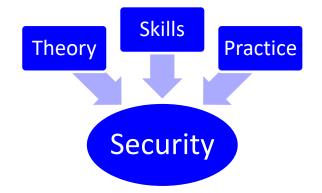
ECE590 Computer and Information Security

Fall 2018

Introduction and Course Policies

Tyler Bletsch Duke University

Instructor and TAs


- Professor: Tyler Bletsch
 - Office: Hudson Hall 106
 - Email: <u>Tyler.Bletsch@duke.edu</u>
 - Office Hours: see course site
- Teaching Assistants:
 - Neil Dhar
 - Rui Zhang

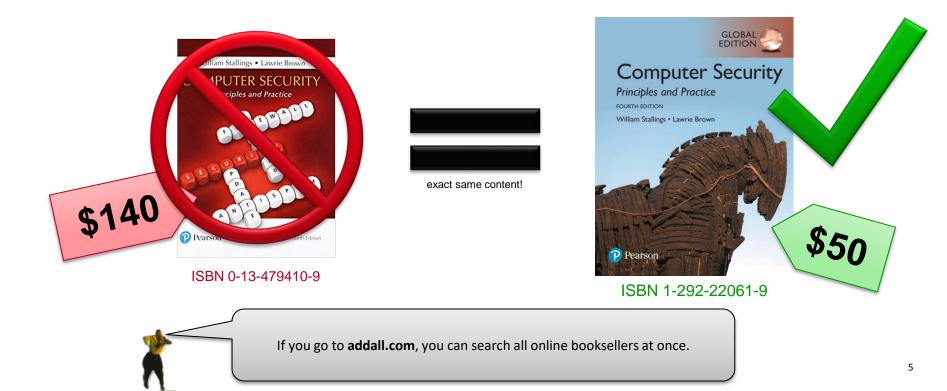
Course objective: Evolve your understanding of security

- Theory:
 - How do I think systematically about security?
 - What constructs are available for me to use?
 - How do I understand *new* threats and defenses not covered in the course?

• Skills:

- What tools are commonly used to do the above?
- How can I manipulate data and automate things to make the above practical?
- Practice:
 - "Stick time": Actually doing it.
 - Both attacking and defending.

Getting Info


• Course Web Page: static info

http://people.duke.edu/~tkb13/courses/ece590-sec/

- Syllabus, schedule, slides, assignments, rules/policies, prof/TA info, office hour info
- Links to useful resources
- **Piazza**: questions/answers
 - Post all of your questions here
 - Questions must be "public" unless good reason otherwise
 - No code or copyable answers in public posts!
- Sakai: just assignment submission and gradebook

Textbook

- Text: Computer Security: Principles and Practice (4th Edition), by Stallings & Brown
 - Get the <u>GLOBAL EDITION</u>, it's the EXACT SAME BOOK for cheaper.
- The course uses the textbook highly out-of-order, see course site for readings.

Workload

- Homework assignments <u>discussed</u> collaboratively, <u>done</u> individually
 - Pencil and paper problems
 - Programming problems
 - Technical exercises
 - Attack and defense scenarios
 - Data manipulation and automation tasks
 - Security is broad and diverse field → Lots of different things to practice → Lots of work!!

Some collaboration is allowed

ALLOWED: Collaboration on *approach* or *concepts*. DISALLOWED: Collaboration on *answers*.

All artifacts you submit must be entirely your own.

Grading Breakdown

HW0!	Assignment	%
	Homeworks	60%
	Exam 1	10%
	Exam 2	10%
	Final Exam	20%

Partial credit is available – provide detail in your answers to seek it!

Late homework submissions incur penalties as follows:

- Submission is 0-24 hours late: total score is multiplied by 0.9
- Submission is 24-48 hours late: total score is multiplied by 0.8
- Submission is more than 48 hours late: total score is multiplied by the <u>Planck constant</u> (in J·s)

NOTE: If you feel *in advance* that you may need an extension, contact the instructor.

These assignments are looooooooooong. START EARLY.

~6.6×10⁻³⁴

Homework Zero

- Due Thursday night
- Designed to get you familiar with UNIX in general and Linux in particular
- UNIX skills are for more than this course there's a reason people use these tools!
- If you're having trouble, post on Piazza and we can help you.

This is the same Homework 0 sometimes given in ECE/COMPSCI 250.

If you've already done it there, you don't need to do it again – just submit the screenshot from the training system.

Grade Appeals

- All regrade requests must be in writing to the TA
- After speaking with the TA, if you still have concerns, contact the instructor
- All regrade requests must be submitted no later than 1 week after the assignment was returned to you.

Academic Misconduct

- Academic Misconduct
 - Refer to Duke Community Standard
 - Homework content is individual you do your own work
 - Common examples of cheating:
 - Copying and rephrasing written answers from another student
 - Using code or answers from an outside source
- I will not tolerate any academic misconduct!
- "But I didn't know that was cheating" is not a valid excuse

Some collaboration is allowed

ALLOWED: Collaboration on *approach* or *concepts*. DISALLOWED: Collaboration on *answers*.

All artifacts you submit must be entirely your own.

Goals of This Course

- Things you will understand after this course:
 - Fundamental security objectives: Confidentiality, Integrity, and Availability
 - How to develop and describe a threat model
 - The types of security threats and attacks that must be dealt with
 - How to distinguish among various types of intruders and their behavior patterns
 - The poor programming practices that cause many security vulnerabilities
 - Major networking protocols, standards, and tools
 - Symmetric and asymmetric cryptography including message authentication
 - User authentication
 - How to reason about and implement security policies
 - How to secure operating systems, databases, hypervisors, and cloud environments
 - The role of firewalls, intrusion detection, and intrusion prevention systems
 - Security auditing and forensics
 - Social engineering attacks
 - Ethical and legal aspects of security

Our Responsibilities

- The instructor and TA will...
 - Provide lectures/recitations at the stated times
 - Set clear policies on grading
 - Provide timely feedback on assignments
 - Be available out of class to provide reasonable assistance
 - Respond to comments or complaints about the instruction provided
- Students are expected to...
 - Receive lectures/recitations at the stated times
 - Turn in assignments on time
 - Seek out of class assistance in a timely manner if needed
 - Provide frank comments about the instruction or grading as soon as possible if there are issues
 - Assist each other *within the bounds of academic integrity*

Computing resources

- We'll make extensive use of VMs from the Duke Virtual Computing Manager: <u>https://vcm.duke.edu/</u>
 - Students in this course will have their VM limit raised to 4
 - These VMs have public internet IP addresses practice good security!
- Later, you will be given access to VMs running Kali Linux (a distribution of Linux with many security tools pre-installed)
 - Take care of these if you blow one up, IT has to rebuild it.
- We will use shared target machines from time to time
 - Treat these with respect unless otherwise noted, you should ONLY do the prescribed actions to them. Do not "attack" systems you are not explicitly told to.

Ethics in Security

- There are three flavors of security practitioner in the world:
 - White hat: Obey the law, work to make systems secure
 - Black hat: Break the law, infiltrate (usually for profit)
 - Grey hat: Does both (so still super unethical)
- There is ONE flavor of security practitioner in this course:

• All students must sign and turn in an **ethics pledge** in order to receive credit on any assignments (see course site!)