ECE590
Computer and Information Security

Fall 2018

User Authentication and Access Control

Tyler Bletsch
Duke University

User Authentication

Determining if a user is who they say they are
before giving them access.

Ine Tour means of aurtnenticaling
USEr Iaeniity dre nased on:

Authentication o
logic using Authentication

f rst factor logic using
second factor

SECURITY

=t

Figure 3.2 Multifactor Authentication

Ine Tour means of aurtnenticaling

o
USEr Iaeniity dre nased on:
)

Password-Based
Authentication

« Widely used line of defense against

Infruders

o User provides name/login and password

o System compares password with the one stored for that
specified login

* The user ID:
o Determines that the user is authorized to access the system
o Determines the user’s privileges
o Is used in discretionary access control

Password Vulnerabilities

e Offline dictionary attack (e.g., cracking a hashed password)
= Defense: Make harder by salting, iteration count
e Specific account attack (e.g., dictionary attack on account)
= Defense: Max attempt counter, password complexity requirements
e Popular password attack (try few passwords on many accounts)
= Defense: Password complexity requirements
e Password guessing against single user (do research then guess)
= Defense: User training, password complexity requirements
e Workstation hijacking (physically use logged-in workstation)
= Defense: Physical security, auto-lock timers
e Exploiting user mistakes (Post-Its, sharing, unchanged defaults, ...)
= Defense: Training, single-use expiring passwords for new accounts
e Exploiting multiple password use
= Defense for individual: Password managers with strong crypto
= Defense for organization: ?????
e Electronic monitoring (sniffing network, keylogger, etc.)
= Defense: Encryption, challenge-response schemes, training

Password Password File

User ID Salt Hash code
slow hash
function

(a) Loading a new password

Password File

User ID Salt Hash code

Select Password

slow hash
function

Hashed password

(b) Verifying a password

Figure 3.3 UNIX Password Scheme

Evolution of UNIX scheme

e Originally: hash stored in public-readable /etc/passwd file
* Now: hash stored in separate root-readable /etc/shadow file

e Originally: small hash, few iterations
e Later: MD5 hash, more iterations
e Now: SHA 512 hash, configurable iterations

Password Cracking

e Dictionary attacks

= Develop a large dictionary of possible passwords and try each against the
password file

= Each password must be hashed using each salt value and then compared to
stored hash values

e Rainbow table attacks
= Pre-compute tables of hash values for all salts
= A mammoth table of hash values

= Can be countered by using a sufficiently large salt value and a sufficiently
large hash length

e Password crackers exploit the fact that people choose easily
guessable passwords

= Shorter password lengths are also easier to crack

10

Storing passwords correctly

e Storing password plaintext (or encrypted)

‘[- -Mobile-j
=101\''4
F\\ Adobe

—
>
=~

e Storing hashed password

— Windows Link

LT

mm

| couldn’t find anyone who
bothered to do this yet
didn’t just use one of the
functions below

_,:" it ® Just use PBKDF2, scrypt, bcrypt, etc.

« 1 * Have a user management library handle it

https://motherboard.vice.com/en_us/article/7xdeby/t-mobile-stores-part-of-customers-passwords-in-plaintext-says-it-has-amazingly-good-security
https://www.troyhunt.com/brief-sony-password-analysis/
https://www.theverge.com/2012/6/6/3067523/linkedin-password-leak-online
https://www.csoonline.com/article/2134124/network-security/adobe-confirms-stolen-passwords-were-encrypted-not-hashed.html
https://thehackernews.com/2017/10/disqus-comment-system-hacked.html
http://fortune.com/2016/08/31/dropbox-breach-passwords/
https://en.wikipedia.org/wiki/NT_LAN_Manager
https://en.wikipedia.org/wiki/Bcrypt

Where do stolen hashes go?

e Attacker uses directly, sells on black market, or they leak
e Often, eventually, they hit the public internet:

m Hashes.arg - Public Leaks x +

C Y & httpsy//hashes.org w & @ @'B (3]

HG.S]:'.I.QS.OIg

SHARED COMMUNITY PASSWORD RECOVERY

HOME FORUM HASH - CRACKING - LISTS -~ USER - MDXFIND FAQ

LEAKS (361)

ep ery hashlist

fyo rger list (o

data dumps) to get added to the leaks section, p! end a link to dump@hashes.org mentioning the source and we'll take care about
ding it to hashes.org

Show| 25 v entries Search:

D Name (Algorithm) #Hashes Left Found Recovered Updated

61 e 134 1 133 99.25% 2018.05.29
02:18:07

62 Blacklotus.net 115 176 87 89 50.57% 2018.05.29 m
02:18:07

529 AJMISSIONINFO.C0. vEULLETIN 290 79 211 72.76% 2018.05.29 m
02:21:16

59 Ararchive.com s 310 2 308 99.35% 2018.05.29 m
02:18:07 12

-

Importance of password storage illustrated (1)

e Plaintext passwords: 100% are “recovered” by attacker (obviously)
e Sorted hashes.org by “percent recovered” — all are unsalted!

1D Name (Algorithm) #Hashes Left Found Recovered Updated

780 Pingpong.su 1os 32394 0 32394 100% 2018.05.31 m
19:45:34

506 Shadi.com sHa1 1136'091 35 1136'056 100% 2018.09.28 m
11:57:53

35 Zoosk.com rps 29013020 266 29012754 100% 2018.09.10 m
13:08:06

70 Have | been Pwned V1 stal 320294'464 75'523 320218'941 99.98% 2018.08.25 m
13:34:22

26 Op Northkarea ros 6'393 4 6389 99.94% 2018.05.29
02:18:03

698 Fon 105 85'033 84 84'949 99.9% 2018.09.12 m
14:41:54

e Scroll to lower percent — almost all are salted.

249 Xronize.com 1isE 43795 171106 26'689 60.94% 2018.09.14 m
16:58:06
783 politicalforum.com veuLLzTIn 31'588 12'396 19192 60.76% 2018.09.01 m m
08:56:03
208'236 81736 126'500 60.75% 2018.05.29 m m
02:18:30
630 AGUIEFOrUR 37! vou. eI 7'853 3094 2759 60.6% 2018.08.28 m m
18:42:52
812 Snowandmud.com vz N 53722 21258 32463 60.43% 2018.09.01 m m
08:56:03
660 Bodyweb.com veuLLETIN 79'696 31'800 47'896 60.1% 2018.09.01 m m
08:55:58
625 VECORIINUX.COM)| 5Hx1(SALTPLATH) 18'343 71402 10'941 59.65% 2018.05.29 m m
02:21:16 13

115 DayZ.com i1+

Importance of password storage illustrated (2)

e Scroll to very low percentages...most use bcrypt or similar, which
has an iteration count

e Conclusion: How you store password has HUGE effect on what
happens if (when) they are breached!

14

Password Selection Strategies

e User education

= Users can be told the importance of using hard to guess passwords and can
be provided with guidelines for selecting strong passwords

e Computer generated passwords

= Users have trouble remembering them
(good for single-use, bad for long-term)

e Reactive password checking

= System periodically runs its own password cracker to find guessable
passwords

e Complex password policy

= User is allowed to select their own password, however the system checks to
see if the password is allowable, and if not, rejects it

= Goalis to eliminate guessable passwords while allowing the user to select a
password that is memorable

15

Ine Tour means of aurtnenticaling
USEr Iaeniity dre nased on:

é)

Table 3.3

Card Type Defining Feature

Raised characters only, on | Old credit card
front

Magnetlc stripe Magnetic bar on back, characters on front Bank card

Electronic memory inside Prepald phone card

Smart Electronic memory and processor inside Biometric ID card
Contact Electrical contacts exposed on surface
Contactless Radio antenna embedded inside

Types ot Cards Used as Tokens

Memory Cards

Can store but do not process data
The most common is the magnetic stripe card
Can include an internal electronic memory

Can be used alone for physical access

o Hotel room
o ATM

Provides significantly greater security when combined
with a password or PIN

Drawbacks of memory cards include:
o Requires a special reader

O Loss of token

o User dissatisfaction

Smart Tokens

Physical characteristics:
o Include an embedded microprocessor
o A smart token that looks like a bank card
o Can look like calculators, keys, small portable objects

User interface:

o Manual interfaces include a keypad and display
for human/token interaction

Electronic inferface

o A smart card or other token requires an electronic interface to
communicate with a compatible reader/writer

o Contact and contactless interfaces

Authentication protocol:
o Classified into three categories:
» Static
* Dynamic password generator
* Challenge-response

Smart Cards

* Most important category of smart token
o Has the appearance of a credit card
o Has an electronic interface
o May use any of the smart token protocols

* Contain:
o An entire microprocessor
* Processor
* Memory
* |/O ports

* Typically include three types of memory:
o Read-only memory (ROM)
» Stores data that does not change during the card’s life
o Electrically erasable programmable ROM (EEPROM)
* Holds application data and programs
o Random access memory (RAM)
* Holds temporary data generated when applications are executed

Smart card Card reader

2 ATR

Protocol negotiation PTS

EE—

Negotiation Answer PTS

o A S
Command APDU ;
(¢ Response APDU

APDU = application protocol data unit
ATE = Answer to reset
PTS = Protocol type selection

Figure 3.6 Smart Card/Reader Exchange

Ine Tour means of aurtnenticaling
USEr Iaeniity dre nased on:

/

Biometric Authentication

Attempts to authenticate an individual based on
unigue physical characteristics

Based on pattern recognition

Is technically complex and expensive when
compared to passwords and tokens

Physical characteristics used include:
o Facial characteristics
o Fingerprints
o Hand geometry
o Retinal pattern
o Iris
o Signature
o Voice

Hand
Retina

Signature

Face Finger

Voice

Accuracy

Figure 3.8 Cost Versus Accuracy of Various Biometric
Characteristics in User Authentication Schemes.

Name (PIN)

Biometric

User interface

sensor

Feature
extractor

(a) Enrollment

database

Name (PIN)

Biometric

sensor

Feature
extractor

2

User interface

true/false <€—

Feature
matcher

Biometric
database

(b) Verification

Biometric
sensor

Feature
extractor

2

User interface

user's identity or
"user unidentified"

Feature
matcher

One template

Biometric
database

(c) Identification

N templates

Figure 3.9 A Generic Biometric System. Enrollment creates
an association between a user and the user's biometric
characteristics. Depending on the application, user
authentication either involves verifying that a claimed user is
the actual user or identifying an unknown user.

Probability
density function

A

decision

. threshold (7)
Imposter profile of

profile genuine user

N\ /

nonmatch false
possible match
possible

>

Matching score (s

average matching average matching
value of imposter value of genuine user

Figure 3.10 Profiles of a Biometric Characteristic of an Imposter and an Authorized
Users In this depiction, the comparison between presented feature and a reference
feature is reduced to a single numeric value. If the input value (s) is greater than a
preassigned threshold (7), a match is declared.

2
~—
]
S
=
o
~=
i
=
=
=
L
|72}
=
=

0.1%
0.0001% 0.001% 0.01% 0.1%

false match rate

Figure 3.11 Idealized Biometric Measurement
Operating Characteristic Curves (log-log scale)

@ Face (O Fingerprint B \oice

<%}
~—
]
L
=
(3}
N
£
=
(=]
=
[P)
72}
=
S

0.1%
0.0001% 0.001% 0.1%

false match rate

Figure 3.12 Actual Biometric Measurement Operating Characteristic Curves, reported
in [MANSOL1]. To clarify differences among systems, a log-log scale is used.

Remote User Authentication

* Authentication over a network, the Infernet,
or a communications link is more complex

* Additional security threats such as:

o Eavesdropping, capturing a password,
replaying an authentication sequence that has
been observed

* Generdlly rely on some form of a challenge-
response protocol to counter threats

Challenge-Response scheme

e Assume we have some authentication secret S

= S =Password, token value, biometric signature, etc...

e Don’t want to send it (or even its hash!)

e Instead, server issues a challenge (random value R) to client that can
only be answered if it has S, but which doesn’t reveal S.

[N [N

I’m user Bob

Oh yeah? Assume R=5248, so

compute h(R + h(S)) for me,
L] . B ’ .

Client where S is Bob’s password

Server

Here’s h(R + h(S))

oh ok cool

Attacks Authentlcators Typical defenses

Password Guessing, exhaustive Large entropy; limited
search attempts

Exhaustive search Large entropy; limited
Client attack attempts, theft of object
requires presence

Biometric False match Large entropy; limited
attempts
Password Plaintext theft, Hashing; large entropy;
dictionary/exhaustive protection of password
search database
Host attack Passcode theft Same as password; 1-time
passcode

Biometric Template theft Capture device

authentication; challenge
response

Password "Shoulder surfing" User diligence to keep
secret; administrator

diligence to quickly revoke
compromised passwords;

. multifactor authentication
Eavesdropping,

theft, and Theft, counterfeiting Multifactor authentication;
copying hardware tamper resistant/evident
token

Biometric Copying (spoofing) Copy detection at capture
biometric device and capture device
authentication

Password Replay stolen password Challenge-response
response protocol
Replay stolen passcode Challenge-response
Replay response protocol; 1-time passcode

Biometric Replay stolen biometric | Copy detection at capture
template response device and capture device
authentication via
challenge-response protocol

Password, token, Installation of rogue Authentication of client or
Trojan horse biometric client or capture device capture device within
trusted security perimeter

Denial of Password, token, Lockout by multiple Multifactor with token
service biometric failed authentications

Table 3.5

Some Potential
Attacks,
Susceptible
Authenticators,
and
Typical Defenses

(Table is on page 26 in the textbook)

Access control

So you’ve proven who you are, but what are you
allowed to do?

" MAC
= RBAC
= ABAC

e |dentity federation

Subjects, Objects, Actions, and Rights

Subject Verb Right Object
(initiator) (request) (permission) (target)

e The thing e The e A specific e The thing
making the operation to ability for that’s being
request (e.g. perform the subject hit by the
the user) (e.g., read, to do the request (e.g.,

delete, etc.) action to the a file).
object.
<&\\ 4 >
¥ / \

34

Categories of Access Control Policies

e Discretionary AC (DAC): There’s a list of permissions attached to the
subject or object (or possibly a giant heap of global rules).

e Mandatory AC (MAC): Objects have classifications, subjects have
clearances, subjects cannot give additional permissions.
= An overused/abused term
e Role-Based AC (RBAC): Subjects belong to roles, and roles have all
the permissions.
= The current Enterprise IT buzzword meaning “good” security
e Attribute-Based AC (ABAC): Subjects and objects have attributes,
rules engine applies predicates to these to determine access

= Allows fine-grained expression
= Usually complex, seldom implemented

35

Discretionary Access Control
(DAC)

Scheme in which an entity may enable another
enftity to access some resource

Often provided using an access matrix

o One dimension consists of identified subjects that may
attempt data access to the resources

o The other dimension lists the objects that may be
accessed
Each entry in the matrix indicates the access rights
of a particular subject for a particular object

DAC model

bool IsActionAllowed(subject, object, action) {
if (action € get_permissions(subject,object))
return true

37

Implementation

e Can use various data structures, Matrix

f which should '
none of which should surprise you
File 1 File 2 File 3 File 4
Own Own
User A Read Read
Write Write
Own
SUBJECTS User B Read Read Write Read
Write
Own
Read
User C Writ Read Read
rite Write
F I a t I i St (a) Access matrix
Subject Access Object
Mode
A own File 1 L . k d I . t
A Read File 1 I n e I S
A Write File 1
A Own File 3
File1—> A | > B | User A—>File1| —>[File3]
A Read File 3 Own | [Oown| | [Own|
A Write File 3 W < W ¥
_ = [C— =
B Read File 1
" File2——>[g — C User B—>{File 1| —>File2
B Own File 2 Own] — —— o
B Read File 2 W * ‘ w
B Write File 2 = = = =
B Write File 3 File3—> A] ™3] User C—>File1] >{Eile2]
Own R
B Read File 4 & w w R
€ Read File 1 L= = = =
© Write File 1 File 4A—> B] —{C]
c Read File 2 R Ol"{v“ (c) Capability lists for files of part (a)
W
© Own File 4 — =
C Read File 4 (b) Access control lists for files of part (a)
Cc Write File 4
Figure 4.2 Example of Access Control Structures

38

UNIX File Access Control

* Control structures with key information needed for a particular file
* Several file names may be associated with a single inode
* An active inode is associated with exactly one file

* File attributes, permissions and control information are sorted in the
inode

e On the disk there is an inode table, or inode list, that contains the
inodes of all the files in the file system

* When a file is opened its inode is brought into main memory and
stored in a memory resident inode table

* May contain files and/or other directories

* Contains file names plus pointers to associated inodes

UNIX

File Access Control

® Unique user identification
number (user ID)

® Member of a primary group
identified by a group ID

Belongs to a specific group group: :r—-
12 protection bits other: : ——-—

® Specify read, write, and
execute permission for the
owner of the file, members
of the group and all other
users

user: rw-

(a) Traditional UNIX approach (minimal access control list)

® The ownerID, group ID, and
protection bits are part of the
file's inode

o “Setuser|D"(SetUID)
“Set group ID"(SetGID)

e System temporarily uses rights of the file owner/group in

addifion to the real user’s rights when making access
conftrol decisions

e Enables privieged programs to access files/resources not
generally accessible

e Sticky bit

e When applied to a directory it specifies that only the owner

of any file in the directory can rename, move, or delete
that file

e Superuser

e Is exempt from usual access control restrictions
e Has system-wide access

user: (Iw- <<

nmwﬂy{ user:joe:rw-

entries group: :r—-

mask: : rw- <

other: :--- <

(b) Extended access control list

Figure 4.5 UNIX File Access Control

File system access control lists (ACLS)

e Arbitrary list of rules governing access per-file/directory

e More flexible than classic UNIX permissions, but
more metadata to store/check

Examples of Linux ACL commands

Windows ACL Ul

- Set all permissions for user johny to file named "abc™
> | OZTtkEn.png Properties [

setfacl -m "u:johny:rux" abc
General | Securty | Details | Previous Versions

Check permissions

Object name: C:\Users'tkbletsc\Dropbo 02 Ak En png

Group or user names: # getfacl abc
o, . # file: abc
-". tkbletsc (MORT Y dkbletsc) # owner: somsone
. P . #g E
52, Administratars (MORTY\Administrators) usg:??ﬁ.ﬂ._someone
user: johny : rwx
group:.r--
mask: : rwx
other::r--
To change permissions, click Edit. Edit
Change permissions for user johny
Pemissions for SYSTEM Allow Dery
Full contral # setfacl -m "u:johny:r-x" abc
Modify
Read & execute Check permissions
Read
Write # getfacl abc
Special permissions & File: abe
owner: somesone

group: someone

Fl_:r special pemissions or advanced settings, Advanced user::ri-
click Advanced. = user: johny:r-x
group:.r--
. mask: :r-x
Leam about access control and permissions other: :r--

0K] | Cancel Apph Remove all extended ACL entries:

setfacl -b abc 43
From Arch Wiki

https://wiki.archlinux.org/index.php/Access_Control_Lists

e Core concepts

e Access control policies:
= DAC
e UNIX file system
= MAC
= RBAC
= ABAC

e |dentity federation

MAC example: SELinux

e Developed by U.S. Dept of Defense

e General deployment starting 2003

e Can apply rules to virtually every user/process/hardware pair
e Rules are governed by system administrator only

= No such thing as “selinux_chmod” for users

45

MAC example: SELinux

Eile Help
Select: o]
Status Customized
File Labeling Filter
User Mapping Active | Module v Description Name
SELinux User apache Allow httpd to act as a FTP server by listening on the httpd_enable_ftp_server
Translation apache Allow HTTPD to run SSI executables in the same dom httpd_ssi_exec
Network Port apache Allow Apache to communicate with avahi service via (allow_httpd_dbus_avahi
Policy Module i apache Allow httpd to use built in scripting (usually php) httpd_builtin_scripting
apache Allow http daemon to send mail httpd_can_sendmail
apache Allow httpd to access nfs file systems httpd_use nfs
i apache Unify HTTPD to communicate with the terminal. Nee httpd_tty_comm
apache Allow Apache to use mod_auth_pam allow_httpd_mod_auth_ntlm_winbind
apache Allow HTTPD scripts and modules to connect to the r httpd_can_network_connect
i apache Unify HTTPD handling of all content files httpd_unified
apache Allow apache scripts to write to public content. Dire allow_httpd_sys_script_anon_write

| apache Allow httpd to read home directories httpd_enable_homedirs

apache Allow Apache to use mod_auth_pam allow_httpd_meod_auth_pam
apache Allow httpd to access cifs file systems httpd_use_cifs
= apache Allow httpd cgi support httpd_enable_cgi
apache Allow HTTPD scripts and modules to network conneci httpd_can_network_connect_db
apache Allow httpd to act as a relay httpd_can_network_relay
bind Allow BIND to write the master zone files. Generally { named_write_master_zones
cdrecord Allow cdrecord to read various content. nfs, samba, r cdrecord_read_content
cron Enable extra rules in the cron domain to support fcro fcron_crond
cvs Allow cvs daemen to read shadow allow_cvs_read_shadow
7 domain Allow unlabeled packets to work on system allow_unlabeled_packets
exim Allow exim to connect to databases (postgres, mysqg exim_can_connect_db
exim Allow exim to create, read, write, and delete unprivile exim_manage_user_files
exim Allow exim to read unprivileged user files. exim_read_user_files
ftp Allow ftp to read and write files in the user home dire ftp_home_dir
ftp Allow ftp servers to login to local users and read/writ: allow_ftpd_full_access
ftp Allow ftp servers to use nfs used for public file trans: allow ftpd use nfs S

46

MAC model

bool IsActionAllowed(subject, object, action) {
for each rule in rules:
if rule allows (subject,object,action) return true
return false

}

47

e Core concepts

e Access control policies:
= DAC
e UNIX file system
= MAC
= RBAC
= ABAC

e |dentity federation

RBAC: The thing you invent if you spend enough

time doing access control

e Scenario:
= Frank: “Bob just got hired, please given him access.”
= Admin: “What permissions does he need?”
" Frank : “Same as me.”

e Later, a new system is added
= Bob: “Why can’t | access the new system?!”
= Admin: “Oh, | didn’t know you needed it too...”
= Bob: “I need everything Frank has!”

e Later, Frankis promoted to CTO

= Admin: “Welp, looks like Bob also needs access to our private earnings, since
this post-it says he gets everything Frank has...”

e The admin is later fired amidst allegations of conspiracy to commit
insider trading with Bob. He dies in prison. ®

49

Resources

- Role3 ——M—

Figure 4.6 Users, Roles, and Resour ces

RBAC

e Decide what KINDS of users you have (roles)
e Assign permission to roles.
e Assign users to roles.

e When a role changes, everyone gets the change.

e When a user’s role changes, that user gets a whole new set of
permissions.

e No more special unique snowflakes.

e Roles may be partially ordered, e.g. “Production developer” inherits
from “Developer” and adds access to the production servers

51

RBAC implementation

e Unsurprisingly, you can represent this using various data structures.

= Anything that can
represent two matrices:

Uy X X
OBJECTS
v X
R, R, R, F, Fy P, P, D, D,
owner read
R, | control | owner control read owner | Wakeup | wakeup | seek owner Us x
R control write = | execute owner seek
. R Us x
=
=i
o
-4
R, control write stop
v, | &

Figure 4.7 Access Control Matrix Representation of RBAC

52

RBAC model

bool IsActionAllowed(subject, object, action) {
if (action € get_permissions(subject.role,object))
return true

53

Director

/\

Project Lead 1 Project Lead 2

T N

Production Quality Production Quality
Engineer 1 Engineer 1 Engineer 2 Engineer 2

\/

Engineer 1 Engineer 2

Engineering Dept

Figure 4.9 Example of Role Hierarchy

« Provide a means of adapting RBAC 1o the specifics
of administrative and security policies of an
organization

« A defined relationship among roles or a condition
related to roles

« Jypes:

* A user can only be *Setting a maximum *Dictates that a user
assigned to one role number with respect can only be
in the set (either to roles assigned to @

during a session or particularrole if it is
statically) already assigned to

* Any permission some other specified

(access right) can role
be granted to only
one role in the set

e Core concepts

e Access control policies:
= DAC
e UNIX file system
= MAC
= RBAC
= ABAC

e |dentity federation

Attribute-Based Access
Control (ABAC)

Authorizations based on conditions on properties of
both the resource and the subject

Strength is its flexibility and expressive power

Main obstacle: complexity to administer (and
understand)

ABAC Model: Attributeém

* A subject is an active

entity that causes
information to flow
among objects or
changes the system
state

o Attributes define the
identity and

characteristics of the

subject

e An object (or

resource) is a passive
information system-
related entity
containing or
receiving information

Objects have
attributes that can
be leverages to
make access control
decisions

e Describe the

operational,
technical, and even
situational
environment or
context in which the
information access
OCCurs

e These attributes have

so far been largely
ignored in most
access control
policies

ABAC in a nutshell m

Subject
attrs

POLICY ‘ Yes or no

59

ABAC

Relies upon the evaluation
of attributes of the subject,
attributes of the object,
and a formal relationship
or access control rule

Distinguishable because it
controls access to objects
by evaluating rules against
the attributes of entities,

. defining the allowable
operations, and the . .

. operations for subject-

environment relevant to a . .
object attribute
request B . .
combinations in a given
environment

Allows an unlimited
number of attributes to be
combined to satisfy any

access control rule

Systems are capable of
enforcing DAC, RBAC,
and MAC concepts

Access Control
Policy

Environmental
Conditions

'Access Control
Mechanism
Subject

@ Clearance

<

Affiliation ®/ R
Ia53|f|cat|on

Subject Attributes

ObjectAttributes

Figure 4.10 Simple ABAC Scenario

ABAC model | siip |

bool IsActionAllowed(subject, object, action) {

for each rule in rules {

The rule is basically code that examines all attributes of subject and
object as well as the global environment; the rule is highly expressive,
and so could basically do anything. If it says yes, return true

)

return false

}

62

e Core concepts

e Access control policies:
= DAC
e UNIX file system
= MAC
= RBAC
= ABAC

e |dentity federation

Identity Federation

« Term used to describe the technology, standards,
policies, and processes that allow an organization
to frust digital identities, identity atftributes, and
credentials created and issued by another
organization

« Addresses two questions:

o How do you trust identities of individuals from external
organizations who need access to your systems

o How do you vouch for identities of individuals in your
organization when they need to collaborate with external
organizations

Identity Federation made simple

e Translation:

Signinto Etsy User:

Password:
& continue with Google

n Continue with Facebook
Register Sign In | = Login with OpenlD |

Open provider framework: OpenID

_| Remember me on this computer

Corporate providers: Google/Facebook

e Allow one entity to manage the concept of “logging in” (credentials,
etc.), and communicate that to another entity on behalf of the user

e Want a standard to support federation from any provider? OAuth

e Duke has an authentication system: Duke NetID
= You can write apps that use OAuth to allow login via Duke NetID

65

Any questions?

