
ECE 650
Systems Programming & Engineering

Spring 2018

Concurrency and Synchronization

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

2

Concurrency

ÅMultiprogramming

ÅSupported by most all current operating systems

ÅMore than one ñunit of executionò at a time

ÅUniprogramming

ÅA characteristic of early operating systems, e.g. MS/DOS

ÅEasier to design; no concurrency

ÅWhat do we mean by a ñunit of executionò?

3

Process vs. Thread

Å Process vs. Thread

SP

PC

Stack

Code

Static Data

Heap

Process

1

ÅA process is ï

ïExecution context

ÅProgram counter (PC)

ÅStack pointer (SP)

ÅRegisters

ïCode

ïData

ïStack

ïSeparate memory views

provided by virtual memory

abstraction (page table)

SP

PC

Stack

Code

Static Data

Heap

Process

2

4

Process vs. Thread

Å Process vs. Thread

Stack (T1)

Code

Static Data

Heap

SP (T1)

PC (T1)

Thread

ÅA thread is ï

ïExecution context

ÅProgram counter (PC)

ÅStack pointer (SP)

ÅRegisters

Stack (T2)

SP (T2)

PC (T2)

5

Process vs. Thread

ÅProcess: unit of allocation

Åresources, privileges, etc.

ÅThread: unit of execution

ÅPC, SP, registers

ÅThread is a unit of control within a process

ÅEvery process has one or more threads

ÅEvery thread belongs to one process

Process Process Process

Thread Thread Thread Thread Thread

6

Process Execution

ÅWhen we execute a program

ÅOS creates a process

ÅContains code, data

ÅOS manages process until it terminates

ÅWe will talk more later about process management
(e.g. scheduling, system calls, etc.)

ÅEvery process contains certain information

ÅProcess ID number (PID)

ÅProcess state (óreadyô, ówaiting for IOô, etc. ï for scheduling purposes)

ÅProgram counter, stack pointer, CPU registers

ÅMemory management info, files, I/O

7

Process Execution (2)

ÅA process is created by the OS via system calls

Åfork(): make exact copy of this process and run

ÅForms parent/child relationship between old/new process

ÅReturn value of fork indicates the difference

ÅChild returns 0; parent returns childôs PID

Åexec(): can follow fork() to run a different program

ÅExec takes filename for program binary from disk

ÅLoads new program into the current processôs memory

ÅA process may also create & start execution of threads

ÅMany ways to do this

ÅSystem call: clone(); Library call: pthread_create()

8

Back to Concurrency…

ÅWe have multiple units of execution, but single resources

ÅCPU, physical memory, IO devices

ÅDevelopers write programs as if they have exclusive access

ÅOS provides illusion of isolated machine access

ÅCoordinates access and activity on the resources

9

How Does the OS Manage?

ÅIllusion of multiple processors

ÅMultiplex threads in time on the CPU

ÅEach virtual ñCPUò needs a structure to hold:

ÅProgram Counter (PC), Stack Pointer (SP)

ÅRegisters (Integer, Floating point, othersé?)

ÅHow switch from one CPU to the next?

ÅSave PC, SP, and registers in current state block

ÅLoad PC, SP, and registers from new state block

ÅWhat triggers switch?

ÅTimer, voluntary yield, I/O, other things

ÅWe will talk about other management later in the course

ÅMemory protection, IO, process scheduling

10

Concurrent Program

ÅTwo or more threads execute concurrently

ÅMany ways this may occuré

ÅMultiple threads time-slice on 1 CPU with 1 hardware thread

ÅMultiple threads at same time on 1 CPU with n HW threads

ÅSimultaneous multi-threading (e.g. Intel ñHyperthreadingò)

ÅMultiple threads at same time on m CPUs with n HW threads

ÅChip multi-processor (CMP, commonly called ñmulticoreò) or
Symmetric multi-processor (SMP)

ÅCooperate to perform a task

ÅHow do threads communicate?

ÅRecall they share a process context

ÅCode, static data, heap

ÅCan read and write the same memory

Åvariables, arrays, structures, etc.

11

Motivation for a Problem

ÅWhat if two threads want to add 1 to shared variable?

Åx is initialized to 0

ÅA possible interleaving:

ÅAt the end, x will have a value of 1 in memory!!

x = x + 1; May get compiled into:

(x is at mem location 0x8000)

lw r1, 0(0x8000)

addi r1, r1, 1

sw r1, 0(0x8000)

P1 P2

lw r1, 0(0x8000)

addi r1, r1, 1

sw r1, 0(0x8000)

lw r1 , 0(0x8000)

addi r1, r1, 1

sw r1, 0(0x8000)

Ὅ

12

Another Example – Linked List

ÅTwo concurrent threads (A & B) want to add a new element to list
1. A executes first three instructions & stalls for some reason (e.g. cache miss)

2. B executes all 4 instructions

3. A eventually continues and executes 4th instruction

Å Item added by thread B is lost!

Node new_node = new Node();

new_node - >data = rand();

new_node - >next = head;

head = new_node;

Insert at head of linked list:

head val1 next val2 next

head val1 next val2 next

val3 next

head val1 next val2 next

val3 next

val4 next

head val1 next val2 next

val3 next

val4 next

1

2

3

13

Race Conditions

ÅThese example problems occur due to race conditions

ÅRace Condition

ÅResult of computation by concurrent threads depends on the precise
timing of the execution of an instruction sequence by one thread
relative to another

ÅSometimes result may be correct, sometimes incorrect

ÅDepends on execution timing

ÅNon-deterministic result

ÅNeed to avoid race conditions

ÅProgrammer must control possible execution interleaving of threads

14

How to NOT fix race conditions

ÅHereôs what you should NOT do:

ÅñIf I just wait long enough, the other thread will finish,
 so Iôll add a sleep() call or some other delayò

ÅThis doesnôt FIX the problem, it just HIDES the problem (worse!)

ÅCan mask the majority of timing delays, which are short, but the bug
will just hide until an unlikely timing event occurs, and BAM!
The bug kills someone.

sleep()

15

Mutual Exclusion

ÅPrevious examples show problem of multiple processes or
threads performing read/write ops on shared data

ÅShared data = variables, array locations, objects

ÅNeed mutual exclusion!

ÅEnforce that only one thread at a time in a code section

ÅThis section is also called a critical section

ÅCritical section is set of operations we want to execute atomically

ÅProvided by lock operations:

ÅAlso note: this isnôt only an issue on parallel machines

ÅThink about multiple threads time -sharing a single processor

ÅWhat if a thread is interrupted after load/add but before store?

lock(x_lock);

x = x + 1;

unlock(x_lock);

16

Mutual Exclusion

ÅInterleaving with proper use of locks (mutex)

ÅAt the end, x will have a value of 2 in memory

P1 P2

ldw r1, 0(8000)

addi r1, r1, 1

stw r1, 0(8000)

lock(x_lock)

unlock(x_lock)

ldw r1, 0(8000)

addi r1, r1, 1

stw r1, 0(8000)

lock(x_lock)

unlock(x_lock)

17

Global Event Synchronization

ÅBARRIER (name, nprocs)

ÅThread will wait at barrier call until nprocs threads arrive

ÅBuilt using lower level primitives

ÅSeparate phases of computation

ÅExample use:

ÅN threads are adding elements of an array into a sum

ÅMain thread is to print sum

ÅBarrier prevents main thread from printing sum too early

ÅUse barrier synchronization only as needed

ÅHeavyweight operation from performance perspective

ÅExposes load imbalance in threads leading up to a barrier

18

Point-to-point Event Synchronization

ÅA thread notifies another thread so it can proceed

ÅE.g. when some event has happened

ÅTypical in producer-consumer behavior

ÅConcurrent programming on uniprocessors: semaphores

ÅShared memory parallel programs: semaphores or monitors or variable
flags

P1:
S3: while (!datumIsReady) {};

S4: print datum

P0:
S1: datum = 5;

S2: datumIsReady = 1;

flag

P1:
S3: wait(ready);

S4: print datum

P0:
S1: datum = 5;

S2: signal(ready);

monitor

19

Lower Level Understanding

ÅHow are these synchronization operations implemented?

ÅMutexes, monitors, barriers

ÅAn attempt at mutex (lock) implementation

void lock (int *lockvar) {

 while (*lockvar == 1) {} ; // wait until released

 *lockvar = 1; // acquire lock

}

void unlock (int *lockvar) {

 *lockvar = 0;

}

In machine language, it looks like this:
lock: ld R1, &lockvar // R1 = lockvar

 bnz R1, lock // jump to lock if R1 != 0

 st &lockvar, #1 // lockvar = 1

 ret // return to caller

unlock: st &lockvar, #0 // lockvar = 0

 ret // return to caller

20

Problem

ÅUnfortunately, this attempted solution is incorrect

ÅThe sequence of ld, bnz, and sti are not atomic

ÅSeveral threads may be executing it at the same time

ÅIt allows several threads to enter the critical section simultaneously

21

Software-only Solutions

ÅPetersonôs Algorithm (mutual exclusion for 2 threads)

ÅExit from lock() happens only if:

Åinterested[other] == FALSE: either the other process has not competed for the lock,
or it has just called unlock()

Åturn != process: the other process is competing, has set the turn to itself, and will
be blocked in the while() loop

int turn;

int interested[n]; // initialized to 0

void lock (int process, int lvar) { // process is 0 or 1

 int other = 1 ï process;

 interested[process] = TRUE;

 turn = process;

 while (turn == process && interested[other] == TRUE) {} ;

}

// Post: turn != process or interested[other] == FALSE

void unlock (int process, int lvar) {

 interested[process] = FALSE;

}

NOTE: This is more of a curiosity than a commonly deployed technique. We use hardware support

(see next slide). This technique can be useful if hardware support isnôt available (rare).

22

Help From Hardware

ÅSoftware-only solutions have drawbacks

ÅTricky to implement ï think about more than 2 threads

ÅNeed to consider different solutions for different memory consistency
models

ÅMost processors provide atomic operations

ÅE.g. Test-and-set, compare-and-swap, fetch-and-increment

ÅProvide atomic processing for a set of steps, such as

ÅRead a location, capture its value, write a new value

ÅTest-and-set

ÅInstruction supported by HW

ÅWrite to a memory location and return its old value as a single
atomic operation

23

Multi-threaded Programming

ÅHow can we create multiple threads within a program?

ÅMultiple ways across programming languages

ÅE.g. C: pthreads, C++: std::thread or boost::thread

ÅWhat will the threads execute?

ÅTypically spawned to execute a specific function

ÅWhat is shared vs. private per thread?

ÅRecall address space

ÅThread-local storage

24

Programming with Pthreads

ÅPOSIX pthreads

ÅFound on most all modern POSIX-compliant OS

ÅAlso Windows implementations

ÅAllows a process to create, spawn, and manage threads

ÅHow to use it:
ÅAdd #include < pthread.h > to your C source code

ÅWhen compiling with gcc, add - lpthread to your list of libraries

Ågcc - o p_test p_test.c - lpthread

ÅInstrument the code with pthread function calls to:

ÅCreate threads

ÅWait for threads to complete

ÅDestroy threads

ÅSynchronize across threads

ÅProtect critical sections

25

Pthread Thread Creation

ÅCreate a pthread:
int pthread_create (

 pthread_t * thread,

 pthread_attr_t * attr ,

 void *(* start_routine)(void *),

 void* arg);

ÅArguments:
Åpthread_t * thread_name ï thread object (contains thread ID)

Åpthread_attr_t * attr ï attributes to apply to this thread

Åvoid *(* start_routine)(void *) ï pointer to function to execute

Åvoid * arg ï arguments to pass to above function

Example:
 pthread_t * thrd ;

 pthread_create (thrd , NULL, & do_work_fcn , NULL);

26

Pthread Destruction

pthread_join (pthread_t thread, void** value_ptr)

ÅSuspends the calling thread

ÅWaits for successful termination of the specified thread

Åvalue_ptr is optional data passed from terminating threadôs exit

pthread_exit (void * value_ptr)

ÅTerminates a thread

ÅProvides value_ptr to any pending pthread_join() call

27

Pthread Mutex

pthread_mutex_t lock ;

ÅInitialize a mutex; 2 ways:
Åint pthread_mutex_init (

 pthread_mutex_t * mutex ,

 const pthread_mutexattr_t * mutex_attr);

Åpthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

ÅInitialized with default pthread mutex attributes

ÅThis is typically good enough

ÅOperate on the lock:
Åint pthread_mutex_lock (pthread_mutex_t * mutex);

Åint pthread_mutex_trylock (pthread_mutex_t * mutex);

Åint pthread_mutex_unlock (pthread_mutex_t * mutex);

28

Read/Write Locks

ÅDeclaration
Åpthread_rwlock_t x = PTHREAD_RWLOCK_INITIALIZER;

ÅOperations
ÅAcquire Read Lock: pthread_rwlock_rdlock (&x);

ÅAcquire Write Lock: pthread_rwlock_wrlock (&x);

ÅUnlock Read/Write Lock: pthread_rwlock_unlock (&x);

ÅDestroy: pthread_rwlock_destroy (&x);

29

Read/Write Lock Behavior

ÅLock has 3 states: unlocked, read locked, write locked
pthread_rwlock_rdlock (&x)

ÅIf state = unlocked: thread proceeds & state becomes read locked

ÅIf state = read locked: thread proceeds & state remains read locked

ÅInternally a counter increments to track # of readers

ÅIf state = write locked: thread blocks until state becomes unlocked

ÅThen state becomes read locked

pthread_rwlock_wrlock (&x)

ÅIf state = unlocked: thread proceeds & state becomes wr locked

ÅIf state = read locked or state = write locked

ÅThread blocks until state becomes unlocked

ÅState becomes write locked

30

Common read/write lock pattern

ÅA common need:

ÅFind a thing X, then modify X

ÅWant to allow multiple threads to do their own searches for X, then
modify

ÅPossible approaches that are bad:

ÅSolution:

wrlock()
x = do_search()
modify(&x)
unlock()

rdlock()
x = do_search()
unlock()
wrlock()
modify(&x)
unlock() Correct, but serializes

entire process (inefficient)

Broken: race condition

between unlock and wrlock!

rdlock()
x = do_search()
promote_rdlock_to_wrlock()
modify(&x)
unlock()

Broken: “promote_rdlock_to_wrlock” isn’t

a valid operation, as it leads to DEADLOCK

(two threads both waiting to get that wrlock,

neither can move on)

while (1) {
 rdlock()
 x = do_search()
 unlock()
 wrlock()
 if (*x has become ówrongô) {unlock(); continue; }
 modify(&x)
 unlock()
 break;
}

FIX: Re-check once we have the write lock,

re-do the search if our X got messed with (rare)

31

Pthread Barrier

pthread_barrier_t barrier;

ÅInitialize a barrier; 2 ways:
Åint pthread_barrier_init (

 pthread_barrier_t * barrier ,

 const pthread_barrierattr_t * barrier_attr ,

 unsigned int count);

Åpthread_barrier_t barrier = PTHREAD_BARRIER_INITIALIZER (count);

ÅInitialized with default pthread barrier attributes

ÅThis is typically good enough

ÅOperation on a barrier:
int pthread_barrier_wait (pthread_barrier_t * barrier);

32

Pthread Example (Matrix Mul)

double **a, **b, **c;

int numThreads , matrixSize ;

int main(int argc , char * argv []) {

 int i , j;

 int *p;

 pthread_t *threads ;

 // Initialize numThreads , matrixSize ; allocate and init a/b/c matrices

 // ...

 // Allocate thread handles

 threads = (pthread_t *) malloc (numThreads * sizeof (pthread_t));

 // Create threads

 for (i = 0; i < numThreads ; i ++) {

 p = (int *) malloc (sizeof (int));

 *p = i ;

 pthread_create (&threads[i], NULL, worker, (void *)(p));

 }

 for (i = 0; i < numThreads ; i ++) {

 pthread_join (threads[i], NULL);

 }

 printMatrix (c);

}

33

Pthread Example (Matrix Mul) cont.

void mm(int myId) {

 int i,j,k ;

 double sum;

 // compute bounds for this thread

 int startrow = myId * matrixSize / numThreads ;

 int endrow = (myId+1) * (matrixSize / numThreads) - 1;

 // matrix mult over the strip of rows for this thread

 for (i = startrow ; i <= endrow ; i ++) {

 for (j = 0; j < matrixSize ; j++) {

 sum = 0.0;

 for (k = 0; k < matrixSize ; k++) {

 sum = sum + a[i][k] * b[k][j];

 }

 c[i][j] = sum;

 }

 }

}

void* worker(void* arg){

 int id = *((int *) arg);

 mm(id);

 return NULL;

}

34

C++ Threads

ÅIntroduced in C++11

ÅSupport for similar features as pthreads

ÅCreate threads

ÅWait for threads to complete

ÅVarious synchronization

ÅLook at in-class example code

35

Thread Local Storage

ÅMechanism to allocate variables such that there is 1 per thread

ÅCan be applied to variable declarations that would normally be shared

ÅE.g. global data, static data members, etc.

ÅIndicated with the __thread keyword:

ÅE.g. __thread int x = 0;

Two underscores

36

C++ Synchronization

ÅMutex locks for enforcing critical sections
#include < mutex >

std:mutex mtx ;

mtx.lock (); // also mtx.try_lock () is available

//critical section

mtx.unlock ();

ÅBarriers: use boost::barrier

