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Two views of file system usage 

• User data view: 

• “How large are my files?” (bytes-used metric) 
or 
“How much capacity am I given?” (bytes-available metric) 

• Bytes-used: Total size = sum of all file sizes 

• Bytes-available: Total size = volume size or “quota” 

• Ignore file system overhead, metadata, etc. 

• In pay-per-byte storage (e.g. cloud), you charge based bytes-used 

• In pay-for-container storage (e.g. a classic webhost), you charge based on 
bytes-available 

 

• Stored data view: 

• How much actual disk space is used to hold the data? 

• Total usage is a separate measurement from file size or available space! 

• “ls –l” vs. “du” 

• Includes file system overhead and metadata 

• Can be reduced with trickery 

• If you’re the service provider, you buy enough disks for this value 
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Storage efficiency 

• StorageEfficiency =  
𝑈𝑠𝑒𝑟𝐷𝑎𝑡𝑎

𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎
 

 

• Without storage efficiency features, this value is < 1.0. Why? 

• File system metadata (inodes, superblocks, indirect blocks, etc.) 

• Internal fragmentation (on a file system with 4kB blocks, a 8193 byte 
file uses three data blocks; the last block is almost entirely unused) 

• RAID overhead (e.g. a 4-disk RAID5 has 25% overhead) 

 

• Can we add features to storage system to go above 1.0? 

• Yes (otherwise I wouldn’t have a slide deck called “storage efficiency”) 
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Why improve storage efficiency? 

• Why do we want to improve storage efficiency? 

 

• Buy fewer disks! Reduce costs! 

 

• If we’re a service provider, you charge based on user data, but your 
costs are based on stored data.  
Result: More efficiency = more profit  
(and the customer never has to know) 

 

• Note: all these techniques depend on workload 
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Techniques to improve storage efficiency 

More efficient RAID 

Snapshot/clone 

Zero-block elimination 

Thin provisioning 

Deduplication 

Compression 

“Compaction” (partial zero 
block elimination) 



6 

RAID efficiency 

• What’s the overhead of a 4-disk RAID5? 

• 1/4 = 25% 

• How to improve?  

• More disks in the RAID 

• What’s the overhead of a 20-disk RAID5? 

• 1/20 = 5% 

• Problem with this? 

• Double disk failure very likely for such a large RAID 

• How to fix? 

• More redundancy, e.g. RAID-6 
(Odds of triple disk failure are << odds of double disk failure,  
because we’re ANDing unlikely events over a small timespan) 

• What’s the overhead of a 20-disk RAID6? 

• 2/20 = 10% 

• Result: Large arrays can achieve higher efficiency than small 
arrays 
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Techniques to improve storage efficiency 

More efficient RAID 

Snapshot/clone 

Zero-block elimination 

Thin provisioning 
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Compression 

“Compaction” (partial zero 
block elimination) 
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Snapshots and clones 

• This one is simple. 

 

• If you want a copy of some data, and you don’t need to write 
to the copy: snapshot. 

• Example: in-place backups to restore after accidental deletion, 
corruption, etc. 

 

• If you want a copy of some data, and you do need to write to 
the copy: clone. 

• Example: copy of source code tree to do a test build against 



9 

Techniques to improve storage efficiency 

More efficient RAID 

Snapshot/clone 

Zero-block elimination 

Thin provisioning 

Deduplication 

Compression 

“Compaction” (partial zero 
block elimination) 
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Zero block elimination 

• This one is also simple. 

 

• If the user writes a block of all zeroes, just note this in 
metadata; don’t allocate any data blocks 

 

• Why would the user do that? 

• Initializing storage for random writes (e.g. databases, BitTorrent) 

• Sparse on-disk data structures (e.g. large matrices, big data) 

• A “secure erase”: overwrite data blocks to prevent recovery* 

 

 
* Note that this form of secure erase only works if you’re actually overwriting blocks in-place. We’ve learned 
that this isn’t the case in log-structured and data-journaled file systems as well as inside SSDs. Secure data 
destruction is something we’ll discuss when we get to security... 
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Techniques to improve storage efficiency 

More efficient RAID 

Snapshot/clone 

Zero-block elimination 

Thin provisioning 

Deduplication 

Compression 

“Compaction” (partial zero 
block elimination) 



12 

Thin provisioning 

• Technique to improve efficiency for the bytes-available metric 

• Based on insight in how people size storage requirements 

 

• System administrator:  

• “I need storage for this app. I don’t know exactly how much it needs.” 

• “If I guess too low, it runs out of storage and fails, and I get yelled at.” 

• “If I guess too high, it works and has room for the future.” 

• Conclusion: Always guess high. 
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Thin provisioning 

• Storage provider: 

• “Four sysadmins need storage, each says they need 40 TB.” 

• “I know they’re all over-estimating their needs.” 

• “Therefore, the odds that all of them need all their storage is very low.” 

• “I can’t tell them I think they’re lying and give them less, or they’ll yell 
at me.” 

• “Therefore, each admin must think they have 40TB to use” 

• “I don’t want to pay for 4*40=160TB of storage because I know most 
of it will remain unused.” 

• “I will pool a lesser amount of storage together, and everyone 
can pull from the same pool (thin provisioning)” 
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Thin provisioning 

• Result:  

• Buy 100TB of raw storage 

• For each sysadmin, make a 40TB file system (NAS) or LUN (SAN) 

• When used, all four containers use blocks from the 100TB pool 

 

Physical storage, 100TB 

NAS volume 
“40TB” 

NAS volume 
“40TB” 

SAN LUN 
“40TB” 

SAN LUN 
“40TB” 
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Managing thin provisioning 

• Storage is “over-subscribed” (more allocated than available) 

• Need to monitor usage and add capacity ahead of running out 

 

• Administrator can set their risk level: 
• More over-subscribed = cheaper, but more risk of running out if a 

sudden burst in usage happens 

• Less over-subscribed = more expensive, less risk 



16 

Managing thin provisioning 
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Reservations 

• Per-user guarantees: “reservations” 

• Can set controller to guarantee a certain capacity per user 

• Reservations must add up to less than total capacity 

 

• Example: Every user guaranteed 100/4=25TB 

• Limits damage if capacity runs out 

 

• Example: Priority app guaranteed 40TB,  
rest have no reservation 

• Priority app will ALWAYS get its full capacity, even if system otherwise 
fills up 
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Techniques to improve storage efficiency 

More efficient RAID 

Snapshot/clone 

Zero-block elimination 

Thin provisioning 

Deduplication 

Compression 

“Compaction” (partial zero 
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Deduplication 

• Basic concept: 

 

 

 

 

• Split the file in to chunks 

• Hash each chunk with a big hash 

• If hashes match, data matches: 

• Replace this with a reference to the matching data 

• Else: 

• It’s new data, store it. 

Figure from http://www.eweek.com/c/a/Data-Storage/How-to-Leverage-Data-Deduplication-to-Green-Your-Data-Center/ 
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Common deduplication data structures 

• What I said at the start of the course about the dedupe project: 
• Metadata: 

• Directory structure, permissions, size, date, etc. 

• Each file’s contents are stored as a list of hashes 

• Data pool: 

• A flat table of hashes and the data they belong to 

• Must keep a reference count to know when to free an entry 

^ A perfectly fine way to make a simple dedupe system in FUSE 

• But now we know more: 
• Rather than files being a list of hashes, a deduplicating file system can use 

the inode’s usual block pointers!  

• Difference: multiple block pointers can point to the same block 

• Blocks have reference counts 

• Block hash -> block number table stored on disk  
(and cached in memory as hash table) 
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Inline vs. post-process 

• From the project intro: Eager or lazy? 

• Real terms: inline vs post-process 

• Inline: 

• When a write occurs, determine the resulting block hash and deduplicate at 
that time. 

+ File system is always fully deduplicated 

+ Simple implementation 

– Writes are slowed by additional computation 

• Post-process 

• Write committed normally, background daemon periodically hashes unhashed 
blocks to deduplicate them. 

+ Low overhead to the write itself 

– More overall writes to disk (write + read + possible change) 

– Disk not fully deduplicated until later (increased average space usage) 

– Need to synchronize user I/Os versus background daemon I/Os for 
 consistency 
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LOL industry 

• Choice between inline and post-process is clear tradeoff, 
no one right answer. 

• That doesn’t stop industry vendors from using it to spread 
FUD (Fear, Uncertainty, and Doubt). 

EMC product slide 

“Post-process dedupe will ruin your  

storage and punch your dog!” 

NetApp-friendly article 

“Post-process dedupe makes writes faster, 

anything that lacks it must be slow!” 

http://www.techdata.com/business/emc/files/6 Presentations/Data Domain Products - Overview (customer presentation).ppt
http://www.techdata.com/business/emc/files/6 Presentations/Data Domain Products - Overview (customer presentation).ppt
http://searchstorage.techtarget.com/report/NetApp-Post-process-deduplication-limits-performance-hit-in-primary-storage-data-deduplication
http://searchstorage.techtarget.com/report/NetApp-Post-process-deduplication-limits-performance-hit-in-primary-storage-data-deduplication
http://searchstorage.techtarget.com/report/NetApp-Post-process-deduplication-limits-performance-hit-in-primary-storage-data-deduplication


23 

Fixed vs. variable-sized blocks 

• Insertion/deletion: A common modification. 

 

 

 

 

 

(Side note: you can’t literally “insert” or “delete” stuff to a file 
and have it shift like this – your text editor reads the whole file, 
you change it in RAM, then you save the whole file. The actual 

file system only supports in-place changes; no shifts.) 

MY TEXT FILE 
This is my text file. 
It contains bytes. 
I like my text file. 
It is a very good text file. 
01234567890123456789... 

MY TEXT FILE 
By Tyler Bletsch 
This is my text file. 
It contains bytes. 
I like my text file. 
It is a very good text file. 
01234567890123456789... 

Copy+modify 
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Fixed vs. variable-sized blocks 

• Insertion/deletion: A common modification. 

 

 

 

 

 

• With 8-byte fixed-sized blocks: 

 

 

• All blocks past the change differ! 

• Bad, because this is a common case 

MY TEXT FILE 
This is my text file. 
It contains bytes. 
I like my text file. 
It is a very good text file. 
01234567890123456789... 

MY TEXT FILE 
By Tyler Bletsch 
This is my text file. 
It contains bytes. 
I like my text file. 
It is a very good text file. 
01234567890123456789... 

Copy+modify 

MY TEXT FILE|This is my text file.|It contains bytes.|I like my text file.|It is a very good text file.|01234567890123456789... 

MY TEXT FILE|By Tyler Bletsch|This is my text file.|I like my text file.|It is a very good text file.|01234567890123456789... 
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MY TEXT FILE|By Tyler Bletsch|This is my text file.|I like my text file.|It is a very good text file.|01234567890123456789... 

 

Variable-sized blocks 

• What if, instead of fixed-sized blocks, we made blocks divided 
based on the content of the file? 

• Resulting blocks may be of variable size 

• Naive rule: divide a block whenever there’s a space 

 

 

• Way more blocks match! Mismatches only near the 
insertion/deletion, which is what we want! 

 

• Could there be any issue with the “divide on space” rule? 

• Yes, obviously. Blocks too small (text file), or blocks too large (binary 
file). 

• Need a content-based dividing rule that won’t go crazy on specific data 

MY TEXT FILE|This is my text file.|It contains bytes.|I like my text file.|It is a very good text file.|01234567890123456789... 
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c5 

Rabin-Karp Fingerprinting 

• Hash every offset with a “sliding window”: 

 

 

• Declare a block boundary every time the hash value equals a 
“special constant” (e.g. zero) 

• Boundaries will depend on data, but in a “deterministically 
random” way (i.e. the byte sequences that cause division 
won’t be “special” in any way) 

• Parameters:  

• Hash size: On average, block size will be 2hash_bits; can select hash size 
to give desired average block size 

• Window size: How much data to consider to make boundaries. The 
number of byte sequences that result in a boundary is, on average, 
2window_bits – hash_bits 

MY TEXT FILE|By Tyler Bletsch|This is my text file.|I like my text file.|It is a very good text file.|01234567890123456789... 

a7 
83 

42 ... 
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Rabin-Karp Fingerprinting 

• Efficiency: all those hashes must be expensive, right? 

• Given windows size m and file size n, don’t you need m*n hashes? 

• Not if we use trickery: rolling hash 

 

 

 

 

 

 

• Now just one “hash” and n-m “hash updates” 

for i from 1 to n-m+1 

  h = hash(s[i+1 .. i+m]) 

h = hash(s[1 to m]) 

for i from 2 to n-m+1 

  h = h – s[i-1] 

  h = h + s[i+m] 

“–” means “computationally remove from the hash” 
“+” means “computationally add to the hash” 
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Techniques to improve storage efficiency 

More efficient RAID 

Snapshot/clone 

Zero-block elimination 

Thin provisioning 

Deduplication 

Compression 

“Compaction” (partial zero 
block elimination) 
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Compression 

• Represent the data with fewer bits.  

• Fundamental concept: Identify patterns which can be 
abbreviated 

• Many, many, many algorithms out there – beyond scope of course 

• Lempel-Ziv and descendants (deflate, PKZIP, GZIP, etc.) 

• Probabilistic models 

• Grammar-based codes 

 

• A truth we’ve seen a hundred times: this is a tradeoff 

• Time vs. storage 
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Challenge when applied to disk storage 

• Still need to seek: if we compress a file end-to-end, we don’t 
know where to go to find a given offset 

• Solutions: 

• Compress blocks rather than files 

• Store some kind of index to allow seeking in compressed data 
(e.g., an uncompressed offset -> compressed offset table) 

• Probably other ideas... 

• Block storage: If we compress a data block, but we still 
store it in a disk block, we didn’t save anything... 

• Solutions: 

• Pack multiple compressed blocks into one real block 

• Consider larger “chunks” and compress them down to fewer blocks 

• Probably other ideas... 

Upcoming example 

Upcoming example 



31 

Compression with compaction 

• Compression with simple compaction 

 

 

 

 

 

 

 

 

• Data block pointers are now {block_num, offset, length} 

A B C D E 

A’ B’ C’ D’ E’ 

C’ A’ B’ D’ E 

Compact Compact Couldn’t compact, 

not worth compressing 

Compress: 

Compact: 
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Techniques to improve storage efficiency 

More efficient RAID 

Snapshot/clone 

Zero-block elimination 

Thin provisioning 

Deduplication 

Compression 

“Compaction” (partial 
zero block elimination) 
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Compaction 

• Remember how we were able to ignore zero-blocks? 

• What if a block is partially zeroed...can we take advantage of 
that? 

 

• Basically same as the compaction step we saw in compression, 
except just for zero data 

• Simple idea, probably not worth doing unless you’re already doing the 
other stuff 
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Compression with compaction 

• Compression with simple compaction 

 

 

 

 

 

 

 

 

• Data block pointers are now {block_num, offset, length} 
 (again) 

A B C D E 

Anz Bnz Cnz Dnz Enz 

Cnz Anz Bnz Dnz E 

Compact Compact No zeroes,  

not compacted 

Identify zeroes: 

Compact: 

00 00 00 00 00 
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Conclusion 

• There are many ways to reduce physical storage needs 

• By doing many at once, can often cut storage needs dramatically (50%+) 

• Depends strongly on workload: 

 

 

 

 

 

 

 

 
• Example: For a long time, NetApp ran a promotion called the “NetApp 50% 

Virtualization Guarantee”: if you’re storing VMs on NetApp, they guaranteed you’d 
need 50% less disk capacity vs. competitors. They pay you otherwise. 

• Note: NetApp arrays are large, VMs are often cloned, virtual disks are sparse, have low average 
utilization, lots of duplication, and are often compressible. 

• Result: They very rarely had to pay out. 

•Need large array More efficient RAID 

•Only if you need copies Snapshot/clone 

•Only for sparse data Zero-block elimination 

•Only if average utilization << peak utilization Thin provisioning 

•Only if data has duplication Deduplication 

•Only if data is compressible Compression 

•Only for sparse data “Compaction” (partial zero block 
elimination) 


