ECE 650
Systems Programming & Engineering

Spring 2018

Concurrency and Synchronization

Tyler Bletsch
Duke University

Slides are adapted from Brian Rogers (Duke)

Concurrency

A Multiprogramming
A Supported by most all current operating systems
AMore than one fAunit of executi ondcd

A Uniprogramming
A A characteristic of early operating systems, e.g. MS/DOS
A Easier to design; no concurrency

AWhat do we mean by a dAdunit of

Process vs. Thread

Process vs. Thread

Stack

SP

A

Heap

Static Data

Code

— PC

Process
1

A Aprocess isi

Stack _
«— SP I EXxecution context
A Program counter (PC)
A Stack pointer (SP)
A Registers
I Code
Heap i Data
Static Data i Stack
Code «— PC
I Separate memory views
Process] .
5 provided by virtual memory

abstraction (page table)

Process vs. Thread

A Processvs. Thread

A thr IS T
Stack (T1) A) thread _ >
«— SP (T1) | Execution context
A Program counter (PC)
Stack (T2) A Stack pointer (SP)
— SP (T2) A Registers
Heap
Static Data
«— PC (T2)
Code
«— PC (T1)

Thread

Process vs. Thread

A Process: unit of allocation
A resources, privileges, etc.

A Thread: unit of execution
A PC, SP, registers

A Thread is a unit of control within a process

A Every process has one or more threads
A Every thread belongs to one process

C)

Process

{Threadj {Threadj [Threadj
N /

C)

Process

_ /

C)

Process

_ /

Process Execution

A When we execute a program
A OS creates a process
A Contains code, data
A OS manages process until it terminates

A We will talk more later about process management
(e.g. scheduling, system calls, etc.)

A Every process contains certain information
A Process ID number (PID)
AProcess state (06r ea idforéschedalingpurposen)g
A Program counter, stack pointer, CPU registers
A Memory management info, files, 1/0

Process Execution (2)

A A process is created by the OS via system calls
A fork(): make exact copy of this process and run
A Forms parent/child relationship between old/new process
A Return value of fork indicates the difference
AChild returns O:; parent returns
A exec(): can follow fork() to run a different program
A Exec takes filename for program binary from disk
ALoads new program into the curr

A A process may also create & start execution of threads
A Many ways to do this
A System call: clone(); Library call: pthread_create()

t o Concurrenc

A We have multiple units of execution, but single resources
A CPU, physical memory, 10 devices
A Developers write programs as if they have exclusive access

A OS provides illusion of isolated machine access
A Coordinates access and activity on the resources

How Does the OS Manage?

A lllusion of multiple processors
A Multiplex threads in time on the CPU

AEach virtual ACPUO needs a struct
A Program Counter (PC), Stack Pointer (SP)
ARegi sters (lnteger, FIl oating po

A How switch from one CPU to the next?
A Save PC, SP, and registers in current state block
A Load PC, SP, and registers from new state block
A What triggers switch?
A Timer, voluntary yield, 1/O, other things

A We will talk about other management later in the course
A Memory protection, 10, process scheduling

Concurrent Program

A Two or more threads execute concurrently
AMany ways this may occur é
A Multiple threads time-slice on 1 CPU with 1 hardware thread
A Multiple threads at same time on 1 CPU with n HW threads
A Simultaneous multi-t hr eadi ng Hyeerthgeadingont e |
A Multiple threads at same time on m CPUs withn HW threads

AChipmult-cpr ocessor (CMP, commonly ¢
Symmetric multi-processor (SMP)

A Cooperate to perform a task

A How do threads communicate?
A Recall they share a process context
A Code, static data, heap
A Can read and write the same memory
A variables, arrays, structures, etc.

10

Motivation for a Problem

A What if two threads want to add 1 to shared variable?
A x is initialized to O

e lw rl, 0(0x8000)
X=X+ 1 May get compiled into: addi rlri 1

(x 1s at mem location 0x8000) | sw r1, 0(0x8000)

A A possible interleaving:
P1 P2

w rl, 0(0x8000)

w rl, 0(0x8000)
addirl, rl, 1

addirl, r1, 1
sw rl, 0(0x8000)

sw rl, 0(0x8000)

A At the end, x will have a value of 1 in memory!! "O

11

Another Example — Linked List

head » vall[next}—{val2[next} =X
@ head /#vall nextl—{ val2[next|—&X)
Insert at head of linked list: val3 next
Node new_node = new Node();
new_node - >data = rand(); @ head vall[nextl—{val2[next—=)
new_node - >next = head; <—>
head = new_node; val4 | next
val3 | next
@ head vall[next}—{val2[next—>X)
val4d | next
val3 | next

A Two concurrent threads (A & B) want to add a new element to list
1. A executes first three instructions & stalls for some reason (e.g. cache miss)
2. B executes all 4 instructions
3. A eventually continues and executes 4" instruction
A Item added by thread B is lost!

12

Race Conditions

A These example problems occur due to race conditions

A Race Condition

A Result of computation by concurrent threads depends on the precise
timing of the execution of an instruction sequence by one thread
relative to another

A Sometimes result may be correct, sometimes incorrect
A Depends on execution timing
A Non-deterministic result

A Need to avoid race conditions
A Programmer must control possible execution interleaving of threads

13

How to fix race conditions

AHereds what you should NOT dc

Aalf | just wait | ong efinishugh, the
so | ol add a sleep() call or so
AThis doesndét FI X the problem, it

A Can mask the majority of timing delays, which are short, but the bug
will just hide until an unlikely timing event occurs, and BAM!
The bug kills someone.

14

Mutual Exclusion

A Previous examples show problem of multiple processes or
threads performing read/write ops on shared data

A Shared data = variables, array locations, objects

A Need mutual exclusion!
A Enforce that only one thread at a time in a code section
A This section is also called a critical section
A Critical section is set of operations we want to execute atomically

A Provided by lock operations: [iock(x_lock):
X=X+1;
unlock(x_lock);

AAl so note: this isndét only ar
A Think about multiple threads time -sharing a single processor
A What if a thread is interrupted after load/add but before store?

15

Mutual Exclusion

A Interleaving with proper use of locks (mutex)

P1 P2
lock(x_lock)
ldw r1, 0(8000)
addirl, rl, 1
stw rl1, 0(8000)

unlock(x_lock)

lock(x_lock)
ldw r1, 0(8000)
addirl, rl, 1
stw r1, 0(8000)

unlock(x_lock)

A At the end, x will have a value of 2 in memory @

16

Global Event Synchronization

A BARRIER (name,nprocs)
A Thread will wait at barrier call until nprocs threads arrive
A Built using lower level primitives
A Separate phases of computation

A Example use:

A N threads are adding elements of an array into a sum

A Main thread is to print sum

A Barrier prevents main thread from printing sum too early
A Use barrier synchronization only as needed

A Heavyweight operation from performance perspective
A Exposes load imbalance in threads leading up to a barrier

17

Point-to-point Event Synchronization

A A thread notifies another thread so it can proceed

A E.g. when some event has happened
A Typical in producer-consumer behavior

A Concurrent programming on uniprocessors: semaphores
A Shared memory parallel programs: semaphores or monitors or variable

flags
flag
PO: P1:
S1: datum = 5: S3: while (IdatumlisReady) {};

S2: datumisReady = 1;

S4: print datum

monitor
PO: P1:
S1: datum = 5; S3: wait(ready);

S2: signal(ready);

S4: print datum

18

Lower Level Understanding

A How are these synchronization operations implemented?
A Mutexes, monitors, barriers

A An attempt at mutex (lock) implementation

void lock (int *lockvar) {
while (*lockvar == 1) {} ; // wait until released
*lockvar = 1; /[acquire lock

}

void unlock (int *lockvar) {
*lockvar = O;

}

In machine language, it looks like this:
lock: Id R1, &lockvar // R1 = lockvar
bnz R1, lock // jump to lockif R1!=0
st &lockvar, #1 //lockvar =1
ret /l return to caller
unlock: st &lockvar, #0 // lockvar =0
ret // return to caller

19

Problem

A Unfortunately, this attempted solution is incorrect

A The sequence of Id, bnz, and sti are not atomic
A Several threads may be executing it at the same time

A 1t allows several threads to enter the critical section simultaneously

Thread 0 Thread 1
lock: 1ld R1, &lockvar
_ bnz R1, lock lock: 1d R1l, &lockvar
Time sti &lockvar, #1 bnz R1, lock
sti &lockvar, #1

20

Software-only Solutions

APetersondéds Algorithm (mutual

int turn;
int interested[n]; // initialized to O

void lock (int process, int Ivar){ //processisOorl
int other=1 I process;
interested[process] = TRUE;
turn = process;
while (turn == process && interested[other] == TRUE) {} ;
}

I/ Post: turn != process or interested[other] == FALSE

void unlock (int process, int Ivar){
interested[process] = FALSE;

}

A Exit from lock() happens only if:

A interested[other] == FALSE: either the other process has not competed for the lock,
or it has just called unlock()

A turn 1= process: the other process is competing, has set the turn to itself, and will
be blocked in the while() loop

NOTE: This is more of a curiosity than a commonly deployed technique. We use hardware support
(see next slide). This techniqgue can be usef u2d

Help From Hardware

A Software-only solutions have drawbacks
A Tricky to implement i think about more than 2 threads

A Need to consider different solutions for different memory consistency
models

A Most processors provideatomic operations
A E.g. Test-and-set, compare-and-swap, fetch-and-increment
A Provide atomic processing for a set of steps, such as
A Read a location, capture its value, write a new value
A Test-and-set
A Instruction supported by HW

A Write to a memory location and return its old value as a single
atomic operation

22

Multi-threaded Programming

A How can we create multiple threads within a program?
A Multiple ways across programming languages
A E.g. C: pthreads, C++: std::thread or boost::thread

A What will the threads execute?
A Typically spawned to execute a specific function

A What is shared vs. private per thread?
A Recall address space
A Thread-local storage

23

Programming with Pthreads

A POSIXpthreads

A Found on most all modern POSIXcompliant OS
A Also Windows implementations
A Allows a process to create, spawn, and manage threads

A How to use it:

A Add #include < pthread.h > to your C source code

A When compiling with gcc, add - Ipthread to your list of libraries
Agcc -0 p_test p test.c - Ipthread

A Instrument the code with pthread function calls to:
A Create threads
A Wait for threads to complete
A Destroy threads
A Synchronize across threads
A Protect critical sections

24

Pthread Thread Creation

A Create a pthread:

int pthread _create (
pthread t *thread,
pthread_attr t *oattr

void *(* start_routine)(void *),
void* arg);
A Arguments:
Apthread t *thread name i thread object (contains thread ID)
A pthread_attr t *attr T attributes to apply to this thread
A void *(* start_routine)(void *) I pointer to function to execute

Avoid * arg i arguments to pass to above function

Example:

pthread t *thrd ;
pthread_create (thrd , NULL, & do_work fcn , NULL);

25

Pthread Destruction

pthread join (pthread t thread, void* value ptr)

A Suspends the calling thread
A Waits for successful termination of the specified thread
Avalue ptri s optional data passed from

pthread _exit (void* value ptr)

A Terminates a thread
A Providesvalue_ptr to any pending pthread_join() call

26

Pthread Mutex

pthread _mutex_t lock ;

A Initialize a mutex; 2 ways:

Aint pthread _mutex_init (
pthread mutex t * mutex,
const pthread mutexattr_t * mutex_attr);

Apthread_mutex t lock= PTHREAD MUTEX_INITIALIZER:
A Initialized with default pthread mutex attributes
A This is typically good enough

A Operate on the lock:
Aint pthread_mutex_lock (pthread mutex t * mutex);
Aint pthread_mutex_trylock (pthread_mutex_t * mutex);
Aint pthread_mutex_unlock (pthread_mutex_t * mutex);

27

Read/Write Locks

A Declaration
A pthread_rwlock _t x = PTHREAD RWLOCK_INITIALIZER;

A Operations
A Acquire Read Lock:pthread_rwlock_rdlock (&X);
A Acquire Write Lock: pthread_rwlock_wrlock (&X);
A Unlock Read/Write Lock: pthread_rwlock_unlock (&x);
A Destroy: pthread_rwlock_destroy (&X);

28

Read/Write Lock Behavior

A Lock has 3 states: unlocked, read locked, write locked
pthread_rwlock_rdlock (&X)
A If state = unlocked: thread proceeds & state becomes read locked
A If state = read locked: thread proceeds & state remains read locked
A Internally a counter increments to track # of readers
A If state = write locked: thread blocks until state becomes unlocked
A Then state becomes read locked
pthread rwlock wrlock (&X)
A If state = unlocked: thread proceeds & state becomes wr locked
A If state = read locked or state = write locked
A Thread blocks until state becomes unlocked
A State becomes write locked

29

Common read/write lock pattern

A A common need:
A Find a thing X, then modify X
A Want to allow multiple threads to do their own searches for X, then

modify
A Possible approaches that are bad:
wrlock() rdlock() rdlock()
x = do_search() x = do_search() x = do_search()
modify(&x) unlock() promote_rdlock to wrlock()
unlock() wrlock() modify(&x)
o modify(&x) unlock()
Correct, but serializes unlock()
entire process (inefficient) Broken: promote rdlock to _wrlock” i sn’ t
Broken: race condition a valid operation, as it leads to DEADLOCK
between unlock and wrlock! (two threads both waiting to get that wrlock,

neither can move on)

A Solution: [Y

rdlock()

x = do_search()
unlock()
wrlock()

if (*x has become 6wrongé) {unlock(); continue; }
modify(&x) FIX: Re-check once we have the write lock,
unlock() re-do the search if our X got messed with (rare)
break;

30

Pthread Barrier

pthread_barrier_t barrier,

A Initialize a barrier; 2 ways:
A int pthread_barrier_init (
pthread_barrier_t * barrier :
const pthread_barrierattr_t * barrier_attr
unsigned int count);
A pthread_barrier_t barrier = PTHREAD BARRIER_INITIALIZER (count);
A Initialized with default pthread barrier attributes

A This is typically good enough

A Operation on a barrier:
Int pthread_barrier_wait (pthread_barrier_t * barrier);

31

Pthread Example (Matrix Mul)

double **a, **b, **c;
int numThreads , matrixSize

int main(int argc ,char* argv []) {

int i,j;

int *p;

pthread t *threads

/I Initialize numThreads , matrixSize ; allocate and init a/b/c matrices
/...

/I Allocate thread handles
threads=(pthread t *) malloc (numThreads * sizeof (pthread t));

/I Create threads

for(i =0; i < numThreads ; i ++){
p=(int * malloc (sizeof (int));
pthread create (&threads[i], NULL, worker, (void *)(p));
}
for(i =0; i < numThreads ; i ++){
pthread_join (threads[i], NULL);
}

printMatrix (c);

32

Pthread Example (Matrix Mul) cont.

void mm(int myld) {

int i,k
double sum;
// compute bounds for this thread
int startrow = myld * matrixSize /numThreads ;
int endrow = (myld+1) *(matrixSize /numThreads) - 1;
I/l matrix mult over the strip of rows for this thread
for(1 = startrow ; 1 <= endrow; i ++){
for(j=0;j< matrixSize ; j++) {
sum = 0.0;
for (k=0; k< matrixSize ; k++) {
sum=sum+a[i][K] * b[K][j];
}
c[i][j] = sum;
}
}
}
void* worker(void* arg){

int id =*((int *) arg);
mm(id);
return NULL,

33

C++ Threads

A Introduced in C++11

A Support for similar features as pthreads
A Create threads
A Wait for threads to complete
A Various synchronization

A Look at in-class example code

34

Thread Local Storage

A Mechanism to allocate variables such that there is 1 per thread
A Can be applied to variable declarations that would normally be shared
A E.g. global data, static data members, etc.
A Indicated with the _ thread keyword:
AE.g. thread int x=0;

AN

Two underscores

35

C++ Synchronization

A Mutex locks for enforcing critical sections
#include < mutex >

std:mutex mtx ;

mtx.lock (); // also mtx.try lock () is available
/[critical section

mtx.unlock ();

A Barriers: use boost::barrier

36

