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Overview 

• Relational model - Ted Codd of IBM Research in 1970 
 “A Relational Model of Data for Large Shared Data Banks” 

• Attractive for databases 
 Simplicity + mathematical foundation 

• Based on mathematical relations 
 Theoretical basis in set theory and first order predicate logic 

• Implemented in a large number of commercial databases 
 E.g. Oracle, PostgreSQL, Microsoft Access, etc. 
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Relational Model 

• Represents database as a collection of relations 
– Think of a relation as a table of values 

– E.g. 

 
 

 

 

• Relation as a table 
– Table name is called a relation 

– Each row represents a collection of related data values (tuple) 

– Columns help interpret meaning of values in each row; also called an 
attribute 

• All values in a column have the same data type 

• Data type of the values that can appear in column is called domain 

 

Name Position Department Phone # 

Reynolds Manager Sales 555-555-5444 

Smith Engineer Development 555-555-5555 

Employee 
Table 
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Informal Terms Formal Terms 

Table Relation 

Column Header Attribute 

All Possible Column Values Domain 

Row Tuple 

Table Definition Schema of a Relation 

Populated Table State of the Relation 

Definition Summary 
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Domain 

• What is a domain  
 Set of atomic values 

• Each value in domain is indivisible from relational model view 

 Commonly specified as a data type; often domain given a name 

• Examples (logical definitions): 
 USA_phone _numbers: set of 10-digit phone #’s valid in US 

 Local_phone_numbers: set of 7-digit phone #’s value in area code 

 Names: Set of names of persons 

 Grade_point_averages: Set of real numbers between 0 and 4 

• Name, data type, format: 
 USA_phone_numbers is char string of form (ddd)ddd-dddd 

• Where d is a decimal digit and first 3 digits are a valid area code 
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Relation Schema 

• Relation schema R denoted as R(A1, A2, …,An) 
 Made up of relation name R and list of attributes A1, A2, …, An 

 Attribute Ai 

• Names a role played by some domain D in relation schema R 

• D is the domain of Ai and is denoted by dom(Ai) 

• Relation Schema describes a relation (named R) 

• Degree of a relation is number of attributes n 

• Example relation schema of degree 7: 
 STUDENT(Name, SSN, HomePhone, Address, OfficePhone, Age, GPA) 
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Name Position Department Phone # 

Reynolds Manager Sales 555-555-5444 

Smith Engineer Development null 

Employee 
Table 

Attributes 

Relation 
name 

Tuples 

Relation 

• A relation of a relation schema R is denoted by r(R) 
 Set of n-tuples: r = {t1, t2, …, tm} 

 Each n-tuple t is an ordered list of n values t = <v1, v2, …, vn> 

• Where each value vi is an element of dom(Ai) or NULL 

• The ith value in tuple t is referred to as t[Ai] 
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Relation (2) 

• Stated another way 
 Relation r(R) is a mathematical relation of degree n on the domains dom(A1), 

dom(A2), …, dom(An) 

 Which is a subset of the Cartesian product of the domains of R 

• r(R) ⊆(dom(A1) x dom(A2) x … x dom(An)) 

• Cartesian product specifies all possible combinations 

• Cardinality of domain D is |D|; # of tuples in Cartesian product is: 

 |dom(A1)| * |dom(A2)| * … * |dom(An)| 

 Current relation state: 

• Reflects only valid tuples that represent particular state of real world 

• Schemas are relatively static (change very infrequently) 

• But current relation state may change frequently 

 Possible for several attributes to have the same domain 

• But attributes indicate different roles of the domain 

 E.g. HomePhone vs. OfficePhone 
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Relational Model Notation 

• Relation schema R of degree n is denoted by R(A1, A2, …, An) 

• N-tuple t in a relation r(R) is denoted by t = <v1, v2, …, vn> 
– vi is the value corresponding to attribute Ai 

– t[Ai] refers to the value vi in t for Attribute Ai 

• Letters Q, R, S denote relation names 

• Letters q, r, s denote relation states 

• Letters t, u, v denote tuples 

• R.A denotes the relation name to which an attribute belongs 
– Since the same name may be used for attributes in different relations 
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Informal Terms Formal Terms 

Table Relation 

Column Header Attribute 

All Possible Column Values Domain 

Row Tuple 

Table Definition Schema of a Relation 

Populated Table State of the Relation 

Definition Summary 
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Relational Constraints 

Relational Constraints: Restrictions on data that can be specified on a 
relational database schema 

 

• Domain Constraints 

• Key Constraints 

• Constraints on NULL 

• Entity Integrity Constraint 

• Referential Integrity Constraint 
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Domain Constraints 

• Value of each attribute A must be atomic value from dom(A) 

• Data types include standard numeric types 
– Integer, long integer 

– Float, double-precision float 

• Also characters, fixed-length and variable-length strings 

• Others 
– Date, timestamp, money data types 

– Enumerated data types 

• Will discuss more when we talk about SQL 
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Key Constraints (1) 

• All tuples in a relation must be distinct 
– No two tuples can have same values for all attributes 

• Superkey 
– Set of attributes where no two tuples can have the same values 

– Every relation has at least one default superkey (all attributes) 

• Key 
– Superkey with property that removing any attribute from the set leaves a set 

that is not a superkey of the relation schema 

• Example  
• STUDENT(Name, SSN, HomePhone, Address, OfficePhone, Age, GPA) 

• Attribute set {SSN} is key (no 2 students can have same value) 

• Attribute set {SSN, Name, Age} is a superkey (but not a key) 
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Key Constraints (2) 

• Value of key attribute uniquely identifies each tuple 

• Set of attributes constituting a key is a property of the relation 
schema 
– Should hold on *every* relation state of the schema 

– Time-invariant: should hold even as tuples are added 

• A relation schema may have more than one key 
– Each is called a candidate key; one is designated as primary key 

– Convention to underline the primary key of a relation schema 

 

 

 

Owner LicenseNum EngineSerialNum Make Model Year 
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Entity Integrity Constraint & NULL Constraints 

• Entity Integrity Constraint 
 Primary key value cannot be NULL 

 

• NULL may or may not be permitted for other attributes 

• E.g. if Name attribute must have a valid, non-null value 
 It is said to be constrained to be NOT NULL 
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Relational Database 

• Contains many relations 

• Tuples in relations are related in various ways 

• Relational database schema  
– Set of relation schemas S = {R1, R2, …, Rm} 

– Set of integrity constraints (IC) 
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COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT, WORKS_ON, DEPENDENT} 

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO 

EMPLOYEE 

DNAME DNUMBER MGRSSN MGRSTARTDATE 

DEPARTMENT 

DNUMBER DLOCATION 

DEPT LOCATIONS 

PNAME PNUMBER PLOCATION DNUM 

PROJECT 

ESSN PNO HOURS 

WORKS_ON 

ESSN DEP_NAME SEX BDATE RELATIONSHIP 

DEPENDENT 

Example Relational Database Schema 
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Referential Integrity Constraint 

• Specified between 2 relations 

• Maintains consistency among tuples of two relations 

• Informally 
– Tuple in a relation that refers to another relation must refer to an existing 

tuple in that relation 

– Even more informally: you can refer to rows in other tables, but the thing 
you’re referring to has to exist 

• Formally 
– For ref integrity constraint between R1 & R2, define foreign key  

– Set of attributes FK in R1 is foreign key referencing R2 if: 

1. Attributes in FK have same domain(s) as the primary key attributes PK of 
R2 (attributes FK thus refer to the relation R2) 

2. A value of FK in tuple t1 of current state r1(R1) either occurs as a value of 
PK for some tuple t2 in r2(R2) or is NULL 
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FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO 

EMPLOYEE 

DNAME DNUMBER MGRSSN MGRSTARTDATE 

DEPARTMENT 

DNUMBER DLOCATION 

DEPT LOCATIONS 

PNAME PNUMBER PLOCATION DNUM 

PROJECT 

ESSN PNO HOURS 

WORKS_ON 

ESSN DEP_NAME SEX BDATE RELATIONSHIP 

DEPENDENT 

Example Referential Integrity Constraints 
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Other Constraints 

• Semantic Integrity Constraints 
– E.g. salary of employee should not exceed salary of supervisor 

– E.g. max hours an employee can work on all projects per week 

– Can be specified via a constraint specification language 

• Via mechanisms called triggers or assertions 

• Transition Constraints 
– Deal with state changes in the database 

– E.g. tenure length of an employee can only increase 

– Specified using rules and triggers 

 



21 

Relational Model Operations 

• Updates 
– Insert, delete, modify 

– Integrity constraints must not be violated 

 

• Retrievals 
– Involve relational algebra operations 
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Insert 

• Provides list of attribute values for new tuple t to be inserted into 
relation R 

• Danger: could possibly violate several constraints 
– Domain: attribute value doesn’t appear in corresponding domain 

– Key: key value in new tuple t already exists in another tuple 

– Entity: primary key of new tuple t is NULL 

– Referential: foreign key in t refers to a tuple that does not exist 

• Example (see example COMPANY database) 
– Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, null, ‘1960-04-05’, ‘6357 Windy Lane, Katy, 

TX’, F, 28000, null, 4> into EMPLOYEE 

• Entity integrity constraint violation; insert is rejected 

 

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO 

EMPLOYEE 
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Delete 

• Specify a deletion 
– Give a condition on the attributes of the tuple(s) of a relation 

– E.g. delete tuple with attributes matching given values 

• Danger: Could violate referential integrity 
– If tuple being deleted is referenced by foreign keys in other tuples 

• Options if a deletion causes a violation 
– Reject the deletion operation 

– Cascade the deletion 

• Delete tuples that reference the tuple being deleted 

– Modify the referencing attribute values 

• E.g. change them to NULL 
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Update 

• Change values of attribute(s) in tuple(s) of a relation 

• Specify a condition on the attributes of the relation to select tuple(s) 
to be modified 

• E.g. update SALARY of EMPLOYEE tuple with SSN=‘999887777’ TO 
28000 

• Danger? 
 Modifying a primary key: equivalent to delete + insert 

 Modifying a foreign key: check referential integrity 

 Non-keys: Usually valid to update, except must of course be of correct type 
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Relational Algebra Operations 

• Data models must include a set of ops to manipulate data 

• Relational Algebra 
– Basic set of relational model operations 

• Ops allow users to specify basic data retrieval requests 
– Result of retrieval is a new relation 

• May have been formed from one or more other relations 

– Result relations can be further manipulated with further ops 

• Sequence of relational algebra ops form an “expression” 

• Relational algebra operations: 
– Set ops: union, intersection, set difference, Cartesian product 

– Ops specifically for relational databases: select, project, join 
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SELECT Operation 

• Essentially a filter over a relation 
– Forms a new relation with only tuples matching a condition 

– Resulting relation has same degree & attributes as original relation 

• σ<selection condition> (R) 
– E.g. σ(DNO=4 AND SALARY > 50000) (EMPLOYEE) 

– R is a relation 

• Could be a database relation or result of another select 

– Selection condition can compare (=, <, <=, >, >=, !=) 

– Selection condition clauses can be combined (AND, OR, NOT) 

• SELECT operation applies independently to each tuple 
– Resulting number of tuples is less than or equal to original relation 

• Note that SELECT is commutative 
– Chain of SELECT ops can be applied in any order 

σ 
sigma 
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π 
pi 

PROJECT Operation 

• PROJECT chooses certain columns of a relation 
– Recall SELECT chooses certain rows of a relation 

– Other columns are discarded 

• π<attribute list>(R) 
– E.g. πLNAME, FNAME, SALARY(EMPLOYEE) 

– Result has only attributes shown in list (in same order as listed) 

– If list only includes non-key attributes, there may be duplicates 

• Duplicate tuples are removed by PROJECT operation 

• Commutativity does not hold for PROJECT operation 
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Sequences of Operations & RENAME 

• If we want to apply several ops one after the other 
– Can either write as a single expression (via nesting) 

– Or can apply one op at a time and save intermediate relations 

• Example:  
– get {first name, last name, salary} of all employees in dept 5 

– πLNAME, FNAME, SALARY(σDNO=5 (EMPLOYEE))   
    or 

– DEP5_EMPS = σDNO=5 (EMPLOYEE) 
RESULT = πLNAME, FNAME, SALARY(DEP5_EMPS) 

• Can also use to rename attributes 
– Sometimes useful for UNION and JOIN as we’ll see 

– R(LASTNM, FIRSTNM, SALARY)= πLNAME, FNAME, SALARY(TMP) 
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Set Theoretic Ops 

• UNION, INTERSECTION, SET DIFFERENCE 
– ∪, ∩, - 

• Binary ops applied to two sets 

• Relations must be union compatible 
– Have same degree n, and dom(Ai) = dom(Bi) for all 1<=i<=n 

• Example:  
– Find SSN of all employees who work in dept 5 or supervise an employee in 

dept 5 

– DEP5_EMPS = σDNO=5 (EMPLOYEE) 

– RESULT1 = πSSN(DEP5_EMPS) 

– RESULT2(SSN) = πSUPERSSN(DEP5_EMPS) 

– RESULT = RESULT1 ∪ RESULT2 
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Cartesian Product  

• Also called cross product or cross join (denoted by ×) 

• Combines tuples from 2 relations 
– Resulting relation has attributes of both original relations 

• Commonly used followed by a SELECT 
– That matches attributes coming from both component relations 

• Example: 
– For each female employee get a list of names of her dependents 

– FEMALE_EMPS = σSEX=‘F’ (EMPLOYEE) 

– EMPNAMES= πFNAME, LNAME, SSN(FEMALE_EMPS) 

– EMP_DEPENDENTS = EMPNAMES × DEPENDENT 

– ACTUAL_DEPENDENTS = σSSN=ESSN (EMP_DEPENDENTS) 

– RESULT= πFNAME, LNAME, DEPENDENT_NAME(ACTUAL_DEPENDENTS) 

 

• Note: Cartesian product operation by itself doesn’t make much 
sense, but it’s an ingredient in JOINs (next slide) 
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JOIN Operation 

• Useful to combined related tuples (denoted by ⋈) 

• Example: 
 Retrieve name of manager of each department 

 DEPT_MGR = DEPARTMENT ⋈MGRSSN=SSN EMPLOYEE 

 RESULT = πDNAME, LNAME, FNAME(DEP_MGR) 

• Essentially does a Cartesian Product, then SELECT 
 General condition is: <cond> AND <cond> AND … AND <cond> 

• Special case joins with specific names: 
 Theta join: When all cond are of form Ai θ Bj where Ai and Bj are attributes of 

R and S 

 Equi join: A Theta join where the operator is equality 

 Natural join: An Equi join where attributes Ai and Bj have the same name; 
automatically gets rid of second (superfluous) attribute 

 

 


