
ECE590
Computer and Information Security

Fall 2018

User Authentication and Access Control

Tyler Bletsch

Duke University

2

User Authentication

Determining if a user is who they say they are
before giving them access.

The four means of authenticating
user identity are based on:

Something
the

individual
knows

• Password, PIN,
answers to
prearranged
questions

Something
the

individual
possesses

(token)

• Smartcard,
electronic
keycard,
physical key

Something
the

individual is
(static

biometrics)

• Fingerprint,
retina, face

Something
the

individual
does

(dynamic
biometrics)

• Voice pattern,
handwriting,
typing rhythm

Figure 3.2 Multifactor Authentication

Client Client

Aut
he

nt
ic
at

io
n

pr
ot

oc
ol

Authentication

logic using

f rst factor

Pass

Fail

Aut
he

nt
ic
at

io
n

pr
ot

oc
ol

Authentication

logic using

second factor

Pass

Fail

The four means of authenticating
user identity are based on:

Something
the

individual
knows

• Password, PIN,
answers to
prearranged
questions

Something
the

individual
possesses

(token)

• Smartcard,
electronic
keycard,
physical key

Something
the

individual is
(static

biometrics)

• Fingerprint,
retina, face

Something
the

individual
does

(dynamic
biometrics)

• Voice pattern,
handwriting,
typing rhythm

Password-Based
Authentication

• Widely used line of defense against

intruders
o User provides name/login and password

o System compares password with the one stored for that

specified login

• The user ID:
o Determines that the user is authorized to access the system

o Determines the user’s privileges

o Is used in discretionary access control

7

Password Vulnerabilities

• Offline dictionary attack (e.g., cracking a hashed password)

 Defense: Make harder by salting, iteration count

• Specific account attack (e.g., dictionary attack on account)

 Defense: Max attempt counter, password complexity requirements

• Popular password attack (try few passwords on many accounts)

 Defense: Password complexity requirements

• Password guessing against single user (do research then guess)

 Defense: User training, password complexity requirements

• Workstation hijacking (physically use logged-in workstation)

 Defense: Physical security, auto-lock timers

• Exploiting user mistakes (Post-Its, sharing, unchanged defaults, ...)

 Defense: Training, single-use expiring passwords for new accounts

• Exploiting multiple password use

 Defense for individual: Password managers with strong crypto

 Defense for organization: ?????

• Electronic monitoring (sniffing network, keylogger, etc.)

 Defense: Encryption, challenge-response schemes, training

User ID
Salt

Password

Load

Select

(a) Loading a new password

(b) Verifying a password

Figure 3.3 UNIX Password Scheme

Salt

•

•

•

Password File

Hash code

User ID
User id

Salt

Password File

slow hash

function

Salt

Hashed password

Password

slow hash

function

Compare

Hash code

9

Evolution of UNIX scheme

• Originally: hash stored in public-readable /etc/passwd file

• Now: hash stored in separate root-readable /etc/shadow file

• Originally: small hash, few iterations

• Later: MD5 hash, more iterations

• Now: SHA 512 hash, configurable iterations

10

Password Cracking

• Dictionary attacks
 Develop a large dictionary of possible passwords and try each against the

password file

 Each password must be hashed using each salt value and then compared to
stored hash values

• Rainbow table attacks
 Pre-compute tables of hash values for all salts

 A mammoth table of hash values

 Can be countered by using a sufficiently large salt value and a sufficiently
large hash length

• Password crackers exploit the fact that people choose easily
guessable passwords
 Shorter password lengths are also easier to crack

11

Storing passwords correctly

• Storing password plaintext (or encrypted)

• Storing hashed password

• Storing salted hash of password

• Hash function has iteration count

• Just use PBKDF2, scrypt, bcrypt, etc.

• Have a user management library handle it

Link

Link

Link

Link

Link

Link

Link

Link

I couldn’t find anyone who
bothered to do this yet

didn’t just use one of the
functions below

https://motherboard.vice.com/en_us/article/7xdeby/t-mobile-stores-part-of-customers-passwords-in-plaintext-says-it-has-amazingly-good-security
https://www.troyhunt.com/brief-sony-password-analysis/
https://www.theverge.com/2012/6/6/3067523/linkedin-password-leak-online
https://www.csoonline.com/article/2134124/network-security/adobe-confirms-stolen-passwords-were-encrypted-not-hashed.html
https://thehackernews.com/2017/10/disqus-comment-system-hacked.html
http://fortune.com/2016/08/31/dropbox-breach-passwords/
https://en.wikipedia.org/wiki/NT_LAN_Manager
https://en.wikipedia.org/wiki/Bcrypt

12

Where do stolen hashes go?

• Attacker uses directly, sells on black market, or they leak

• Often, eventually, they hit the public internet:

13

Importance of password storage illustrated (1)

• Plaintext passwords: 100% are “recovered” by attacker (obviously)

• Sorted hashes.org by “percent recovered” – all are unsalted!

• Scroll to lower percent – almost all are salted.

14

Importance of password storage illustrated (2)

• Scroll to very low percentages...most use bcrypt or similar, which
has an iteration count

• Conclusion: How you store password has HUGE effect on what
happens if (when) they are breached!

15

Password Selection Strategies

• User education
 Users can be told the importance of using hard to guess passwords and can

be provided with guidelines for selecting strong passwords

• Computer generated passwords
 Users have trouble remembering them

(good for single-use, bad for long-term)

• Reactive password checking
 System periodically runs its own password cracker to find guessable

passwords

• Complex password policy
 User is allowed to select their own password, however the system checks to

see if the password is allowable, and if not, rejects it

 Goal is to eliminate guessable passwords while allowing the user to select a
password that is memorable

The four means of authenticating
user identity are based on:

Something
the

individual
knows

• Password, PIN,
answers to
prearranged
questions

Something
the

individual
possesses

(token)

• Smartcard,
electronic
keycard,
physical key

Something
the

individual is
(static

biometrics)

• Fingerprint,
retina, face

Something
the

individual
does

(dynamic
biometrics)

• Voice pattern,
handwriting,
typing rhythm

Table 3.3

Card Type Defining Feature Example

Embossed Raised characters only, on

front

Old credit card

Magnetic stripe Magnetic bar on back, characters on front Bank card

Memory Electronic memory inside Prepaid phone card

Smart

 Contact

 Contactless

Electronic memory and processor inside

 Electrical contacts exposed on surface

 Radio antenna embedded inside

Biometric ID card

Types of Cards Used as Tokens

Memory Cards

• Can store but do not process data

• The most common is the magnetic stripe card

• Can include an internal electronic memory

• Can be used alone for physical access

o Hotel room

o ATM

• Provides significantly greater security when combined

with a password or PIN

• Drawbacks of memory cards include:

o Requires a special reader

o Loss of token

o User dissatisfaction

Smart Tokens
• Physical characteristics:

o Include an embedded microprocessor

o A smart token that looks like a bank card

o Can look like calculators, keys, small portable objects

• User interface:
o Manual interfaces include a keypad and display

for human/token interaction

• Electronic interface
o A smart card or other token requires an electronic interface to

communicate with a compatible reader/writer

o Contact and contactless interfaces

• Authentication protocol:
o Classified into three categories:

• Static

• Dynamic password generator

• Challenge-response

Smart Cards

• Most important category of smart token
o Has the appearance of a credit card

o Has an electronic interface

o May use any of the smart token protocols

• Contain:
o An entire microprocessor

• Processor

• Memory

• I/O ports

• Typically include three types of memory:
o Read-only memory (ROM)

• Stores data that does not change during the card’s life

o Electrically erasable programmable ROM (EEPROM)

• Holds application data and programs

o Random access memory (RAM)

• Holds temporary data generated when applications are executed

The four means of authenticating
user identity are based on:

Something
the

individual
knows

• Password, PIN,
answers to
prearranged
questions

Something
the

individual
possesses

(token)

• Smartcard,
electronic
keycard,
physical key

Something
the

individual is
(static

biometrics)

• Fingerprint,
retina, face

Something
the

individual
does

(dynamic
biometrics)

• Voice pattern,
handwriting,
typing rhythm

Biometric Authentication
• Attempts to authenticate an individual based on

unique physical characteristics

• Based on pattern recognition

• Is technically complex and expensive when

compared to passwords and tokens

• Physical characteristics used include:
o Facial characteristics

o Fingerprints

o Hand geometry

o Retinal pattern

o Iris

o Signature

o Voice

Biometric

sensor Biometric

database

Name (PIN)

User interface

(a) Enrollment

Feature

extractor

Biometric

sensor

Name (PIN)

User interface

(b) Verification

One template

N templates

user's identity or

"user unidentified"

Feature

extractor

Feature

matcher

Biometric

sensor

User interface

(c) Identification

Feature

extractor

Feature

matcher

true/false

Figure 3.9 A Generic Biometric System. Enrollment creates

an association between a user and the user's biometric

characteristics. Depending on the application, user

authentication either involves verifying that a claimed user is

the actual user or identifying an unknown user.

Biometric

database

Biometric

database

decision

threshold (t)
imposter

profile

profile of

genuine user

false

match

possible

false

nonmatch

possible

Matching score (s)
average matching

value of imposter

average matching

value of genuine user

Probability

density function

Figure 3.10 Profiles of a Biometric Characteristic of an Imposter and an Authorized

Users In this depiction, the comparison between presented feature and a reference

feature is reduced to a single numeric value. If the input value (s) is greater than a

preassigned threshold (t), a match is declared.

Figure 3.11 Idealized Biometric Measurement

Operating Characteristic Curves (log-log scale)

increase threshold

increased

security,

decreased

convenience

decrease threshold

decreased

security,

inceased

convenience

0.0001% 0.001% 0.01% 0.1%

100%

10%

1%

0.1%

1% 10% 100%

false match rate

fa
ls

e
n

o
n

m
a

tc
h

 r
a

te

eq
u
al

 e
rr

or
 r

at
e

li
n
e

Face Fingerprint

0.0001%

0.1%

1%

10%

100%

0.001% 0.01% 0.1% 1% 10% 100%

Voice Hand Iris

false match rate

fa
ls

e
n

o
n

m
a

tc
h

 r
a
te

Figure 3.12 Actual Biometric Measurement Operating Characteristic Curves, reported

in [MANS01]. To clarify differences among systems, a log-log scale is used.

Remote User Authentication

• Authentication over a network, the Internet,
or a communications link is more complex

• Additional security threats such as:

o Eavesdropping, capturing a password,
replaying an authentication sequence that has
been observed

• Generally rely on some form of a challenge-
response protocol to counter threats

30

Challenge-Response scheme

• Assume we have some authentication secret S
 S = Password, token value, biometric signature, etc...

• Don’t want to send it (or even its hash!)

• Instead, server issues a challenge (random value R) to client that can
only be answered if it has S, but which doesn’t reveal S.

Client Server

I’m user Bob

Oh yeah? Assume R=5248, so
compute h(R + h(S)) for me,
where S is Bob’s password.

Here’s h(R + h(S))

oh ok cool

Table 3.5

Some Potential
Attacks,

Susceptible
Authenticators,

and
Typical Defenses

Attacks Authenticators Examples Typical defenses

Client attack

Password Guessing, exhaustive

search

Large entropy; limited

attempts

Token Exhaustive search Large entropy; limited

attempts, theft of object

requires presence

Biometric False match Large entropy; limited

attempts

Host attack

Password Plaintext theft,

dictionary/exhaustive

search

Hashing; large entropy;

protection of password

database

Token Passcode theft Same as password; 1-time

passcode

Biometric Template theft Capture device

authentication; challenge
response

Eavesdropping,

theft, and
copying

Password "Shoulder surfing" User diligence to keep

secret; administrator
diligence to quickly revoke

compromised passwords;

multifactor authentication

Token Theft, counterfeiting
hardware

Multifactor authentication;
tamper resistant/evident

token

Biometric Copying (spoofing)
biometric

Copy detection at capture
device and capture device

authentication

Replay

Password Replay stolen password

response

Challenge-response

protocol

Token Replay stolen passcode

response

Challenge-response

protocol; 1-time passcode

Biometric Replay stolen biometric

template response

Copy detection at capture

device and capture device

authentication via

challenge-response protocol

Trojan horse

Password, token,

biometric

Installation of rogue

client or capture device

Authentication of client or

capture device within

trusted security perimeter

Denial of
service

Password, token,
biometric

Lockout by multiple
failed authentications

Multifactor with token

(Table is on page 96 in the textbook)

32

Access control

So you’ve proven who you are, but what are you
allowed to do?

33

Topics

• Core concepts

• Access control policies:

 DAC

• UNIX file system

MAC

 RBAC

 ABAC

• Identity federation

34

Subjects, Objects, Actions, and Rights

Subject
(initiator)

• The thing
making the
request (e.g.
the user)

Verb
(request)

• The
operation to
perform
(e.g., read,
delete, etc.)

Right
(permission)

• A specific
ability for
the subject
to do the
action to the
object.

Object
(target)

• The thing
that’s being
hit by the
request (e.g.,
a file).

35

Categories of Access Control Policies

• Discretionary AC (DAC): There’s a list of permissions attached to the
subject or object (or possibly a giant heap of global rules).

• Mandatory AC (MAC): Objects have classifications, subjects have
clearances, subjects cannot give additional permissions.
 An overused/abused term

• Role-Based AC (RBAC): Subjects belong to roles, and roles have all
the permissions.
 The current Enterprise IT buzzword meaning “good” security

• Attribute-Based AC (ABAC): Subjects and objects have attributes,
rules engine applies predicates to these to determine access
 Allows fine-grained expression

 Usually complex, seldom implemented

Discretionary Access Control

(DAC)

• Scheme in which an entity may enable another

entity to access some resource

• Often provided using an access matrix

o One dimension consists of identified subjects that may

attempt data access to the resources

o The other dimension lists the objects that may be

accessed

• Each entry in the matrix indicates the access rights

of a particular subject for a particular object

37

DAC model

bool IsActionAllowed(subject, object, action) {

 if (action ∈ get_permissions(subject,object))

 return true

}

38

Implementation

• Can use various data structures,
none of which should surprise you

Own
Read
Write

Read

Write

Own
Read
Write

Own
R
W

AFile 1

•

Read

Read

Write Read

Own
Read
Write

Own
Read
Write

User A

User BSUBJECTS

OBJECTS

User C

File 2File 1

(a) Access matrix

Figure 4.2 Example of Access Control Structures

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

File 3 File 4

R

B

•

R
W

C

File 1User C

•

R

File 2

•

R
W

File 4

File 1User B

•

R W

File 2

• •

File 3 File 4

Own
R
W

BFile 2

•

R

C

Own
R
W

Own
R
W

Own
R
W

Own
R
W

File 1User A

•

File 3

Own
R
W

AFile 3

•

W

B

Own
R
W

B

R

File 4

•

C

R

Own
Read
Write

Read

Write

Own
Read
Write

Own
R
W

AFile 1

•

Read

Read

Write Read

Own
Read
Write

Own
Read
Write

User A

User BSUBJECTS

OBJECTS

User C

File 2File 1

(a) Access matrix

Figure 4.2 Example of Access Control Structures

(b) Access control lists for files of part (a)

(c) Capability lists for files of part (a)

File 3 File 4

R

B

•

R
W

C

File 1User C

•

R

File 2

•

R
W

File 4

File 1User B

•

R W

File 2

• •

File 3 File 4

Own
R
W

BFile 2

•

R

C

Own
R
W

Own
R
W

Own
R
W

Own
R
W

File 1User A

•

File 3

Own
R
W

AFile 3

•

W

B

Own
R
W

B

R

File 4

•

C

R

Subject Access
Mode

Object

A Own File 1

A Read File 1

A Write File 1

A Own File 3

A Read File 3

A Write File 3

B Read File 1

B Own File 2

B Read File 2

B Write File 2

B Write File 3

B Read File 4

C Read File 1

C Write File 1

C Read File 2

C Own File 4

C Read File 4

C Write File 4

Matrix

Linked list

Flat list

UNIX File Access Control

•Control structures with key information needed for a particular file

• Several file names may be associated with a single inode

•An active inode is associated with exactly one file

• File attributes, permissions and control information are sorted in the
inode

•On the disk there is an inode table, or inode list, that contains the
inodes of all the files in the file system

•When a file is opened its inode is brought into main memory and
stored in a memory resident inode table

UNIX files are administered using inodes (index nodes)

•May contain files and/or other directories

•Contains file names plus pointers to associated inodes

Directories are structured in a hierarchical tree

UNIX
File Access Control

 Unique user identification
number (user ID)

 Member of a primary group
identified by a group ID

 Belongs to a specific group

 12 protection bits

 Specify read, write, and
execute permission for the
owner of the file, members
of the group and all other
users

 The owner ID, group ID, and
protection bits are part of the
file’s inode

Figure 4.5 UNIX File Access Control

(a) Traditional UNIX approach (minimal access control list)

rw- r-- ---

O
w

ner
 c
la

ss

G
ro

up c
la

ss

O
th

er
 c
la

ss

user: :rw-

group::r--

other::---

(b) Extended access control list

masked

entries

rw- rw- ---

O
w

ner
 c
la

ss

G
ro

up c
la

ss

O
th

er
 c
la

ss

user: :rw-

user:joe:rw-

group::r--

mask::rw-

other::---

Traditional UNIX
File Access Control

 “Set user ID”(SetUID)

 “Set group ID”(SetGID)
 System temporarily uses rights of the file owner/group in

addition to the real user’s rights when making access
control decisions

 Enables privileged programs to access files/resources not
generally accessible

 Sticky bit
 When applied to a directory it specifies that only the owner

of any file in the directory can rename, move, or delete
that file

 Superuser
 Is exempt from usual access control restrictions

 Has system-wide access

Figure 4.5 UNIX File Access Control

(a) Traditional UNIX approach (minimal access control list)

rw- r-- ---

O
w

ner
 c
la

ss

G
ro

up c
la

ss

O
th

er
 c
la

ss

user: :rw-

group::r--

other::---

(b) Extended access control list

masked

entries

rw- rw- ---

O
w

ner
 c
la

ss

G
ro

up c
la

ss

O
th

er
 c
la

ss

user: :rw-

user:joe:rw-

group::r--

mask::rw-

other::---

43

File system access control lists (ACLs)

• Arbitrary list of rules governing access per-file/directory

• More flexible than classic UNIX permissions, but
more metadata to store/check

Windows ACL UI
Examples of Linux ACL commands

From Arch Wiki

https://wiki.archlinux.org/index.php/Access_Control_Lists

44

Topics

• Core concepts

• Access control policies:

 DAC

• UNIX file system

MAC

 RBAC

 ABAC

• Identity federation

45

MAC example: SELinux

• Developed by U.S. Dept of Defense

• General deployment starting 2003

• Can apply rules to virtually every user/process/hardware pair

• Rules are governed by system administrator only
 No such thing as “selinux_chmod” for users

46

MAC example: SELinux

47

MAC model

bool IsActionAllowed(subject, object, action) {

 for each rule in rules:

 if rule allows (subject,object,action) return true

 return false

}

48

Topics

• Core concepts

• Access control policies:

 DAC

• UNIX file system

MAC

 RBAC

 ABAC

• Identity federation

49

RBAC: The thing you invent if you spend enough
time doing access control

• Scenario:
 Frank: “Bob just got hired, please given him access.”

 Admin: “What permissions does he need?”

 Frank : “Same as me.”

• Later, a new system is added
 Bob: “Why can’t I access the new system?!”

 Admin: “Oh, I didn’t know you needed it too…”

 Bob: “I need everything Frank has!”

• Later, Frank is promoted to CTO
 Admin: “Welp, looks like Bob also needs access to our private earnings, since

this post-it says he gets everything Frank has…”

• The admin is later fired amidst allegations of conspiracy to commit
insider trading with Bob. He dies in prison. 

Role 1

Users Roles

Figure 4.6 Users, Roles, and Resources

Resources

Role 2

Role 3

51

RBAC

• Decide what KINDS of users you have (roles)

• Assign permission to roles.

• Assign users to roles.

• When a role changes, everyone gets the change.

• When a user’s role changes, that user gets a whole new set of
permissions.

• No more special unique snowflakes.

• Roles may be partially ordered, e.g. “Production developer” inherits
from “Developer” and adds access to the production servers

52

RBAC implementation

• Unsurprisingly, you can represent this using various data structures.
 Anything that can

represent two matrices:

control wakeup seek

owner

ownerwakeup
read

owner
owner
control

execute

write stop

owner

control

control

read *

write * seek *

R1

R2

R
O

L
E

S

OBJECTS

Rn

R2R1

Figure 4.7 Access Control Matrix Representation of RBAC

Rn

R2R1 Rn

F1 F1 P1 P2 D1 D2

U1

U2

U3

U4

U5

U6

Um

control wakeup seek

owner

ownerwakeup
read

owner
owner
control

execute

write stop

owner

control

control

read *

write * seek *

R1

R2

R
O

L
E

S

OBJECTS

Rn

R2R1

Figure 4.7 Access Control Matrix Representation of RBAC

Rn

R2R1 Rn

F1 F1 P1 P2 D1 D2

U1

U2

U3

U4

U5

U6

Um

53

RBAC model

bool IsActionAllowed(subject, object, action) {

 if (action ∈ get_permissions(subject.role,object))

 return true

}

Director

Engineer 1 Engineer 2

Engineering Dept

Figure 4.9 Example of Role Hierarchy

Project Lead 1 Project Lead 2

Production

Engineer 1

Quality

Engineer 1

Production

Engineer 2

Quality

Engineer 2

Constraints - RBAC
• Provide a means of adapting RBAC to the specifics

of administrative and security policies of an

organization

• A defined relationship among roles or a condition

related to roles

• Types:
Mutually exclusive

roles

•A user can only be
assigned to one role
in the set (either
during a session or
statically)

•Any permission
(access right) can
be granted to only
one role in the set

Cardinality

•Setting a maximum
number with respect
to roles

Prerequisite roles

•Dictates that a user
can only be
assigned to a
particular role if it is
already assigned to
some other specified
role

56

Topics

• Core concepts

• Access control policies:

 DAC

• UNIX file system

MAC

 RBAC

 ABAC

• Identity federation

Attribute-Based Access
Control (ABAC)

• Authorizations based on conditions on properties of

both the resource and the subject

• Strength is its flexibility and expressive power

• Main obstacle: complexity to administer (and

understand)

ABAC Model: Attributes

Subject
attributes

• A subject is an active
entity that causes
information to flow
among objects or
changes the system
state

• Attributes define the
identity and
characteristics of the
subject

Object
attributes

• An object (or
resource) is a passive
information system-
related entity
containing or
receiving information

• Objects have
attributes that can
be leverages to
make access control
decisions

Environment
attributes

• Describe the
operational,
technical, and even
situational
environment or
context in which the
information access
occurs

• These attributes have
so far been largely
ignored in most
access control
policies

59

ABAC in a nutshell

POLICY

Env
attrs

Object
attrs

Subject
attrs

Yes or no

ABAC

Distinguishable because it
controls access to objects

by evaluating rules against
the attributes of entities,

operations, and the
environment relevant to a

request

Relies upon the evaluation
of attributes of the subject,

attributes of the object,
and a formal relationship

or access control rule
defining the allowable
operations for subject-

object attribute
combinations in a given

environment

Systems are capable of
enforcing DAC, RBAC,

and MAC concepts

Allows an unlimited
number of attributes to be

combined to satisfy any
access control rule

Figure 4.10 Simple ABAC Scenario

1

2a

2b

2c

2d

3

Access Control

Policy

Subject Attributes
ObjectAttributes

Access Control

Mechanism

Decision
Enforce

Environmental

Conditions

Affiliation

Clearance
Name

Etc. Classification

Owner
Type

Etc.

Rules

Subject

Object

62

ABAC model

bool IsActionAllowed(subject, object, action) {

 for each rule in rules {

 The rule is basically code that examines all attributes of subject and
object as well as the global environment; the rule is highly expressive,
and so could basically do anything. If it says yes, return true

 }

 return false

}

63

Topics

• Core concepts

• Access control policies:

 DAC

• UNIX file system

MAC

 RBAC

 ABAC

• Identity federation

Identity Federation

• Term used to describe the technology, standards,

policies, and processes that allow an organization

to trust digital identities, identity attributes, and

credentials created and issued by another

organization

• Addresses two questions:

o How do you trust identities of individuals from external

organizations who need access to your systems

o How do you vouch for identities of individuals in your

organization when they need to collaborate with external
organizations

65

Identity Federation made simple

• Translation:

• Allow one entity to manage the concept of “logging in” (credentials,
etc.), and communicate that to another entity on behalf of the user

• Want a standard to support federation from any provider? OAuth

• Duke has an authentication system: Duke NetID
 You can write apps that use OAuth to allow login via Duke NetID

Corporate providers: Google/Facebook Open provider framework: OpenID

66

Any questions?

