
ECE590-03
Enterprise Storage Architecture

Fall 2017

Storage devices

Tyler Bletsch

Duke University

Slides include material from Vince Freeh (NCSU)

2

Basic storage device history

• From https://aaronlimmv.wordpress.com/2013/05/02/types-of-storage-and-basic-advantages-and-disadvantages/

3

The ancient model of large enterprise storage

• DASD: Direct Access Storage
Device

• Starting with the IBM 350 in
1956

• Your One Big Computer
accesses your One Big Drive

• Evolution: make the One Big
Drive bigger and more reliable

• Result: The One Big Drive
became more and more
expensive and critical

• Problem?

An IBM 350 drive (5 MB) being loaded into a

PanAm jet, circa 1956.

4

DASD problem: single point of failure

• The DASD was a single point of failure with all your data

• Better treat it gently…

Man with amazing fashion sense moves a 250MB disk, circa 1979.

5

Key trend: consumerizaton

• A common evolution in IT:

• Businesses use a fancy expensive “Enterprise Thing”.

• Normal people get a cheaper version, “Consumer Thing”.
It’s cheap and good enough.

• Consumer Thing gets better and better every year because:

• There are more consumers than businesses (bigger market)

• There are more vendors for consumers than for businesses
(more competition)

• The margins are thinner for consumer goods
(more cut-throat competition)

• A Smart Person finds a way to use the Consumer Thing for business.

• Industry experts call the Smart Person dumb and say that no real
business could ever use the Consumer Thing.

• The Smart Person is immensely successful, and all businesses use the
Consumer Thing.

• Industry experts pretend they knew all along.

6

Consumerization in servers

• Big business use mainframe computers

• Everyone else uses microcomputers

• Microcomputers beat mainframes

• We start calling them “servers”

• Mainframes almost entirely gone

Piled up
in a

museum

7

Consumerization in storage

• Big business use DASDs

• Everyone else eventually gets
small hard disks (SCSI)

• Disk arrays invented using “JBOD” and
eventually “RAID”

• Storage companies based on disk arrays
gain traction

• DASDs are entirely gone
Piled up

in a
museum

8

Disk arrays

• JBOD: Just a Bunch Of Disks

• Multiple physical disks in an external cabinet

• Array is connected to one server only.

• Provides higher storage capacity with increased number of drives.

• Effect on performance?

• Effect on reliability?

• Can we do better?

9

Disk arrays

• RAID: Redundant Array of Inexpensive Disks

• Academic paper from 1988

• Revolutionized storage

• Will discuss in depth later

• Combine disks in such a way that:

• Performance is additive

• Capacity is additive

• Drive failures can occur
without data loss

• Still directly attached to one server

10

Next step: intelligent arrays

• Server acts as host for storage,
provides access to other servers

• Dedicated hardware for RAID

• Optimized for IO performance

• High speed cache

• Can add various special features at this layer: access controls, multiple
protocols, data compression and deduplication, etc.

11

Method of Attachment

• How to connect storage array to other systems?

• DAS: Direct Attached Storage

• One client, one storage server

• SAN: Storage Area Network

• Storage system divides storage into “virtual block devices”

• Clients make “read block”/”write block” requests just like to a hard
drive, but they go to the storage server

• NAS: Network-Attached Storage

• Storage system runs a file system to create abstraction of
files/directories

• Clients make open/close/read/write requests just like to the OS’s
local file system

12

DAS: Direct Attached Storage

• One-to-one connection

• Historically: connect via SCSI (“Small Computer Systems Interface”)

• Even though actual SCSI cables/drives/systems are gone, the software protocol
is still everywhere in storage. We’ll see it again very soon*.

• Modern:

• USB:

• SATA (or since it’s external, e-SATA): The protocol modern consumer drives use

• SAS (Serial Attached SCSI): The protocol modern enterprise drives use

USB,

eSATA,

SAS,

Firewire,

SCSI,

etc.

* see, I told you.

13

SAN: Storage Area Network (1)

• Split the aggregated storage into virtual drives called Logical
Units (LUNs)

• Clients make read/write requests for blocks of “their” drive(s)

• Storage server translates request for block 50 of client 2 to
actual block 4000
 (which in turn is block 1000 of disk 3 of the RAID array)

14

SAN: Storage Area Network (2)

• Historical protocol: Fibre Channel (FC)

• A special physical network just for storage

• Totally unlike Ethernet in almost every way

• Still popular with very conservative enterprises

• Actual traffic is SCSI frames

• Clients and servers have special cards: a Host Bus Adapter (HBA) for FC

• Modern protocols:

• Fibre Channel over Ethernet (FCoE):

• Requires FCoE-capable switch

• SCSI inside of an FC frame inside of an Ethernet frame

• Clients and servers have special cards: a Converged Network Adapter for
FCoE/Ethernet

• iSCSI:

• SCSI inside of an IP frame, usually inside of an Ethernet frame
(but it’s IP, so it could be inside a bongo drum frame)

• No special switch or cards needed (though iSCSI HBAs do technically exist)

15

NAS: Network-Attached Storage (1)

• Put a file system on the storage server so it has the concept of
files and directories

• Clients make open/close/read/write requests for files on the
remote file system

16

NAS: Network-Attached Storage (2)

• No special network or cards – works on normal IP/Ethernet

• Network File System (NFS):

• Common for UNIX-style systems, invented by Sun in 1984

• Literally just turns the system calls open/close/read/write/etc into
“remote procedure calls” (RPCs)

• Many revisions, we’re up to NFS v4 now

• Server Message Block (SMB) also known as Common Internet
File System (CIFS)

• Microsoft Windows standard for network file sharing, developed around
1990

• Really badly named

• Many revisions, we’re up to SMB 3.1.1 now

• Native on Windows, supported on Linux with Samba (client and server)

17

How to tell NAS and SAN apart

18

System constraints

• What is a tradeoff?

• Constraints:

• Cost

• Physical environment

• Maintenance & support

• Compliance (regulatory/legal)

• HW & SW infrastructure

• Interoperability/compatibility

19

Management activities

• Provisioning: allocate storage for use

• Monitoring: ensure proper functioning over time

• Archival/destruction: retire data properly

20

Provisioning

• Based on workload requirements:

• Capacity – capacity planning

• Performance – workload profiling

• Security – access rule creation, encryption policy

• Reliability – type of redundancy, backup policy

• Other – archival duration, regulatory compliance, etc.

21

Monitoring

• Capacity: watch usage over time, identify workloads at risk of
running out, include in report

• Performance: collect metrics at storage layer and/or
application layer, compare to requirement, alert on
violation/deviation, add resources as needed, include in report

• Security: verify access control rules, deploy
intrusion/anomaly detection, ensure at-rest and in-flight
encryption is used where appropriate, include in report

• Reliability: receive alerts when failures occur at any layer,
continually ensure that availability and backup policies remain
satisfied, include in report

• Other requirements: keep ‘em satisfied, include in report

• Report: Analyze collected statistics over time to assess cost
and determine where array growth or configuration changes
are needed.

22

The data lifecycle

From: http://www.spirion.com/us/solutions/data-lifecycle-management

Course project discussion

24

Project ideas

• Write-once file system*

• Network file system with caching*

• Deduplication*

• Special-case file system*

• File system performance survey

• Hybrid HDD/SSD system*

• Storage workload characterization

• Cloud storage tiering*

* Likely implemented via FUSE

24

FUSE overview

26

FUSE

• File System in Userspace: Write a file system like you would a
normal program.

• You implement the system calls: open, close, read, write, etc.

Figure from Wikipedia: http://en.wikipedia.org/wiki/Filesystem_in_Userspace

27

FUSE Hello World

• Let’s walk through it:

https://github.com/libfuse/libfuse/blob/master/example/hello.c

~/fuse/example$ mkdir /tmp/fuse

~/fuse/example$./hello /tmp/fuse

~/fuse/example$ ls -l /tmp/fuse

total 0

-r--r--r-- 1 root root 13 Jan 1 1970 hello

~/fuse/example$ cat /tmp/fuse/hello

Hello World!

~/fuse/example$ fusermount -u /tmp/fuse

~/fuse/example$

https://github.com/libfuse/libfuse/blob/master/example/hello.c
https://github.com/libfuse/libfuse/blob/master/example/hello.c

Project idea
Write-once file system

29

Write-once file system (WOFS)

• Normal file system

• Read/write

• Starts empty, evolves over time

• Simplest implementation isn’t simple

• Fragmentation and indirection

• Write-once file system

• Read-only

• Starts “full”, created with a body of data

• Simple implementation

• No fragmentation, little indirection

30

What is a WOFS for?

• CD/DVD images

• “Master” the image with the content in /mydir
$ mkisofs -o my.iso /home/user/mydir

• Write the disc image directly onto the burner
$ cdrecord my.iso

• Ramdisk images (e.g. cramfs, squashfs, etc.)

31

Major parts of a WOFS

• Mastering program:
$ mkwofs myfilesystem.img data/

• Mounting program (FUSE):
$ wofsmount myfilesystem.img dir/

$ ls dir/

 …

• Mounting program must not “extract” data at load time – data
is retrieved from the image as read requests are handled!

Project idea
Network file system with caching

33

Network File System without Special Sauce

• Simple idea:
 Put IO system calls over the network

• Complex consequences:

• Stateful or stateless?

• Caching? Cache coherency?

• What server? How many servers?

• Data compression?

• Data reduction, e.g. “Low-bandwidth File System”
(http://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf)

http://pdos.csail.mit.edu/papers/lbfs:sosp01/lbfs.pdf

34

An interesting network file system

• A basic network filesystem is basic OS stuff

• Yours must could also optionally have:

• Read caching and write-behind caching

• Read caching and read-ahead optimization

• Distributed storage over multiple servers

• Compression

• “Low-bandwidth file system” features

• (Persistent disk cache, basically dedupe-on-the-wire)

• Something else?

Project idea
Deduplication

36

Deduplication

• Will be covered later, here’s the short version

• Split the file in to chunks

• Hash each chunk with a big hash

• If hashes match, data matches:

• Replace this with a reference to the matching data

• Else:

• It’s new data, store it.

Figure from http://www.eweek.com/c/a/Data-Storage/How-to-Leverage-Data-Deduplication-to-Green-Your-Data-Center/

37

Common deduplication data structures

• Metadata:

• Directory structure, permissions, size, date, etc.

• Each file’s contents are stored as a list of hashes

• Data pool:

• A flat table of hashes and the data they belong to

• Must keep a reference count to know when to free an entry

38

Design decisions

• Eager or lazy?

• Fixed- or variable-sized blocks?

• Variable size via Rabin-Karp Fingerprinting

Project idea
Special-case file system

40

Special-case file system

• Sometimes “general purpose” is too general

• Example motivations:

• Can we exploit a workload’s peculiar access pattern?

• Can we examine the data to present new organizational
structures?

• Can we map non-filesystem information into the file
system?

41

Tips to keep in mind

• Performance: Disk seeks are the enemy!
• Often, “Minimize seeks” = “Optimize performance”

• Metadata: Many files have metadata not usually exposed to
the file system, such as JPEG EXIF tags, MP3 ID3 tags,
DOC/DOCX author tags, etc.

• Anything can be a filesystem. You can have a file system
represent:

• A git server

• An email account

• A web server

• A physical system (e.g. “Internet of Things”*)

• A database (e.g. via the Duke registration system public API**)

• More!

* This term is really dumb, and I’m sorry for using it.

** http://dev.colab.duke.edu/resource/duke-public-apis

http://dev.colab.duke.edu/resource/duke-public-apis
http://dev.colab.duke.edu/resource/duke-public-apis
http://dev.colab.duke.edu/resource/duke-public-apis
http://dev.colab.duke.edu/resource/duke-public-apis
http://dev.colab.duke.edu/resource/duke-public-apis
http://dev.colab.duke.edu/resource/duke-public-apis

Project idea
File system performance survey

43

File system performance survey

• Storage systems are enormously complex with many pieces
affecting overall performance

• Filesystem (ext3, ntfs, etc.)

• Filesystem configuration (journaling, alignment, etc.)

• Workload (benchmarks)

• Underlying devices (SSD, HDD, and also RAID)

• It is useful to characterize how different configurations
perform under different workloads

44

How to approach the problem

• Get hardware

• Such as the course server!!

• Define your test variables

• Build a test harness

• Automate all testing, it will run for days!

• Automate data collation – don’t scrape numbers by hand!

• Get it all into a giant spreadsheet

• Data mining – find knowledge in the data

• Detailed write up of interesting conclusions

Project idea
Hybrid HDD/SSD system

46

Hybrid storage

• SSD is expensive per GB, cheap for random IO performance

• HDD is the opposite

• Can develop a software that gets best of both worlds

• Examples:

• SSD as cache for HDD

• SSD as write buffer for HDD

• Auto-migrate “hot” data to SSD, “cold” data to HDD

• Identify random workloads, migrate to SSD

• Mechanism:

• File system (e.g. with FUSE)

• Virtual block device (also possible with FUSE)

47

Evaluation

• Must include:

• Benchmark of your system against pure HDD and pure SSD systems.

• Measurement of FUSE overhead

• Cost/benefit analysis based on HDD and SSD costs

• All of the above must be conducted against a good cross-section of
workloads

Project idea
Storage workload characterization

49

Storage workload capture

• In storage sizing, need to characterize workload

• Workload may be confidential or too complex to migrate

• Project: Use a technique to record a storage workload

• Example 1: take a trace of read/write ops; need to anonymize, then be
able to replay operations with equivalent performance

• Example 2: monitor I/O ops, characterize nature of workload, then be
able to simulate a request stream with similar characteristics

• Will need to prove the accuracy of your technique with
statistical analysis across variety of workloads

Project idea
Cloud storage tiering

51

Cloud storage tier

• Cloud storage (e.g. Amazon S3) is useful, generally pretty
cheap

• Downside: internet latency and bandwidth

• Can develop a storage system which migrates “cold” or
otherwise lower-priority data out to a cloud service, brings it
back live on demand without user interaction

• Optional enhancements:

• Intelligent prediction algorithm for migration

• Encryption for cloud-exported data

• Compression for cloud-exported data

• Can be implemented at block level or file system level

An important resource:
the course reference server

53

Server overview

• A storage server has been built for this course for use by all
students.

• Dell PowerEdge 2950, a 2U rackmount storage system.

• Has drives to experiment with RAID topologies, hybrid HDD+SSD
storage, filesystem performance, and more.

• Budget exists for upgrades on request.

54

Server stats

• Processor: Quad Core Xeon Processor E5310 2x4MB Cache, 1.60GHz,
1066MHz FSB

• Memory: 2GB 667MHz (4X512MB), Single Ranked DIMMs

• Operating system: Ubuntu Linux 16.04 LTS x64

• Storage controller: PERC 5/i, x6 SAS RAID Controller Card

• Storage bays: 1x6 Backplane for 3.5-inch SAS/SATA Hard Drives

• Networking: 2x 1GbE ethernet. One uplink connected at present.

• Drives:

• [3x] Western Digital 250GB 7200rpm SATA 3Gbps 3.5-in HDD (circa 2007)

• [1x] Samsung 850 EVO SSD, SATA, 250GB (new)

• [1x] Zheino SSD, SATA, 30GB (the cheapest SSD on Amazon today)

• [1x] Sandisk USB thumb drive, 30GB (contains the OS, not for testing!)

• Features: Redundant Power Supply, out-of-band BMC management via
IPMI

55

Server access

Access it from campus or via VPN via SSH:

storemaster.egr.duke.edu

User accounts created upon request
(includes root access).

Students will need to share the server; the exact mechanism for
doing so will be determined during the project outline phase.

Questions?

