
ECE 650
Systems Programming & Engineering

Spring 2018

Networking – Link Layer

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

2

TCP/IP Model

3

Layer 1 & 2

• Layer 1: Physical Layer

• Encoding of bits to send over a single physical link

• Layer 2: Link Layer

• Framing and transmission of a collection of bits into individual
messages sent across a single subnetwork (one physical topology)

• Provides local addressing (also known as Media Access Control (MAC))

• May involve multiple physical links

• Often the technology supports broadcast: every “node” connected to
the subnet receives

• Examples:

• Modern Ethernet

• WiFi (802.11a/b/g/n/etc)

4

Physical Layer

• We are not going to cover this in detail in this course

• But to give you some idea of what this covers:

• Fourier analysis

• Channel data rates

• Transmission media:

• Guided: twisted pair, coaxial cable, fiber cables

• Wireless: electromagnetic waves, radio transmission, microwaves,
infrared, lightwave

• Communication satellites

• Modulation / Demodulation

• Frequency division and time division multiplexing

• Packet switching vs. circuit switching

• GSM, CDMA

5

Link Layer

• Algorithms for communication between adjacent machines

• Communication that is both

• Reliable

• Fast

• Adjacent machines means directly connected by a comm channel

• E.g. coaxial cable, telephone line, point-to-point wireless channel

• Channel is “wire-like” in that bits delivered in same order they are
sent

• Seems like a simple problem, but…

• Errors in bit transmissions can happen

• Finite data rates & bit propagation delays have impact on efficiency

• Link layer protocols handle these aspects

6

Link Layer - Framing

• Link layer functions

• Provide service interface to the network layer (next layer up)

• Handle errors during transmission

• Regulate data flow (so receivers not flooded by faster senders)

• Basic mechanism is “framing”

• Receive packets down from network layer

• Break the packet up into frames; add header and trailer

• Frames sent across transmission medium

Packet

Packet Header Trailer

frame Packet

Packet Header Trailer

Sender Receiver

7

Service to Network Layer

• Service: transfer data provided by network layer on one machine to the
network layer on another machine

• Of course the actual data path travels across physical layer

• Some common types of link layer services

• Unacknowledged connectionless service

• Send frames from src to dest where dest does not acknowledge

• If frame is lost due to noise, no attempt to detect or recover

• Useful for low error rate channels or real-time traffic

• e.g. voice where late data is worse than bad data

• Acknowledged connectionless service

• Still no connection established, but dest acknowledges each frame

• Sender can re-send frames not ack’ed within a time limit

• Link layer ack is an optimization, never requirement – why?

• Good for highly unreliable channels (e.g. wireless)

• Acknowledged connection-oriented service

• More on next slide

A 1 3 B

A 1 3 B 2

1 ok timeout 2 ok 3 ok

8

Acknowledged Connection-Oriented

• Most sophisticated service

• Src and dest machine establish a connection

• Each frame sent over connection is numbered and ack’ed by dest

• Guarantees each frame is received exactly once and in the proper order

• Connectionless service could cause a packet to be sent several
times (if acks are lost)

• 3 phased approach

• Connection is established

• Each side initializes variables & counters to track frames send &
received

• One or more frames are transmitted

• Connection is released: free up variables, buffers, other resources

A 1 3 B 2

Got 1,3

9

Framing

• Link layer sends stream of bits across physical layer

• On unreliable links, bits may be lost or altered values

• Link layer can detect or correct bit errors

• Error handling is simplified by “framing”

• Break up bit stream into frames

• Add some sort of checksum to each frame

• Receiver recomputes checksum from received frame bits

• If checksums do not match, then recovery happens

• E.g. correct the error or send a negative ack to sender to resend
frame

• How does link layer divide a bit stream into frames?

• More complex than it may initially seem

10

Character Count

• Think of the bit stream as a sequence of characters

• Add 1 new character to the start of each frame

• Value indicates the # of characters in this frame

• Transmission errors make this difficult to use in practice

• Bit errors in the character count cause the destination to become out of
sync with the sender; no longer knows where frames are

5 1 2 3 4 5 6 7 8 9 3 0 1 7 2 3 4 5 6 7

Character count

frame 0 frame 1 frame 2 frame 3

5 1 2 3 4 4 6 7 8 9 3 0 1 7 2 3 4 5 6 7

frame 0 frame 1

Bit error Treated as a char count

11

Flag Bytes with Byte Stuffing

• Denote start and end of each frame with special bytes

• Called a “flag byte”

• Two consecutive flag bytes indicates the end of one frame and start of
the next.

• If a receiver loses synchronization

• Simply search for the flag byte to find end of the current frame

• Restart processing frames at the next one

• What if frame includes a bit sequence that matches flag?

• Link layer inserts another special byte before that sequence

• Called an “escape byte”

• Receiving link layer SW strips out escape & flag bytes

• Disadvantage: Tied to a fixed char size (e.g. 8B or 16B)

12

Bit Stuffing w/ Start & End Flags

• Allows flags with arbitrary # of bits

• Each frame begins & ends with bit pattern

• Again, a flag: 01111110

• Bit stuffing on frame payload by sender:

• When a sender sees 5 consecutive 1’s, it stuffs a 0 in the stream

• Bit de-stuffing on frame payload by receiver:

• When it sees 5 consecutive 1’s followed by a 0, remove the 0 bit

• All fully transparent to network layer

• Boundary between frames can be unambiguously found

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

Frame payload
After bit stuffing
After bit de-stuffing

13

Error Control

• Several options:

• Ignore errors in data link layer; let higher-layer in stack handle it

• Send response frames with positive or negative acks

• Combine positive & negative acks with timers

• What happens if an entire frame is lost? Receiver will never ack

• Set a timer on frame transmit; re-send if no ack before timer
expires

• Combine acks with timers and sequence numbers

• What if ack is lost?

• Receiver got frame, but sender will resent after timer expires

• Receiver will receive multiple copies of same frame

• Give each outgoing frame a sequence number

• Receiver can distinguish re-transmissions from originals

• Ensure each frame is processed by receiving data link layer only
once

14

Flow Control

• What if sender can send faster than receiver can receive?

• Eventually receiver would be flooded and begin to drop frames

• Typically in link layer, feedback-based flow control is used

• A protocol with a set of rules

• Rules define when a sender may transmit a new frame

• For example, frames sent only when receiver gives permission

• Receiver may say on connection setup, send up to N frames now

• Sender waits until receiver tells it to send more

• More details in a bit…

15

Error Detection vs. Correction

• Receiver link layer can detect or correct some bit errors

• Correction is more expensive than detection

• In terms of # of overhead bits (checksum)

• Tradeoff:

• On reliable channels (e.g. fiber), often use cheaper detection

• On unreliable channels (e.g. wireless), often use correction

16

Hamming Distance

• Hamming Distance is the number of bit differences between
two binary strings

• 011010
011110
Hamming distance: 1

• 011010
101011
Hamming distance: 3

• If two bit strings have a Hamming distance of d,
it would take d bit errors to turn one into the other.

17

Error Detection and Correction

• Let’s consider a frame is now n = m + r bits

• m = data bits (the message)

• r = redundant bits (e.g. checksum)

• Sometimes the n-bit chunk is called a codeword

• A simple error-detection code: Parity

• Add a single redundant bit to the message

• Even (odd) parity: add bit to make number of 1 bits even (odd)

• Need Hamming distance 2 to fool it – any single-bit error produces
codeword w/ wrong parity

• Thus can detect any single bit error

18

Application of Hamming Distance

• For a message, usually all 2m values are possible

• But algorithms to compute check bits usually don’t result in all 2n
codewords being used

• In other words, not all codewords are valid
(i.e., have r bits consistent with m bits)

• Based on algorithm, we can enumerate all possible codewords

• Hamming distance of the code is the minimum Hamming distance
between any 2 valid codewords

• Error detection and correction properties

• Requires a distance d+1 code to detect all d single-bit errors

• No way for d single-bit errors to convert one valid code to another

• Requires 2d+1 code to correct all d single-bit errors

• Valid codewords are so far apart that with d single-bit errors, the
original valid codeword is still the “closest”

19

Error Correction

• Example: Assume 4 valid codewords

• 0000000000, 0000011111, 1111100000, 1111111111

• Hamming distance of 5

• Can detect 4 single-bit errors

• Can correct 2 single-bit errors

• Scenario: Receiver gets 0000000111

• Most likely (closest distance): Original codeword was 0000011111

• Two bit errors corrected: 0000000111

• Possible but less likely: Original codeword was 0000000000

• In this case, there were 3 bit errors: 0000000111

• The error will not be properly corrected!

20

Error Correction – Some Principles

• What if we want to correct any single bit errors?

• Each of 2m messages has n illegal codewords at distance 1

• I.e., each of the n bits could be flipped

• Each message requires n+1 bit patterns dedicated to it

• Correct codeword + n codewords at distance 1

• As a result, we have the following inequality

• (n+1) 2m ≤ 2n

• Substituting n = m + r:
(m + r + 1) 2m ≤ 2m 2r

• Cancel 2m term:
(m + r + 1) ≤ 2r

• Given r, this shows how many message bits can be protected from
a single-bit error by r redundancy bits:
m ≤ 2r – r – 1

• This at scale, this works out to basically m ≤ 2r

21

Error Correction Example: Hamming codes

• Let’s go through a common example error correction code: Hamming code

• Number codeword bits consecutively starting at 1 on left

• Bits that are powers of 2 (1, 2, 4, …) are the check bits,
rest of bits are data bits

• Each check bit is the parity of some set of the bits

• To see which check bits a data bit in position k contributes:

• Rewrite k as a sum of powers of 2, e.g. 13 = 1 + 4 + 8

• Coverage example:

• Example: 1100101 -> 00111000101 (blue bits are the check bits)

• If check bits p2 and p8 both indicate error, then bit 2+8=10 is the cause
(assuming a single bit error)

Figure from Wikipedia “Hamming code”

https://en.wikipedia.org/wiki/Hamming_code

22

Error Detection

• Widespread practice is to use CRC

• Cyclic Redundancy Check

• Goal: maximize protection, minimize bits

• Consider message to be a polynomial

• Each bit is one coefficient

• E.g., message 10101001 -> m(x) = x7 + x5+ x3 + 1

• Can reduce one polynomial modulo another

• Let n(x) = m(x)x3. Let C(x) = x3 + x2 + 1.

• n(x) “mod” C(x) : r(x)

• Find q(x) and r(x) s.t. n(x) = q(x)C(x) + r(x)
and degree of r(x) < degree of C(x)

• Analogous to taking 11 mod 5 = 1

23

CRC Procedure

• Select a divisor polynomial C(x), degree k

• C(x) should be irreducible – not expressible as a product of two lower-
degree polynomials

• Add k bits to message

• Let n(x) = m(x)xk (add k 0’s to m) n = m << k

• Compute r(x) = n(x) mod C(x) r = binary_long_division()
 (see next slide)

• Compute n(x) = n(x) – r(x) (will be divisible by C(x)) Append r to message

• Subtraction is XOR, just set k lowest bits to r(x)!

• Checking CRC is easy

• Do the above including the check bits at the end,
make sure remainder is now 0

Actual steps in hardware/software (simple) Mathematical steps

24

Example – Polynomial Division

• Division where addition & subtraction is XOR

25

Why This Works Well

• Suppose you send m(x), recipient gets m’(x)

• E(x) = m’(x) – m(x) (all the incorrect bits)

• If CRC passes, C(x) divides m’(x)

• Therefore, C(x) must divide E(x)

• Choose C(x) that doesn’t divide any common errors!

• All single-bit errors caught if xk, x0 coefficients in C(x) are 1

• All 2-bit errors caught if at least 3 terms in C(x)

• Any odd number of errors if last two terms (x + 1)

• Any error burst less than length k caught

26

Data Link Layer Protocols

• Now that we understand error handling and framing…

• What kinds of protocols for flow control and message delivery?

• First, we need to understand a bit about link performance

27

Sending Frames (Bandwidth)

Throughput: bits / s
…

…

28

Latency vs. Bandwidth

• How much data can we send during one
Round-Trip Time (RTT)?

• E.g., send request, receive file

T
im

e

• For small transfers, latency more important, for

bulk, throughput more important

^ You will see this over and over in computing forever! Note it now!

29

Performance Metrics

• Throughput - Number of bits received/unit of time

• e.g. 10Mbps

• Goodput - Useful bits received per unit of time

• Latency – How long for message to cross network

• Process + Queue + Transmit + Propagation

• Jitter – Variation in latency

VIDEO N L P T

Useful

bits

Meta-data

30

Latency

• Processing

• Per message, small, limits throughput

• e.g. or 120μs/pkt

• Queue

• Highly variable, offered load vs outgoing b/w

• Transmission

• Size/Bandwidth

• Propagation

• Distance/Speed of Light

100Mb

s
´
pkt

1500B
´
B

8b
» 8,333pkt /s

31

Reliable Frame Delivery

• Several sources of errors in transmission

• Error detection can discard bad frames

• Problem: if bad packets are lost, how can we ensure reliable
delivery?

• Exactly-once semantics = at least once + at most once

32

At Least Once Semantics

• How can the sender know packet arrived at least once?

• Acknowledgments + Timeout

• Stop and Wait Protocol

• S: Send packet, wait

• R: Receive packet, send ACK

• S: Receive ACK, send next packet

• S: No ACK, timeout and retransmit

33

Stop-and-Wait Protocol

Ideal flow

34

Some Problem Scenarios

In (c) and (d), does

the receiver know

whether the

second frame is a

new frame or a re-

sent first frame?

35

Drawbacks of Stop-and-Wait

• Duplicate data

• Duplicate acks

• Slow (channel idle most of the time!)

• May be difficult to set the timeout value

36

Add Sequence Numbers

37

At Most Once Semantics

• How to avoid duplicates?

• Uniquely identify each packet

• Have receiver and sender remember

• Stop and Wait: add 1 bit to the header

• Why is it enough?

38

Sliding Window Protocol

• Still have the problem of keeping pipe full

• Generalize approach with > 1-bit counter

• Allow multiple outstanding (unACKed) frames

• Upper bound on unACKed frames, called window

39

Sizing the Window

• How many bytes can we transmit in one RTT?

• BW B/s x RTT s => “Bandwidth-Delay Product”

40

Maximizing Throughput

• Can view network as a pipe

• For full utilization want bytes in flight ≥ bandwidth × delay

• But don’t want to overload the network

• Blast packets into the Network

• What if protocol doesn’t involve bulk transfer?

• Get throughput through concurrency – service multiple clients
simultaneously

41

Sliding Window Sender

• Assign sequence number (SeqNum) to each frame

• Maintain three state variables

• send window size (SWS)

• last acknowledgment received (LAR)

• last frame sent (LFS)

• Maintain invariant: LFS – LAR ≤ SWS

• Advance LAR when ACK arrives

• Buffer up to SWS frames

42

Sliding Window Receiver

• Maintain three state variables:

• receive window size (RWS)

• largest acceptable frame (LAF)

• last frame received (LFR)

• Maintain invariant: LAF – LFR ≤ RWS

• Frame SeqNum arrives:

• if LFR < SeqNum ≤ LAF, accept

• if SeqNum ≤ LFR or SeqNum > LAF, discard

• Send cumulative ACKs

Q: Why discard packets outside of the receive window?
A: What if you get packet 1 and packet 1,000,000,000?
Should you allocate a 1GB buffer and wait for the other
999,999,998 packets you think you’re missing?

43

Tuning the Sending Window

• How big should SWS be?

• “Fill the pipe”

• How big should RWS be?

• 1 ≤ RWS ≤ SWS

• How many distinct sequence numbers needed?

• SWS can’t be more than half of the space of valid seq#s.

44

Example

• We have 3-bit sequence numbers: 0, 1, 2, …, 7

• What if SWS = RWS = 7

• Sender sends 0,1,2,3,4,5,6

• All received & acked

• Receiver advances receive window to 7,0,1,…5

• But all acks are lost

• Sender times out and sends 0 again

• Receiver thinks it is a *new* frame with seq # 0

• Buffers it and awaits forwarding up to network layer

• Sender later sends frame 7; receiver gets it correctly

• Now frame 7 and stale frame 0 are passed to network layer

Analogy: Think about waiting for your order at a fast
food restaurant. If you have two-digit order numbers but
>100 people are waiting for food, how do you know that
the “order 52” they called is you versus someone else?

45

Summary

• Want exactly once

• At least once: acks + timeouts + retransmissions

• At most once: sequence numbers

• Want efficiency

• Sliding window

