+modify

24

Fixed vs. variable-sized blocks

• Insertion/deletion: A common modification.

• With 8-byte fixed-sized blocks:

• All blocks past the change differ!

• Bad, because this is a common case

MY TEXT FILE
This is my text file.
It contains bytes.
I like my text file.
It is a very good text file.
01234567890123456789...

MY TEXT FILE
By Tyler Bletsch
This is my text file.
It contains bytes.
I like my text file.
It is a very good text file.
01234567890123456789...

Copy+modify

MY TEXT FILE|This is my text file.|It contains bytes.|I like my text file.|It is a very good text file.|01234567890123456789...

MY TEXT FILE|By Tyler Bletsch|This is my text file.|I like my text file.|It is a very good text file.|01234567890123456789...

25

MY TEXT FILE|By Tyler Bletsch|This is my text file.|I like my text file.|It is a very good text file.|01234567890123456789...

Variable-sized blocks

• What if, instead of fixed-sized blocks, we made blocks divided
based on the content of the file?

• Resulting blocks may be of variable size

• Naive rule: divide a block whenever there’s a space

• Way more blocks match! Mismatches only near the
insertion/deletion, which is what we want!

• Could there be any issue with the “divide on space” rule?

• Yes, obviously. Blocks too small (text file), or blocks too large (binary
file).

• Need a content-based dividing rule that won’t go crazy on specific data

MY TEXT FILE|This is my text file.|It contains bytes.|I like my text file.|It is a very good text file.|01234567890123456789...

26

c5

Rabin-Karp Fingerprinting

• Hash every offset with a “sliding window”:

• Declare a block boundary every time the hash value equals a
“special constant” (e.g. zero)

• Boundaries will depend on data, but in a “deterministically
random” way (i.e. the byte sequences that cause division
won’t be “special” in any way)

• Parameters:

• Hash size: On average, block size will be 2hash_bits; can select hash size
to give desired average block size

• Window size: How much data to consider to make boundaries. The
number of byte sequences that result in a boundary is, on average,
2window_bits – hash_bits

MY TEXT FILE|By Tyler Bletsch|This is my text file.|I like my text file.|It is a very good text file.|01234567890123456789...

a7
83

42 ...

27

Rabin-Karp Fingerprinting

• Efficiency: all those hashes must be expensive, right?

• Given windows size m and file size n, don’t you need m*n hashes?

• Not if we use trickery: rolling hash

• Now just one “hash” and n-m “hash updates”

for i from 1 to n-m+1

 h = hash(s[i+1 .. i+m])

h = hash(s[1 to m])

for i from 2 to n-m+1

 h = h – s[i-1]

 h = h + s[i+m]

“–” means “computationally remove from the hash”
“+” means “computationally add to the hash”

28

Techniques to improve storage efficiency

More efficient RAID

Snapshot/clone

Zero-block elimination

Thin provisioning

Deduplication

Compression

“Compaction” (partial zero
block elimination)

29

Compression

• Represent the data with fewer bits.

• Fundamental concept: Identify patterns which can be
abbreviated

• Many, many, many algorithms out there – beyond scope of course

• Lempel-Ziv and descendants (deflate, PKZIP, GZIP, etc.)

• Probabilistic models

• Grammar-based codes

• A truth we’ve seen a hundred times: this is a tradeoff

• Time vs. storage

30

Challenge when applied to disk storage

• Still need to seek: if we compress a file end-to-end, we don’t
know where to go to find a given offset

• Solutions:

• Compress blocks rather than files

• Store some kind of index to allow seeking in compressed data
(e.g., an uncompressed offset -> compressed offset table)

• Probably other ideas...

• Block storage: If we compress a data block, but we still
store it in a disk block, we didn’t save anything...

• Solutions:

• Pack multiple compressed blocks into one real block

• Consider larger “chunks” and compress them down to fewer blocks

• Probably other ideas...

Upcoming example

Upcoming example

31

Compression with compaction

• Compression with simple compaction

• Data block pointers are now {block_num, offset, length}

A B C D E

A’ B’ C’ D’ E’

C’ A’ B’ D’ E

Compact Compact Couldn’t compact,

not worth compressing

Compress:

Compact:

32

Techniques to improve storage efficiency

More efficient RAID

Snapshot/clone

Zero-block elimination

Thin provisioning

Deduplication

Compression

“Compaction” (partial
zero block elimination)

33

Compaction

• Remember how we were able to ignore zero-blocks?

• What if a block is partially zeroed...can we take advantage of
that?

• Basically same as the compaction step we saw in compression,
except just for zero data

• Simple idea, probably not worth doing unless you’re already doing the
other stuff

34

Compression with compaction

• Compression with simple compaction

• Data block pointers are now {block_num, offset, length}
 (again)

A B C D E

Anz Bnz Cnz Dnz Enz

Cnz Anz Bnz Dnz E

Compact Compact No zeroes,

not compacted

Identify zeroes:

Compact:

00 00 00 00 00

35

Conclusion

• There are many ways to reduce physical storage needs

• By doing many at once, can often cut storage needs dramatically (50%+)

• Depends strongly on workload:

• Example: For a long time, NetApp ran a promotion called the “NetApp 50%

Virtualization Guarantee”: if you’re storing VMs on NetApp, they guaranteed you’d
need 50% less disk capacity vs. competitors. They pay you otherwise.

• Note: NetApp arrays are large, VMs are often cloned, virtual disks are sparse, have low average
utilization, lots of duplication, and are often compressible.

• Result: They very rarely had to pay out.

•Need large array More efficient RAID

•Only if you need copies Snapshot/clone

•Only for sparse data Zero-block elimination

•Only if average utilization << peak utilization Thin provisioning

•Only if data has duplication Deduplication

•Only if data is compressible Compression

•Only for sparse data “Compaction” (partial zero block
elimination)

