
ECE 650
Systems Programming & Engineering

Spring 2018

Network Layer

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

2

TCP/IP Model

3

Networking Layer

• Networking Layer’s job:
– Get packets from source all the way to destination

– In contrast to data link layer:

• Move frames from one end of wire to the other

• Network Layer must:
– Be aware of topology of communication subnet

• i.e. the set of routers

– Choose appropriate path through subnet

• Find good path for communication

• Avoid overloading some communication paths and routers

– Deal with problems when src and dest are in different networks

• Example:
– Internet and its IP network protocol layer

4

• Host sends packet to nearest router

– On its own LAN or over a point-to-point link to carrier

• Packet stored at router until fully received

– Checksum is verified

• Packet forwarded onto next router along path

A

B

C

D

E F
H1

Running

Network

Layer

Process

H2

Running

Network

Layer

Process

LAN

Carrier Equipment

Store-and-Forward Packet Switching

5

Network Layer Service

• Provides services to transport layer with these goals:
– Services independent of router technology

– Hides number, type, topology of routers

– Network addresses provided to transport layer use uniform numbering
scheme, even across LANs, WANs

• Historically, 2 ideas for network layer
– Connectionless service

• E.g. Internet

• Makes sense with subnet is inherently unreliable

• Higher layers should do error control and flow control

– Connection-oriented service

• E.g. ATM, derived from reliable telephone network system

• Quality of service is a dominant factor

6

A’s Table

A -

B B

C C

D B

E C

F C

Initially

A’s Table

A -

B B

C C

D B

E B

F B

Later

C’s Table

A A

B A

C -

D D

E E

F E

E’s Table

A C

B D

C C

D D

E -

F F

• Packets injected & routed

individually in subnet

• No advance setup

• Packets sometimes called

datagrams here

• Subnet = datagram

subnet

• Routers have tables which tell

them destination links

• Here we have 4 packets sent

from H1 to H2

• Packets 1-3 forwarded

along A->C->E->F

• Router A changed route

table before packet 4

arrived

• Based on routing algorithm

Connectionless Service

7

• Each connection between hosts (virtual circuit) stores an entry in router tables

– Same route used for all traffic flowing along that connection

• Example, H1 and then H3 establish connection to H2

• Each packet carries an ID of the connection it belongs to

– In example above, allows router C to distinguish packets in H3->H2 channel from H1->H2

A’s Table

H1 1 C 1

H3 1 C 2

C’s Table

A 1 E 1

A 2 E 2

E’s Table

C 1 F 1

C 2 F 2

Connection-Oriented Service

8

Issue Datagram Subnet Virtual-Circuit Subnet

Circuit Setup Not needed Required

Addressing Each packet contains the
full src and dest address

Each packet contains a
short VC number

State information Routers do not need state
info about connections

Each VC requires router
table space per connection

Routing Each packet is routed
independently

Route chosen when VC is
set up; all packets follow it

Effect of router failure None, except for packets
lost during the crash

All VCs that passed through
the failed router are
terminated

Quality of service Difficult Easy if enough resources
can be allocated in advance
for each VC

Congestion control Difficult Easy if enough resources
can be allocated in advance
for each VC

Qualitative Comparison

9

Routing

• Routing algorithm:
– Determine which output line an incoming packet goes out on

– May be a new decision for every incoming packet

• Routing vs. Forwarding
– Forwarding: lookup outgoing line for a packet in routing table

– Routing: Initialize and update routing tables

• Desirable routing algorithm properties:
– Correctness, simplicity, robustness, stability, fairness, optimality

– Some properties trade-off, e.g. fairness vs. optimality

• Adaptive vs. Non-adaptive routing:
– Adaptive routing changes to reflect topology, current traffic, etc.

– Also referred to as dynamic vs. static

10

Inter vs. Intra-domain routing

• Routing organized in two levels

• Intra-domain routing
– Complete knowledge, strive for optimal paths

– Scale to ~100 networks

• Inter-domain routing
– Aggregated knowledge, scale to Internet

– Dominated by policy

• E.g., route through X, unless X is unavailable, then route through Y.
Never route traffic from X to Y.

– Policies reflect business agreements, can get complex

11

Optimality Principle

• General statement about optimal routes

• If router J is on the optimal path from router I to K, then:
– Optimal path from J to K also falls along the same route

• Set of all optimal routes from all sources to a given destination
forms a sink tree

– With a root at the destination

• No loops, so each packet delivery is bounded in # hops

• Useful for comparison against other routing algorithms

12

Static Routing

• Shortest path routing
– Build graph of subnet; routers are nodes, links are edges

– Find shortest path between each pair of routers

– What is “shortest”?

• # hops vs. distance vs. queueing delay vs. transmission delay

• Or some function that takes several factors into account

– Use Dijkstra’s shortest path algorithm

• Flooding
– Forward every incoming packet out on every other outgoing line

– Some measures to reduce # of duplicate packets

• Hop counter per packet; packet discarded on 0

• Or selective flooding – only send out on lines going in right
direction

– Evaluates every path; and thus guaranteed to find shortest delay

13

Dynamic Routing

• Two classes of intra-domain routing algorithms

• Distance Vector (Bellman-Ford Shortest Path Algorithm)
– Send best-known path info to neighbors;

can figure out optimal routes over time

– Requires only local state

– Harder to debug

– Can suffer from loops

– Examples: RIP, BGP (Border Gateway Protocol: used between
autonomous systems on the Internet)

• Link State (Djikstra-Prim Shortest Path Algorithm)
– Send adjacency info, each router builds map of network over

time, then runs shortest-path algorithm locally

– Each node has global view of the network

– Simpler to debug

– Requires global state, limits scalability

– Example: OSPF (used within large networks, e.g. within companies)

14

Distance Vector

• Local routing algorithm
– Also called RIP (Routing Information Protocol)

• Each node maintains a set of triples
– <Destination, Cost, NextHop>

• Exchange updates with neighbors
– Periodically (seconds to minutes)

– Whenever table changes (triggered update)

15

B only exchanges

information with A

and C

Distance Vector Example

16

Distance Vector

• Local routing algorithm

• Each node maintains a set of triples
– <Destination, Cost, NextHop>

• Exchange updates with neighbors
– Periodically (seconds to minutes)

– Whenever table changes (triggered update)

• Each update is a list of pairs
– <Destination, Cost>

• Update local table if receive a “better” route
– Smaller cost

17

Nodes start with info of

just direct neighbors;

shares that info with

those neighbors (e.g., B.)

Example: C talks to B

Destination Cost Next Hop

A 1 A

C 1 C

D infinity --

E infinity --

F infinity --

G infinity --

B’s routing table

@ time = 0
D, 1

A, 1

Distance Vector Example

18

C sends info to B:

• B learns about D.

• B also learns another

path to A, but it’s worse,

so we ignore it.

Destination Cost Next Hop

A 1 A

C 1 C

D 2 C

E infinity --

F infinity --

G infinity --

B’s routing table

@ time = 0

D, 1

A, 1

Distance Vector Example

19

Distance Vector

• Local routing algorithm

• Each node maintains a set of triples
– <Destination, Cost, NextHop>

• Exchange updates with neighbors
– Periodically (seconds to minutes)

– Whenever table changes (triggered update)

• Each update is a list of pairs
– <Destination, Cost>

• Update local table if receive a “better” route
– Smaller cost

• Refresh existing routes, delete if time out

20

• Bellman-Ford equation:
– Db(d) denote the current best distance from b to d

– C(b,c) denote the cost of a link from b to c

• Then Db(d) = min(Db(d), C(b,c) + Dc(d))

• D is any additive metric
– e.g, number of hops, queue length, delay

C’s update

D, 1

A, 1

Destination Cost Next Hop

A 1 A

C 1 C

D infinity --

E infinity --

F infinity --

G infinity --

Db(d) = min(infinity, 1 + 1)

Db(a) = min(1, 1 + 1)

Calculating Best Path

21

Destination Cost Next Hop

A 1 A

C 1 C

D 2 C

E 2 A

F 2 A

G 3 C

B’s routing table

Distance Vector Example

22

G, 1, G

• F-G fails

G, 2, F

G, 2, D

G, 3, C

G, 3, A

G, 1, G

Adapting to Failures

23

• F-G fails

• F sets distance to G to infinity, propagates

G, ∞, -

G, 2, F

G, 2, D

G, 3, C

G, 3, A

G, 1, G

Adapting to Failures

24

• F-G fails

• F sets distance to G to infinity, propagates

• A sets distance to G to infinity

G, ∞, -

G, 2, D

G, 3, C

G, 3, A

G, 1, G
G, ∞,-

Adapting to Failures

25

• F-G fails

• F sets distance to G to infinity, propagates

• A sets distance to G to infinity

• A receives periodic update from C with 2-hop path to G

G, ∞, -

G, 2, D

G, 3, C

G, 3, A

G, 1, G
G, ∞,-

Adapting to Failures

26

• F-G fails

• F sets distance to G to infinity, propagates

• A sets distance to G to infinity

• A receives periodic update from C with 2-hop path to G

• A sets distance to G to 3 and propagates

G, ∞, -

G, 2, D

G, 3, C

G, 3, A

G, 1, G
G, 3,C

Adapting to Failures

27

• F-G fails

• F sets distance to G to infinity, propagates

• A sets distance to G to infinity

• A receives periodic update from C with 2-hop path to G

• A sets distance to G to 3 and propagates

• F sets distance to G to 4, through A

G, 2, D

G, 3, C

G, 1, G
G, 3,C

G, 4, A

G, 4, A

Adapting to Failures

28

• Link from A to E fails

• A advertises distance of infinity to E

• B and C advertise a distance of 2 to E

• B decides it can reach E in 3 hops through C

• A decides it can reach E in 4 hops through B

• C decides it can reach E in 5 hops through A, …

• When does this stop?

Count-to-Infinity Problem

29

• Good news travels fast

• Assume A is down initially, comes up after some time

• Good news travels at rate of 1 hop per exchange

A B C D E

 - - - - -

 1 - - -

 1 2 - -

 1 2 3 -

 1 2 3 4

Initially

After 1 exchange

After 2 exchanges

After 3 exchanges

After 4 exchanges

Count-to-Infinity Problem

30

• Bad news travels slowly

• Assume A is up initially, goes down after some time

• No router ever has a value more than 1 higher than the

minimum of all its neighbors

– Gradually all work their way up to infinity; Need to bound infinity!

A B C D E

 - 1 2 3 4

 3 2 3 4

 3 4 3 4

 5 4 5 4

 5 6 5 6

 7 6 7 6

 7 8 7 8

Initially

After 1 exchange

After 2 exchanges

After 3 exchanges

After 4 exchanges

After 5 exchanges

After 6 exchanges

…

Count-to-Infinity Problem

31

• IP packet field prevents a packet from living forever

– Does not repair a loop

• Simple approach: consider a small cost n (e.g., 16) to be

infinity

– After n rounds decide node is unavailable

– But rounds can be long, this takes time

• Problem: distance vector based only on local information

Avoiding Loops

32

• Split Horizon

– When sending updates to node A, don’t include routes you

learned from A

– Prevents B and C from sending cost 2 to A

• Split Horizon with Poison Reverse

– Rather than not advertising routes learned from A, explicitly

include cost of ∞.

– Faster to break out of loops, but increases advertisement sizes

• But still…

– Split horizon/split horizon with poison reverse only help between

two nodes

•Can still get loop with three nodes involved

•Might need to delay advertising routes after changes, but affects convergence

time

Better Loop Avoidance

