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Concurrency

A Multiprogramming
A Supported by most all current operating systems
AMore than one fAunit of executi ondcd

A Uniprogramming
A A characteristic of early operating systems, e.g. MS/DOS
A Easier to design; no concurrency

AWhat do we mean by a dAdunit of
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Process vs. Thread
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Process vs. Thread

A Process: unit of allocation
A resources, privileges, etc.

A Thread: unit of execution
A PC, SP, registers

A Thread is a unit of control within a process

A Every process has one or more threads
A Every thread belongs to one process
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Process Execution

A When we execute a program
A OS creates a process
A Contains code, data
A OS manages process until it terminates

A We will talk more later about process management
(e.g. scheduling, system calls, etc.)

A Every process contains certain information
A Process ID number (PID)
AProcess state (06r ea idforéschedalingpurposen)g
A Program counter, stack pointer, CPU registers
A Memory management info, files, 1/0



Process Execution (2)

A A process is created by the OS via system calls
A fork(): make exact copy of this process and run
A Forms parent/child relationship between old/new process
A Return value of fork indicates the difference
AChild returns O:; parent returns
A exec(): can follow fork() to run a different program
A Exec takes filename for program binary from disk
ALoads new program into the curr

A A process may also create & start execution of threads
A Many ways to do this
A System call: clone(); Library call: pthread_create()



t o Concurrenc

A We have multiple units of execution, but single resources
A CPU, physical memory, 10 devices
A Developers write programs as if they have exclusive access

A OS provides illusion of isolated machine access
A Coordinates access and activity on the resources



How Does the OS Manage?

A lllusion of multiple processors
A Multiplex threads in time on the CPU

AEach virtual ACPUO needs a struct
A Program Counter (PC), Stack Pointer (SP)
ARegi sters (lnteger, FIl oating po

A How switch from one CPU to the next?
A Save PC, SP, and registers in current state block
A Load PC, SP, and registers from new state block
A What triggers switch?
A Timer, voluntary yield, 1/O, other things

A We will talk about other management later in the course
A Memory protection, 10, process scheduling



Concurrent Program

A Two or more threads execute concurrently
AMany ways this may occur é
A Multiple threads time-slice on 1 CPU with 1 hardware thread
A Multiple threads at same time on 1 CPU with n HW threads
A Simultaneous multi-t hr eadi ng Hyeerthgeadingont e |
A Multiple threads at same time on m CPUs withn HW threads

AChipmult-cpr ocessor (CMP, commonly ¢
Symmetric multi-processor (SMP)

A Cooperate to perform a task

A How do threads communicate?
A Recall they share a process context
A Code, static data, heap
A Can read and write the same memory
A variables, arrays, structures, etc.
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Motivation for a Problem

A What if two threads want to add 1 to shared variable?
A x is initialized to O

e lw  rl, 0(0x8000)
X=X+ 1 May get compiled into: addi rlri 1

(x 1s at mem location 0x8000) | sw  r1, 0(0x8000)

A A possible interleaving:
P1 P2

w  rl, 0(0x8000)

w  rl, 0(0x8000)
addirl, rl, 1

addirl, r1, 1
sw  rl, 0(0x8000)

sw rl, 0(0x8000)

A At the end, x will have a value of 1 in memory!! "O
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Another Example — Linked List

head » vall[next}—{val2[ next} =X
@ head /#vall nextl—{ val2[next|—&X)
Insert at head of linked list: val3 next
Node new_node = new Node();
new_node - >data = rand(); @ head vall[nextl—{val2[ next—=)
new_node - >next = head; <—>
head = new_node; val4 | next
val3 | next
@ head vall[next}—{val2[next—>X)
val4d | next
val3 | next

A Two concurrent threads (A & B) want to add a new element to list
1. A executes first three instructions & stalls for some reason (e.g. cache miss)
2. B executes all 4 instructions
3. A eventually continues and executes 4" instruction
A Item added by thread B is lost!
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Race Conditions

A These example problems occur due to race conditions

A Race Condition

A Result of computation by concurrent threads depends on the precise
timing of the execution of an instruction sequence by one thread
relative to another

A Sometimes result may be correct, sometimes incorrect
A Depends on execution timing
A Non-deterministic result

A Need to avoid race conditions
A Programmer must control possible execution interleaving of threads
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How to fix race conditions

AHereds what you should NOT dc

Aalf | just wait | ong efinishugh, the
so | ol add a sleep() call or so
AThis doesndét FI X the problem, it

A Can mask the majority of timing delays, which are short, but the bug
will just hide until an unlikely timing event occurs, and BAM!
The bug kills someone.
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Mutual Exclusion

A Previous examples show problem of multiple processes or
threads performing read/write ops on shared data

A Shared data = variables, array locations, objects

A Need mutual exclusion!
A Enforce that only one thread at a time in a code section
A This section is also called a critical section
A Critical section is set of operations we want to execute atomically

A Provided by lock operations: [ iock(x_lock):
X=X+1;
unlock(x_lock);

AAl so note: this isndét only ar
A Think about multiple threads time -sharing a single processor
A What if a thread is interrupted after load/add but before store?
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Mutual Exclusion

A Interleaving with proper use of locks ( mutex)

P1 P2
lock(x_lock)
ldw r1, 0(8000)
addirl, rl, 1
stw rl1, 0(8000)

unlock(x_lock)

lock(x_lock)
ldw r1, 0(8000)
addirl, rl, 1
stw r1, 0(8000)

unlock(x_lock)

A At the end, x will have a value of 2 in memory @
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Global Event Synchronization

A BARRIER (name,nprocs)
A Thread will wait at barrier call until nprocs threads arrive
A Built using lower level primitives
A Separate phases of computation

A Example use:

A N threads are adding elements of an array into a sum

A Main thread is to print sum

A Barrier prevents main thread from printing sum too early
A Use barrier synchronization only as needed

A Heavyweight operation from performance perspective
A Exposes load imbalance in threads leading up to a barrier
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Point-to-point Event Synchronization

A A thread notifies another thread so it can proceed

A E.g. when some event has happened
A Typical in producer-consumer behavior

A Concurrent programming on uniprocessors: semaphores
A Shared memory parallel programs: semaphores or monitors or variable

flags
flag
PO: P1:
S1: datum = 5: S3: while (IdatumlisReady) {};

S2: datumisReady = 1;

S4: print datum

monitor
PO: P1:
S1: datum = 5; S3: wait(ready);

S2: signal(ready);

S4: print datum
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Lower Level Understanding

A How are these synchronization operations implemented?
A Mutexes, monitors, barriers

A An attempt at mutex (lock) implementation

void lock (int *lockvar) {
while (*lockvar == 1) {} ; // wait until released
*lockvar = 1; /[ acquire lock

}

void unlock (int *lockvar) {
*lockvar = O;

}

In machine language, it looks like this:
lock: Id R1, &lockvar // R1 = lockvar
bnz R1, lock // jump to lockif R1!=0
st &lockvar, #1 //lockvar =1
ret /l return to caller
unlock: st &lockvar, #0 // lockvar =0
ret // return to caller
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Problem

A Unfortunately, this attempted solution is incorrect

A The sequence of Id, bnz, and sti are not atomic
A Several threads may be executing it at the same time

A 1t allows several threads to enter the critical section simultaneously

Thread 0 Thread 1
lock: 1ld R1, &lockvar
_ bnz R1, lock lock: 1d R1l, &lockvar
Time sti &lockvar, #1 bnz R1, lock
sti &lockvar, #1
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Software-only Solutions

APetersondéds Algorithm (mutual

int  turn;
int  interested[n]; // initialized to O

void lock ( int process, int Ivar ){ //processisOorl
int other=1 I process;
interested[process] = TRUE;
turn = process;
while (turn == process && interested[other] == TRUE) {} ;
}

I/ Post: turn != process or interested[other] == FALSE

void unlock ( int process, int Ivar ){
interested[process] = FALSE;

}

A Exit from lock() happens only if:

A interested[other] == FALSE: either the other process has not competed for the lock,
or it has just called unlock()

A turn 1= process: the other process is competing, has set the turn to itself, and will
be blocked in the while() loop

NOTE: This is more of a curiosity than a commonly deployed technique. We use hardware support
(see next slide). This techniqgue can be usef u2d



Help From Hardware

A Software-only solutions have drawbacks
A Tricky to implement i think about more than 2 threads

A Need to consider different solutions for different memory consistency
models

A Most processors provideatomic operations
A E.g. Test-and-set, compare-and-swap, fetch-and-increment
A Provide atomic processing for a set of steps, such as
A Read a location, capture its value, write a new value
A Test-and-set
A Instruction supported by HW

A Write to a memory location and return its old value as a single
atomic operation
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Multi-threaded Programming

A How can we create multiple threads within a program?
A Multiple ways across programming languages
A E.g. C: pthreads, C++: std::thread or boost::thread

A What will the threads execute?
A Typically spawned to execute a specific function

A What is shared vs. private per thread?
A Recall address space
A Thread-local storage
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Programming with Pthreads

A POSIXpthreads

A Found on most all modern POSIXcompliant OS
A Also Windows implementations
A Allows a process to create, spawn, and manage threads

A How to use it:

A Add #include < pthread.h > to your C source code

A When compiling with gcc, add - Ipthread  to your list of libraries
Agcc -0 p_test p test.c - Ipthread

A Instrument the code with pthread function calls to:
A Create threads
A Wait for threads to complete
A Destroy threads
A Synchronize across threads
A Protect critical sections
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Pthread Thread Creation

A Create a pthread:

int pthread _create  (
pthread t *thread,
pthread_attr t *oattr

void *(*  start_routine )(void *),
void* arg);
A Arguments:
Apthread t *thread name i thread object (contains thread ID)
A pthread_attr t *attr T attributes to apply to this thread
A void *(*  start_routine )(void *) I pointer to function to execute

Avoid * arg i arguments to pass to above function

Example:

pthread t  *thrd ;
pthread_create  (thrd , NULL, & do_work fcn , NULL);
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Pthread Destruction

pthread join  (pthread t thread, void* value ptr )

A Suspends the calling thread
A Waits for successful termination of the specified thread
Avalue ptri s optional data passed from

pthread _exit (void* value ptr )

A Terminates a thread
A Providesvalue_ptr to any pending pthread_join() call
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Pthread Mutex

pthread _mutex_t lock ;

A Initialize a mutex; 2 ways:

Aint  pthread _mutex_init (
pthread mutex t * mutex,
const pthread mutexattr_t * mutex_attr );

Apthread_mutex t  lock= PTHREAD MUTEX_INITIALIZER:
A Initialized with default pthread mutex attributes
A This is typically good enough

A Operate on the lock:
Aint pthread_mutex_lock  (pthread mutex t * mutex);
Aint pthread_mutex_trylock ( pthread_mutex_t * mutex);
Aint pthread_mutex_unlock ( pthread_mutex_t * mutex);
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Read/Write Locks

A Declaration
A pthread_rwlock _t x = PTHREAD RWLOCK_INITIALIZER;

A Operations
A Acquire Read Lock:pthread_rwlock_rdlock (&X);
A Acquire Write Lock: pthread_rwlock_wrlock (&X);
A Unlock Read/Write Lock: pthread_rwlock_unlock (&x);
A Destroy: pthread_rwlock_destroy (&X);
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Read/Write Lock Behavior

A Lock has 3 states: unlocked, read locked, write locked
pthread_rwlock_rdlock (&X)
A If state = unlocked: thread proceeds & state becomes read locked
A If state = read locked: thread proceeds & state remains read locked
A Internally a counter increments to track # of readers
A If state = write locked: thread blocks until state becomes unlocked
A Then state becomes read locked
pthread rwlock wrlock (&X)
A If state = unlocked: thread proceeds & state becomes wr locked
A If state = read locked or state = write locked
A Thread blocks until state becomes unlocked
A State becomes write locked
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Common read/write lock pattern

A A common need:
A Find a thing X, then modify X
A Want to allow multiple threads to do their own searches for X, then

modify
A Possible approaches that are bad:
wrlock() rdlock() rdlock()
x = do_search() x = do_search() x = do_search()
modify(&x) unlock() promote_rdlock to wrlock()
unlock() wrlock() modify(&x)
o modify(&x) unlock()
Correct, but serializes unlock()
entire process (inefficient) Broken: promote rdlock to _wrlock” i sn’ t
Broken: race condition a valid operation, as it leads to DEADLOCK
between unlock and wrlock! (two threads both waiting to get that wrlock,

neither can move on)

A Solution: [ Y

rdlock()

x = do_search()
unlock()
wrlock()

if (*x has become 6wrongé) {unlock(); continue; }
modify(&x) FIX: Re-check once we have the write lock,
unlock() re-do the search if our X got messed with (rare)
break;
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Pthread Barrier

pthread_barrier_t barrier,

A Initialize a barrier; 2 ways:
A int  pthread_barrier_init (
pthread_barrier_t * barrier :
const pthread_barrierattr_t * barrier_attr
unsigned int count );
A pthread_barrier_t barrier = PTHREAD BARRIER_INITIALIZER (count);
A Initialized with default pthread barrier attributes

A This is typically good enough

A Operation on a barrier:
Int pthread_barrier_wait ( pthread_barrier_t * barrier );
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Pthread Example (Matrix Mul)

double **a, **b, **c;
int numThreads , matrixSize

int  main( int argc ,char* argv []) {

int i,j;

int  *p;

pthread t  *threads

/I Initialize numThreads , matrixSize ; allocate and init a/b/c matrices
/...

/I Allocate thread handles
threads=( pthread t *) malloc (numThreads * sizeof (pthread t ));

/I Create threads

for( i =0; i < numThreads ; i ++){
p=( int * malloc (sizeof (int ));
pthread create  (&threads[ i ], NULL, worker, (void *)(p));
}
for( i =0; i < numThreads ; i ++){
pthread_join  (threads[ i ], NULL);
}

printMatrix (c);
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Pthread Example (Matrix Mul) cont.

void mm( int myld) {

int i,k
double sum;
// compute bounds for this thread
int startrow = myld * matrixSize /numThreads ;
int  endrow = (myld+1) *( matrixSize /numThreads ) - 1;
I/l matrix mult over the strip of rows for this thread
for( 1 = startrow ; 1 <= endrow; i ++){
for(j=0;j< matrixSize ; j++ ) {
sum = 0.0;
for (k=0; k< matrixSize ; k++) {
sum=sum+a[ i ][K] * b[K][j];
}
c[ i][j] = sum;
}
}
}
void* worker(void* arg ){

int id =*(( int *) arg);
mm(id);
return NULL,
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C++ Threads

A Introduced in C++11

A Support for similar features as pthreads
A Create threads
A Wait for threads to complete
A Various synchronization

A Look at in-class example code
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Thread Local Storage

A Mechanism to allocate variables such that there is 1 per thread
A Can be applied to variable declarations that would normally be shared
A E.g. global data, static data members, etc.
A Indicated with the _ thread keyword:
AE.g. thread int x=0;

AN

Two underscores
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C++ Synchronization

A Mutex locks for enforcing critical sections
#include < mutex >

std:mutex mtx ;

mtx.lock (); // also mtx.try lock () is available
/[critical section

mtx.unlock ();

A Barriers: use boost::barrier
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