ECE590-03
Enterprise Storage Architecture

Fall 2016

Security

Tyler Bletsch
Duke University

What this lecture contains

e Included: e Not included:
e Basic definitions e Cryptography internals
e How to program using
e Fundamental cryptography primitives (it's
cryptography primitives easy to screw up!)
e Where cryptography e The many other uses of
can be used in cryptography
enterprise storage e Database security (e.g. SQL

injection attacks)

* Acce.ss control models e Intrusion detection and
applicable to storage prevention systems
e Secure deletion e Software security (bugs and
exploits, e.g. buffer
overflow)

e Denial of service attacks

e Too many other things to
ever possibly list

Key Security Concepts

Contsentaity || Avaiabity

* Preserving Ensuring timely « Guarding
authorized and reliable against
restrictions on access to and Improper
iInformation use of iInformation
access and Information modification or
disclosure, destruction,
including Including
means for ensuring
protecting Information
personal nonrepudiation
privacy and and authenticity
proprietary
iInformation

From Computer Security: Principles and Practices by William Stallings and Lawrie Brown 3

Threat model

Security is boolean:

o If (ANY exploitable flaw exists): system can be compromised
else: system cannot be compromised

Can easily prove condition (existence proof);

cannot easily disprove condition

Result: Cannot determine if a system is secure
e Scary/sad result

To reason about security, need to identify threat model

e What do we assume potential attacker can do?

e Then, in that situation, what consequences can we prevent?
Example: "Assume attacker can listen on this wire. Normally,

they can intercept user data, but we if we use encryption,
then they cannot.”

Cryptography primitives

Cryptography basics:

Symmetric encryption

(Also called shared-key encryption or
secret-key encryption)

e Given:
Plaintext p (arbitrary size)
Secret key k (fixed size)
Encryption function E
Decryption function D

e Can produce ciphertext c:

* c = E(p,k)
e Can recover plaintext:
* p = D(c/k)

Sender Encrypt Decrypt Recipient

Cryptography basics:

Symmetric encryption

e Ciphertext indistinguishable from random noise

e For a “"good” algorithm, message cannot be recovered without
key; attacker would need to try all possible keys

e If k is big, that would take too long (longer than life of universe)

e Making a “good” algorithm is hard... a whole field of study
e Never, ever make your own algorithm!

e Common algorithms: AES, Twofish, Serpent, Blowfish

e If you're unsure, AES is a fine choice
(unless these slides are old, then google it first...)

)

o PrObIem With thiS? ‘ Plaintext g Ciphertext FIGI Plaintext FQ
e Need to pre-share the key! Sender Eneryet P Recipiet

sed to encrypt

Cryptography basics:

Asymmetric encryption
(Also called public-key encryption)

e Sender has:
e Plaintext p (arbitrary size)
e Recipient’s public k,;, (fixed size)
¢ Recipient makes this freely available (hence the name “public”)
e Encryption function E

e Decryption function D
e Can produce ciphertext c:

e C= E(plkpub) @
e Can recover plaintext: | g g ‘
e Need recipient private key k,y o 'E%t . oo
e Recipient keeps this hidden at T
all costs (hence the name “private”) o N
° p — D(C,kpriv) encrypt and decrypt message
 Also works if you reverse the keys: A0)
* DE(P/Kpriv) Kpup) ==

Key Key 8

Cryptography basics:

Asymmetric encryption

e Public and private keys mathematically related,
but one cannot be determined from the other
e Far slower than symmetric encryption

e Common trick: Use asymmetric to send a secret key,
then use symmetric with that key

e Common algorithms: RSA, Diffie-Hellman key exchange

o If you're developing something with asymmetric encryption and you're using these slides
as your reference, stop. You're doing it wrong.

‘: Plaintext Ciphertext | Plaintext
4 @—»‘

Sender Encrypt Decrypt Recipient
Diffarent keys are used to
encrypt and decrypt message
{ f
-:_"‘F: g --"}'f: '
Recipient’s Recipient’s
Public Private

Key Key 9

Cryptography basics:

Hashing

e You're already familiar with hashing (right?)

e Usual hash function properties:
e Produces fixed size output for variable size input quickly (O(n))
e Statistically, any output is as likely as any other
~ Good enough to make a hash table

e Additional requirements for cryptography:
e Irreversibility: hash reveals absolutely nothing about input content
e Avalanche effect: small input change will completely alter hash
e No collisions: Big enough hash that collision probability is near-zero
N Result: can’t determine input from hash except by brute force

e Given message p and hash function H, get hash value h:
* h = H(p)
¢ Common choices: SHA-1, SHA-2, SHA-3, RIPEMD-160

e Most lists include MD5, too, but MD5 was slightly broken in 1996 and badly broken in 2005! There’s more detail than
that, but to keep it simple: Don't use it!

10

Cryptography basics:

Hashing to verify integrity

e Simple integrity check: send message p with h=H(p)
e Recipient verifies that H(P,eceived) = h

e Password verification: instead of password p, send h=H(p)
e Receiver verifies that h,qeceived=Nstored
e Advantage: Server doesn't store actual passwords, only hashes
o HEY YOU:. never store passwords in plaintext! NEVER!
o Also, when you hash passwords, salt them! (Look it up!)
e Encryption by itself doesn't verify that the encrypted message
isn’t tampered with, so let’s add hash verification:

e Given message p, send c=E(p,k) and h=H(p)
e Recipient verifies that H(D(c,k)) = h

e Can also combine with asymmetric encryption...

11

Cryptography basics:

Electronic signatures

e Integrity verification mixed with asymmetric encryption

Signing Verification

Hash

— Hash k
- funetion 101100110101 E

AN

Encrypt hash Digitally signed data
using signer's
private key

mO — A
- 111101101110
* — Signature
ﬂllllt’]lllli)lllt]I -

LAY

Certificate Signature Data Decrypt
using signer's

M e /—J public key
e
A mo

Attach 2
to data :
101100110101 — 101100110101
Hash Hash

@ If the hashes are equal, the signature is valid.

Digitally signed data

12
Figure from Wikipedia: Electronic signature

Cryptography basics:

Web of trust

“Web of trust” is a complex thing, here’s the short version

Using electronic signatures, you can “prove” you are the holder of a given
private key

We assume that a few certain keyholders are “trusted” enough to verify
the identity of other keyholders

The electronic signature that identifies someone in this manner is called a
certificate.

Example:
e I go to Verisign and say (1) I'm Tyler Bletsch and (2) I own tylerbletsch.com.

e They require documentation to prove this, then they electronically sign a
certificate attesting to it.

e Any browser that connects to tylerbletsch.com will automatically download and
verify the certificate.

% Bank of America — Ban

&« C (} | & Bank of America

poration [US] | https://www.bankofamerica.com i - ‘:5 u

Corg
Sm: siness Wealth Manageme sinesses stitutions ——
ik et Pameanees Criapesmertir mall Busin Vealth Management Busin & Institution: —

Ba“k ofAn. Your connection to this site is private, Detai

t rivate, Details
4 Locations | ContactUs | Help | Enespafio How can we help you: 13

Applying cryptography to storage

Common threat models in storage

e A basic enterprise storage deployment.

Storage

‘ UQ Senel controller Disks

Client/server Server/Storage Back-end
HTTP, IMAP, etc. iSCSI, FCP, NFS, CIFS SAS, SATA, FCAL

User

15

Common threat models in storage:

Eavesdropping

Attacker A Attacker B Attacker C
Eavesdrop:
N i i Storage
{ ") : e contro?ler Disks
f , Client/server Server/Storage Back-end
HTTP, IMAP, etc. iISCSI, FCP, NFS, CIFS SAS, SATA, FCAL
User

o Eavesdrop: attacker has a read-only tap on the wire. E.qg.:

e Physical access
e Compromised user machine or maybe even server

(in the case of compromised storage controller, we're dead no matter what, so we omit consideration of this case)

e Network spoofing or compromised switch; configured to forward traffic

16

Common threat models in storage:

Man-in-the-middle

Attacker A Attacker B Attacker C
~ & B 8
"\ |
[Server cSotnOtrigI]Igr Disks
f u Client/server Server/Storage Back-end
HTTP, IMAP, etc. iISCSI, FCP, NFS, CIFS SAS, SATA, FCAL
User

 Man-in-the-middle: attacker intercepts, can drop and spoof

packets.
e Similar attacks to gain this access; more visible to detection schemes

17

Securing the stack: client/server

m Server
i Uli i Client/server

HTTP, IMAP, etc.

User

Verify identity with certificate (prevent MITM).
Encrypt, usually with encrypted variant of normal protocol.
(HTTP—HTTPS, IMAP—IMAPS, etc.)

e Client/server security

Server/Storage
FCP, iSCSI, NFS, CIFS

e A bit out of scope of this class

e Basically, it's web-of-trust to verify identity, asymmetric key exchange
to get a shared key, then symmetric crypto on the payload

Storage
controller

Back-end Disks

SAS, SATA, FCAL

18

Securing the stack: storage controller

m, i Storage
[Server controller Disks
' U Client/server Server/Storage Back-end
HTTP, IMAP, etc. FCP, iSCSI, NFS, CIFS SAS, SATA, FCAL

User ‘ '

Isolated network, protocol-dependent authorization, sometimes encryption

e Storage controller security in_general
e Sadly, it's kind of worse than the client/server link...
e Primary defense: isolated network
e Physical isolation (separate switches, “air gap”) — expensive

e Virtual isolation (VLANS) — cheaper, but configuration mistakes can
break isolation

e Other defenses are protocol-specific and...not...really......good.........

19

Securing the stack: storage controller

m, i Storage
[Server controller Disks
' U Client/server Server/Storage Back-end
HTTP, IMAP, etc. ECP, iSCSI, NFS, CIFS SAS, SATA, FCAL

User

Zoning, messy proprietary encryption

e Storage controller security: FCP
e Identity verification: Zoning and world-wide names
e Switch limits access based on names (no actual secrets)
e If switch is secure and configured correctly, okay
e If not, well, there are no secrets, so no security... (bad)
e Encryption: hahahahaha what a mess, good lord
o Lots of proprietary bolt-on products that claim FCP encryption

o All are black-box mystery machines, leave a gap between the box
and your controller

20

Securing the stack: storage controller

m, i Storage
[Server controller Disks
' U Client/server Server/Storage Back-end
HTTP, IMAP, etc. FCP, iSCSI, NFS, CIFS SAS, SATA, FCAL

User
L ||

CHAP authentication, bolt-on IPSec for encryption (rare)

e Storage controller security: iISCSI
e Identity verification: CHAP protocol
e Basically it's hash-based password checking; fairly weak
e Encryption (and also enhanced identity verification): IPSec
e IPSec is a generic encryption layer on IP

e Storage controller may do IPSec directly, or could add a tunnel
device

e (But if you have to add a tunnel, what about network between
tunnel and storage controller...)

21

Securing the stack: storage controller

m, i Storage
[Server controller Disks
' U Client/server Server/Storage Back-end
HTTP, IMAP, etc. FCP, iSCSI, NES, CIFS SAS, SATA, FCAL

User
L ||

IP/Kerberos authentication, bolt-on IPSec for encryption (rare)

e Storage controller security: NFS
e Identity verification: IP-based check or Kerberos
e IP-based check: garbage

e Kerberos: server authenticates with central login authority;
basically equivalent to hash-based password verification

e Encryption: IPSec
e No built-in encryption standard (or even cert verification)
e Instead we use generic IPSec again; similar tradeoffs as with iSCSI

22

Securing the stack: storage controller

N i Storage
o Server controller Disks
* U Client/server Server/Storage Back-end
HTTP, IMAP, etc. FCP, iSCSI, NFS, CIES SAS, SATA, FCAL

User . ,

Windows Active Directory + certificate authentication, CIFS encryption (new) or bolt-on IPSec (rare)

e Storage controller security: CIFS
e Identity verification: Windows certificates
e Similar certificate system to the client/server side, nice
e Encryption: CIFS encryption (new) or IPSec
e Historically had to do IPSec (similar to iSCSI/NFS)

e Windows server 2012+ and Windows 8+ can do CIFS-level
encryption

23

Securing the stack: at-rest encryption

m Server
i Uli i Client/server

HTTP, IMAP, etc.

User

e Back-end security

Server/Storage
FCP, iSCSI, NFS, CIFS

%

Storage

controller Disks

Back-end
SAS, SATA, FCAL

Very isolated network, at-rest encryption

e Not usually concerned with data “in-flight” from controller to disk
o If attacker has attached a wire to your SAS bus, game over

e More common concern: disk theft or inspection

o “"At-rest” encryption: controller encrypts on way to physical media

e Typically symmetric encryption

e Question: Where does the key live???

!
.3

24

Key management

e Fundamental problem with at-rest encryption: 0)
Where does the key live?
e In RAM?

e How did it get there?
e How do I get it back after an outage?

e One solution: boot-time key storage (admin must insert cart to
provide key, key copied to RAM, admin takes card out and secures
it)

e The “"LOL DRM” issue:
e Systems that store key with encrypted data

25

Securing the stack: end-to-end encryption

N Storage i
[Server controller Disks
| U Client/server Server/Storage Back-end
HTTP, IMAP, etc. FCP, iSCSI, NFS, CIFS SAS, SATA, FCAL

User
L

1
Encryption from user to disk (in addition to previous techniques)

e Special case: end-to-end encryption
e Client encrypts data in app-specific manner
e Application on server understands this, doesn’t decrypt it (and can't!)
e Some meta-data is visible
e Lands on disk with encryption intact
e Not generalizable — only applicable with app can ignore user content

e Example: secure email systems, cloud backup

26

Securing the stack: server encryption

N Storage i
8 =R controller Disks
' U Client/server Server/Storage Back-end
HTTP, IMAP, etc. FCP, iSCSI, NFS, CIFS SAS, SATA, FCAL

User

Server encrypts, data is opaque to storage controller

e Special case: server encryption

e Server runs encryption wrapper over storage controller’s NAS/SAN
volume

e Encrypted data is opaque to storage controller
e Simple to implement
* Negates storage efficiency features

27

Securing the stack: “one-off” encryption

N Storage i
Y o R controller Disks
| U Client/server Server/Storage Back-end
HTTP, IMAP, etc. FCP, iSCSI, NFS, CIFS SAS, SATA, FCAL
User ‘

Manual one-off encryption

e Special case: manual file encryption
e Can use a simple app to encrypt one or more files
e Encrypted files are otherwise stored normally
e With automation, a cheap “bolt on” solution

28

Encryption side-effects

e Encrypted content cannot be compressed or deduplicated
e Storage efficiency features have to be applied first

e What about metadata?

e Filenames, sizes, dates can be valuable information

e If you're encrypting SAN traffic, you encrypt metadata for free

e If NAS, though...how to organize file system of encrypted metadata?
e Would have to add key semantics to file IO, break things, etc.
e Applying file system encryption above block device is not common

e Encryption makes backup harder
e Backup the plaintext? Security failure.
e Backup the ciphertext? Need to back up the key, too...

29

Access control

Includes content from Computer Security: Principles and Practices
by William Stallings and Lawrie Brown (the slate blue slides)

30

Access control topics

e Core concepts

e Access control policies:
e Discretionary Access Control (DAC)
e UNIX file system
e Access Control Lists (ACLSs)
e Mandatory Access Control (MAC)
e Role-based Access Control (RBAC)
o Attribute-based Access Control (ABAC)

31

Subjects, Objects, Actions, and Rights

Subject Verb Right Object
(initiator) (request) (perm|55|on) (target)

e The thing e The e A specific e The thing
making the operation to ability for that’s belng
request perform the subject hit by the
(e.g. the (e.g., read, to do the request
user) delete, etc.) action to (e.g., afile).

the object.

f ——— [N

33

Access control topics

e Core concepts

e Access control policies:
e Discretionary Access Control (DAC)
e UNIX file system
e Access Control Lists (ACLSs)
e Mandatory Access Control (MAC)
e Role-based Access Control (RBAC)
o Attribute-based Access Control (ABAC)

34

Access Control (AC) Policies

e Discretionary AC (DAC): There’s a list of permissions
attached to the subject or object (or possibly a giant heap of
global rules).

 Mandatory AC (MAC): Objects have classifications, subjects
have clearances, subjects cannot give additional perm|55|ons
e An overused/abused term
* Role-based AC (RBAC): Subjects belong to roles, and roles
have all the permissions.
e The current Enterprise IT buzzword meaning “good” security
e Attribute-based AC (ABAC): Subjects and objects have

attributes, rules engine applies predicates to these to
determine access

e Allows fine-grained expression
e Usually complex, seldom implemented

35

Access control topics

e Core concepts

e Access control policies:
e Discretionary Access Control (DAC)
o UNIX file system
e Access Control Lists (ACLs)
e Mandatory Access Control (MAC)
e Role-based Access Control (RBAC)
o Attribute-based Access Control (ABAC)

36

DAC model

bool IsActionAllowed(subject, object, action) { Matrix
if (action € get_permissions(subject,object))

return true Mot Fes Fes e
e Can use various data structures, oumiecrs s | o | 821 | vt | me
none of which should surprise you verc | et | e ke

(a) Access matrix

Flat list

Subject Access Object . .
Mode
_ Linked list
A Oown File 1
A Read File 1
A Write File 1 File I—> 3] —T 5] User A—>FiieT] —>Fie3
A Oown File 3 Opn R R Onn Oy
: w w w
A Read File 3 e B O e = = ==
A Write File 3 . —_— S
File2—>B — C] User B—>File 1] —>{File2 File 3
B Read File 1 Own Own
B 0 File 2 o R R R W
wn ile | W_| — | W |

' = = = = =

B Read File 2
File 3—>] — B] User C —>Fii —| i

B Write File 2 R M R e
B Write File 3 & W w R v

— == - []
B Read File 4 _
€ Read File 1 filed—>1 B |] =

Aud ¢) Capability lists for files of part (a

€ Write File 1 R R (©) Capability part @
C Read File 2 = =
© Own File 4 (b) Access control lists for files of part (a)
° read el Figure 4.2 Example of Access Control Struct

igure 4. xamplie o ccess contro ructures
© Write File 4 g p 37

UNIX File Access Control

* Control structures with key information needed for a particular file
* Several file names may be associated with a single inode
* An active inode is associated with exactly one file

* File attributes, permissions and control information are sorted in the
inode

e On the disk there is an inode table, or inode list, that contains the
inodes of all the files in the file system

* When a file is opened its inode is brought into main memory and
stored in a memory resident inode table

* May contain files and/or other directories

* Contains file names plus pointers to associated inodes

UNIX

File Access Control

® Unigque user identification
number (user ID)

® Member of a primary group
identified by a group ID

Belongs to a specific group
12 protection bits

® Specify read, write, and
execute permission for the
owner of the file, members
of the group and all other
users

® The ownerID, group ID, and
protection bits are part of the
file's inode

user: :rw-
group: :r--

other::---

(a) Traditional UNIX approach (minimal access control list)

Relevant UNIX CoOmmands

chmod: Change these bits

chown: Change owner
chgrp: Change group

o “Setuser|D"(SetUID)
“Set group ID"(SetGID)

e System temporarily uses rights of the file owner/group in

addifion to the real user’s rights when making access
conftrol decisions

e Enables privieged programs to access files/resources not
generally accessible

e Sticky bit

e When applied to a directory it specifies that only the owner

of any file in the directory can rename, move, or delete
that file

e Superuser

e Is exempt from usual access control restrictions
e Has system-wide access

File system access control lists (ACLS)

e Arbitrary list of rules governing access per-file/directory

e More flexible than classic UNIX permissions, but
more metadata to store/check

Examples of Linux ACL commands

Windows ACL Ul

- Set all permissions for user johny to file named "abc™
> | OZTtkEn.png Properties [

setfacl -m "u:johny:rux" abc
General | Securty | Details | Previous Versions

Check permissions

Object name: C:\Users'tkbletsc\Dropbo 02 Ak En png

Group or user names: # getfacl abc
o, . # file: abc
-". tkbletsc (MORT Y dkbletsc) # owner: somsone
. P . #g E
52, Administratars (MORTY\Administrators) usg:??ﬁ.ﬂ._someone
user: johny : rwx
group:.r--
mask: : rwx
other::r--
To change permissions, click Edit. Edit
Change permissions for user johny
Pemissions for SYSTEM Allow Dery
Full contral # setfacl -m "u:johny:r-x" abc
Modify
Read & execute Check permissions
Read
Write # getfacl abc
Special permissions & File: abe
owner: somesone

group: someone

Fl_:r special pemissions or advanced settings, Advanced user::ri-
click Advanced. = user: johny:r-x
group:.r--
. mask: :r-x
Leam about access control and permissions other: :r--

0K] | Cancel Apph Remove all extended ACL entries:

setfacl -b abc 41
From Arch Wiki

https://wiki.archlinux.org/index.php/Access_Control_Lists

Access control topics

e Core concepts

e Access control policies:
e Discretionary Access Control (DAC)
e UNIX file system
e Access Control Lists (ACLSs)
e Mandatory Access Control (MAC)
e Role-based Access Control (RBAC)
o Attribute-based Access Control (ABAC)

42

MAC model

bool IsActionAllowed(subject, object, action) {
for each rule in rules:
if rule allows (subject,object,action) return true
return false

}

43

MAC example: SELIinux

e Developed by U.S. Dept of Defense
e General deployment starting 2003
e Can apply rules to virtually every user/process/hardware pair

e Rules are governed by system administrator only
e No such thing as “selinux_chmod” for users

44

MAC example: SELInux

Eile Help
Select: o]
Status Customized
File Labeling Filter
User Mapping Active | Module v Description Name
SELinux User apache Allow httpd to act as a FTP server by listening on the httpd_enable_ftp_server
Translation apache Allow HTTPD to run SSI executables in the same dom httpd_ssi_exec
Network Port apache Allow Apache to communicate with avahi service via (allow_httpd_dbus_avahi
Policy Module i apache Allow httpd to use built in scripting (usually php) httpd_builtin_scripting
apache Allow http daemon to send mail httpd_can_sendmail
apache Allow httpd to access nfs file systems httpd_use nfs
i apache Unify HTTPD to communicate with the terminal. Nee httpd_tty_comm
apache Allow Apache to use mod_auth_pam allow_httpd_mod_auth_ntlm_winbind
apache Allow HTTPD scripts and modules to connect to the r httpd_can_network_connect
i apache Unify HTTPD handling of all content files httpd_unified
apache Allow apache scripts to write to public content. Dire allow_httpd_sys_script_anon_write

| apache Allow httpd to read home directories httpd_enable_homedirs

apache Allow Apache to use mod_auth_pam allow_httpd_meod_auth_pam
apache Allow httpd to access cifs file systems httpd_use_cifs
= apache Allow httpd cgi support httpd_enable_cgi
apache Allow HTTPD scripts and modules to network conneci httpd_can_network_connect_db
apache Allow httpd to act as a relay httpd_can_network_relay
bind Allow BIND to write the master zone files. Generally { named_write_master_zones
cdrecord Allow cdrecord to read various content. nfs, samba, r cdrecord_read_content
cron Enable extra rules in the cron domain to support fcro fcron_crond
cvs Allow cvs daemen to read shadow allow_cvs_read_shadow
7 domain Allow unlabeled packets to work on system allow_unlabeled_packets
exim Allow exim to connect to databases (postgres, mysqg exim_can_connect_db
exim Allow exim to create, read, write, and delete unprivile exim_manage_user_files
exim Allow exim to read unprivileged user files. exim_read_user_files
ftp Allow ftp to read and write files in the user home dire ftp_home_dir
ftp Allow ftp servers to login to local users and read/writ: allow_ftpd_full_access
ftp Allow ftp servers to use nfs used for public file trans: allow ftpd use nfs S

45

Access control topics

e Core concepts

e Access control policies:
e Discretionary Access Control (DAC)
e UNIX file system
e Access Control Lists (ACLSs)
e Mandatory Access Control (MAC)
e Role-based Access Control (RBAC)
o Attribute-based Access Control (ABAC)

46

RBAC: The thing you invent if you spend enough

time doing access control

e Scenario:
e Frank: “"Bob just got hired, please given him access.”
e Admin: "What permissions does he need?”

Frank : "Same as me.”

Later, a new system is added

Bob: "Why can’t I access the new system?!”
Admin: “Oh, I didn't know you needed it too...”
Bob: “I need everything Frank has!”

Later, Frank is promoted to CTO

o Admin: "Welp, looks like Bob also needs access to our private earnings,
since this post-it says he gets everything Frank has...”

e The admin is later fired amidst allegations of conspiracy to commit
insider trading with Bob. He dies in prison. ®

47

Resources

- Role3 ——mMm—

Figure 4.6 Users, Roles, and Resour ces

RBAC

e Decide what KINDS of users you have (roles)
e Assign permission to roles.
e Assign users to roles.

e When a role changes, everyone gets the change.
e When a user’s role changes, that user gets a whole new set of permissions.
e No more special unique snowflakes.

e Roles may be partially ordered, e.g. "Production developer” inherits from
“Developer” and adds access to the production servers

bool IsActionAllowed(subject, object, action) {

if (action € get_permissions(subject.role,object))
return true

49

Access control topics

e Core concepts

e Access control policies:
e Discretionary Access Control (DAC)
e UNIX file system
e Access Control Lists (ACLSs)
e Mandatory Access Control (MAC)
e Role-based Access Control (RBAC)
o Attribute-based Access Control (ABAC)

50

ABAC in a nutshell

Subject

attrs

POLICY ‘ Yes or no

51

ABAC model

bool IsActionAllowed(subject, object, action) {
for each rule in rules {

The rule is basically code that examines all attributes of
subject and object as well as the global environment; the rule is
highly expressive, and so could basically do anything. If it says
yes, return true

¥

return false

}

52

Secure deletion

Secure deletion

e Must destroy data when we need to (e.g. decommissioning a
storage system)

e Destroying is easy, right?
e When you spend all this effort preventing data loss,

intentionally losing data can get surprisingly hard.

e Things preventing data destruction:

‘Delete’ doesn’t destroy: it just updates metadata and marks blocks freed

Journaling: we keep scraps of written data separate from the actual data
blocks; these aren’t affected by simple deletion

Failed drives: If the drive dies enough to replace, we may not be able to tell
the drive to overwrite data, but it’s still there...

Hardware redundancy: SSDs redirect blocks internally for wear leveling;
disks redirect blocks for bad sector compensation

Snapshots: their whole purpose was to recover from accidental deletion
Backups: We've replicated this data across the country...

54

How to overcome: technical/procedural

o Block-level I0: Overwrite raw disk below file system level

e Traditional: “"dd if=/dev/zero of=/dev/sda”
(basically that means “cat /dev/zero > /dev/sda”)

e Gets around file system, snapshots, journaling.

e Procedural: Documented, automated processes for snapshot
deletion, destruction of backups, etc.

e “"Crypto-shredding”: Do at-rest encryption all along. Then,
to destroy data, simply lose the key.

55

How to overcome: physical

e Destroy!!

‘il f'nff.itmt"@m' "

HIJI

"“‘*H‘m%m

o Sl 4 lg ."[
LTI 4“4‘ lum

.. - ! ke — " & \
”, QHREDDING INDUSTRY ICON SINCE 1967

THE FUTURE IS HERE AND EVERYTHING NEEDS TO BE DESTROYED.
DON'T FALL BEHIND THE TIMES.

MakeAGIF.com

