
Introduction to SQL

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

ECE 650
Systems Programming & Engineering

Spring 2018

2

SQL

• Structured Query Language

• Major reason for commercial success of relational DBs
– Became a standard for relational DBs

– Used by many database management systems (DBMS)

– Makes it easier to move DB apps from one DBMS to another

• If DB apps use only features that are part of the standard

– Also lets DB apps access data stored in multiple DBMS’s

3

Relational Algebra vs. SQL Queries

• Relational algebra written as a sequence of operations
– Requires specifying the *order* to execute query operations

– This is complex and restrictive for users

• SQL language provides high-level declarative language
– User specifies only *what* the result should be

– DBMS optimizes and decides about how to execute query

4

SQL Terminology

• Table = Relation

• Row = Tuple

• Column = Attribute

• Commands for data definition are
– CREATE, ALTER, DROP

• One basic command for retrieving (querying) information
– SELECT

5

Tables

• ‘CREATE TABLE’ command creates a new relation
– Give table a name, specify its attributes and constraints

– For each attribute in the table:

• Attribute name, data type (domain of values), constraints

– Key, entity and referential integrity constraints for the table specified after
the list of attributes

• ‘DROP TABLE’ command removes a table

6

CREATE TABLE Employee

 (FNAME VARCHAR(15) NOT NULL,

 MINIT CHAR,

 LNAME VARCHAR(15) NOT NULL,

 SSN CHAR(9) NOT NULL,

 BATE DATE,

 ADDRESS VARCHAR(30),

 SALARY DECIMAL(10,2),

 SUPERSSN CHAR(9),

 DNO INT NOT NULL,

 PRIMARY KEY (SSN),

 FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE(SSN)

 FOREIGN KEY (DNO) REFERENCES DEPARTMENT(DNUMBER));

CREATE TABLE Example

7

• Numeric types
– INT, SMALLINT

– FLOAT, REAL, DOUBLE PRECISION

– Formats: DECIMAL(i,j) (i=precision, j=scale)

• Character string
– Fixed length: CHAR(n) or CHARACTER(n)

– Variable length: VARCHAR(n) or CHAR VARYING(n)

• n=max # of chars

– Bit string: BIT(n) or BIT VARYING(n)

• Date and Time
– DATE=YYYY-MM-DD, TIME=HH:MM:SS

– TIMESTAMP includes both date and time

• Can also create a domain (like a typedef)
– CREATE DOMAIN SSN_TYPE AS CHAR(9)

SQL Domains (Data Types)

8

• Can define a default value for an attribute

• Use DEFAULT <value> notation
– If not specified, default is Null

• E.g.:

CREATE TABLE Employee

 (FNAME VARCHAR(15) NOT NULL,

 <snip>

 DNO INT NOT NULL DEFAULT 1,

 PRIMARY KEY (SSN),

 FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE(SSN)

 FOREIGN KEY (DNO) REFERENCES DEPARTMENT(DNUMBER));

Default Values

9

• What should happen if referential integrity is violated
– Recall this can happen as tuples are inserted or deleted

• Can specify a referential triggered action on foreign key
– Options are:

• SET NULL – Set foreign key attribute to NULL

• CASCADE – Set foreign key attribute to updated value

• SET DEFAULT – Set foreign key to default value

– Must be qualified with one of:

• ON DELETE – If tuple referenced by foreign key is deleted

• ON UPDATE – If tuple referenced by foreign key is updated

Referential Integrity Actions

10

• Examples
– SET NULL ON DELETE: If tuple referenced by a foreign key is deleted, set the

foreign key field to NULL in referencing tuples

– CASCADE ON UPDATE: If tuple referenced by a foreign key is updated, update
the foreign key value in referencing tuples

– CASCADE ON DELETE: If a tuple referenced by a foreign key is deleted, delete
referencing tuples

• Can also give a constraint a name (optional)

CREATE TABLE Employee

 (<snip>

 CONSTRAINT EMPPK PRIMARY KEY (SSN),

 CONSTRAINT EMPSUPERFK FOREIGN KEY (SUPERSSN) REFERENCES

EMPLOYEE(SSN) ON DELETE SET NULL ON UPDATE CASCADE,

 <snip>);

Referential Integrity Actions (2)

11

• ALTER TABLE
– Add or drop columns (attributes)

– Change column definitions

– Add or drop table constraints

• Add attribute to a table:
– ALTER TABLE Employee ADD JOB VARCHAR(12);

• Drop attribute from a table
– ALTER TABLE Employee DROP ADRESS CASCADE;

• Must choose either CASCADE or RESTRICT

• CASCADE: constraints referencing this column are also dropped

• RESTRICT: operation only succeeds if no constraints refer to column

Modify a Table

12

• SELECT statement
– For retrieving database information

• Distinction between SQL and formal relational model
– SQL allows a table to have 2 or more tuples identical in all values

– SQL table is thus not a *set* of tuples

• It is a *multiset*

– Some SQL relations are constrained to be sets

• Due to key constraint

– Something to be aware of as we discuss queries

Basic Queries

13

• COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT, WORKS_ON,
DEPENDENT}

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO

EMPLOYEE

DNAME DNUMBER MGRSSN MGRSTARTDATE

DEPARTMENT

DNUMBER DLOCATION

DEPT LOCATIONS

PNAME PNUMBER PLOCATION DNUM

PROJECT

ESSN PNO HOURS

WORKS_ON

ESSN DEP_NAME SEX BDATE RELATIONSHIP

DEPENDENT

Example Relational Database Tables

14

• Basic SELECT statement form:
– SELECT <attribute list> // list of attribute names to return

– FROM <table list> // list of table names to process the query

– WHERE <condition>; // conditional expression to identify tuples

• Example:
– SELECT BDATE, ADDRESS FROM EMPLOYEE WHERE FNAME=‘John’ AND

MINIT=‘B’ AND LNAME=‘Smith’;

– Similar to the relational algebra expression:

• πBDATE,ADDRESS(σFNAME=‘John’ AND MINIT=‘B’ AND LNAME=‘Smith’ (EMPLOYEE))

– SELECT-clause specifies projection attributes

– WHERE-clause specifies selection condition

SELECT-FROM-WHERE

15

• SELECT FNAME, LNAME, ADDRESS

 FROM EMPLOYEE, DEPARTMENT

 WHERE DNAME=‘Research’ AND DNUMBER=DNO
– Like a SELECT-PROJECT-JOIN sequence of relational algebra ops

– DNAME=‘Research’ is a *selection condition*

– DNUMBER=DNO is a *join condition*

• SELECT PNUMBER, DNUM, LNAME, ADDRESS, BDATE

 FROM PROJECT, DEPARTMENT, EMPLOYEE

 WHERE DNUM=DNUMBER AND MGRSSN=SSN AND
 PLOCATION=‘Stafford’

– Two join conditions here

– DNUM=DNUMBER relates a project to its controlling department

– MGRSSN=SSN relates the controlling department to the employee managing it

Multiple Tables

16

• Same name may be used by different attributes in different tables
(relations)

• In that case, must qualify the attribute name with relation name
– Prefix relation name to attribute name

– Separate two by a period

• For example, if both EMPLOYEE and DEPARTMENT tables used fields named
NAME and DNUMBER (instead of DNAME and DNO)

• SELECT FNAME, LNAME, ADDRESS

 FROM EMPLOYEE, DEPARTMENT

 WHERE DEPARTMENT.NAME=‘Research’ AND
 DEPARTMENT.DNUMBER=EMPLOYEE.DNUMBER

Dealing with Ambiguous Attribute Names

17

• Can declare alternative relation names
– And even attribute names for the relation

• SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME

 FROM EMPLOYEE AS E, DEPARTMENT AS S

 WHERE E.SUPERSSN=S.SSN;

• Think of E and S as two copies of same table
– Allows us to join the two copies of the same table

– Shows manager name for each employee name

• Can also alias the attribute names
– EMPLOYEE AS E(FN, MI, LN, SSN, BD, ADDR, SEX, SAL, SSSN, DNO)

Aliasing

18

• SELECT SSN FROM EMPLOYEE;
– Select all EMPLOYEE SSNs

• SELECT SSN, DNAME FROM EMPLOYEE, DEPARTMENT;
– Select all combinations of EMPLOYEE SSN and DEPARTMENT DNAME

• Important to specify every selection and join condition in the
WHERE Clause

– Otherwise may end up w/ very large result relations (cross product)

Unspecified WHERE-Clause

19

• What if we want all attributes of a high-degree table?
– Do not need to list them all in SELECT Clause

– Can use the asterisk (*)

• SELECT * FROM EMPLOYEE WHERE DNO=5;
– Retrieve all attributes of EMPLOYEE tuples who work in department number 5

• SELECT * FROM EMPLOYEE, DEPARTMENT WHERE
DNAME=‘Research’ AND DNO=DNUMBER

– Retrieve all attributes of an EMPLOYEE and all attributes of their
DEPARTMENT for every employee of ‘Research’ department

Retrieving All Attributes

20

• Allows comparison conditions on parts of a string
– Two special characters:

• ‘%’ replaces an arbitrary number of characters

• ‘_’ replaces a single character

• SELECT FNAME, LNAME

 FROM EMPLOYEE

 WHERE ADDRESS LIKE ‘%Houston,TX%’;
– Retrieve all employees whose address is in Houston, Texas

• SELECT FNAME, LNAME

 FROM EMPLOYEE

 WHERE BDATE LIKE ‘_ _ 5 _ _ _ _ _ _ _’;
– Retrieve all employees who were born during the 1950s

– Where BDATE format is ‘YYYY-MM-DD’

LIKE clause

21

• We can use arithmetic on numeric domains
– add, subtract, multiply, divide

• SELECT FNAME, LNAME, 1.1*SALARY

 FROM EMPLOYEE, WORKS_ON, PROJECT

 WHERE SSN=ESSN AND PNO=PNUMBER AND

 PNAME=‘ProductX’;
– Want to see effect of giving all employees who work on ProductX a 10% raise

Arithmetic Operators

22

• Can append strings with concatenate operator: ‘||’

• But that’s logical OR in the rest of the world other than databases, so:

• Some SQL implementations use + operator

• Some SQL implementations use a CONCAT function

• Increment and decrement operators for
– Date, time, timestamp, interval data types

• BETWEEN operator (for convenience):

• SELECT *

 FROM EMPLOYEE

 WHERE (SALARY BETWEEN 30000 AND 40000) AND DNO=5;
– Retrieve all employees in dept. 5 whose salary is between $30,000 and $40,000

Other Operators

23

• Sometimes desirable to re-order returned results

• Can use ORDER BY clause

• SELECT DNAME, LNAME, FNAME, PNAME

 FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT

 WHERE DNUMBER=DNO AND SSN=ESSN AND

 PNO=PNUMBER

 ORDER BY DNAME, LNAME, FNAME

– Retrieve a list of employees and projects they are working on

– Ordered by department, and within each department, ordered alphabetically
by last name, first name

ORDER BY Clause

24

• Can also specify ascending or descending order
– ASC or DESC keyword

• Example:
– ORDER BY DNAME DESC, LNAME ASC, FNAME ASC

ORDER BY Clause (2)

25

• Some queries require fetching existing DB values and using them in
a comparison condition

• Useful to use nested queries
– SELECT, FROM, WHERE blocks inside WHERE of other query

– Other query is called outer query

Nested Queries

26

• COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT, WORKS_ON,
DEPENDENT}

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO

EMPLOYEE

DNAME DNUMBER MGRSSN MGRSTARTDATE

DEPARTMENT

DNUMBER DLOCATION

DEPT LOCATIONS

PNAME PNUMBER PLOCATION DNUM

PROJECT

ESSN PNO HOURS

WORKS_ON

ESSN DEP_NAME SEX BDATE RELATIONSHIP

DEPENDENT

Example Relational Database Tables

27

• SELECT DISTINCT PNUMBER

 FROM PROJECT

 WHERE PNUMBER IN (SELECT PNUMBER

 FROM PROJECT, DEPARTMENT,

 EMPLOYEE

 WHERE DNUM=DNUMBER AND

 MGRSSN=SSN AND LNAME=‘Smith’)

 OR

 PNUMBER IN (SELECT PNO FROM WORKS_ON, EMPLOYE

 WHERE ESSN=SSN AND LNAME=‘Smith’);

Select project numbers of

projects with ‘Smith’

involved as a manager

Select project numbers of

projects with ‘Smith’

involved as a worker IN compares a value v with a set; evaluates to

true if v is aan element in the set

Nested Query Example

28

• Can compare tuple of values in parenthesis with a set of union-
compatible tuples

• SELECT DISTINCT ESSN

 FROM WORKS_ON

 WHERE (PNO, HOURS) IN (SELECT PNO, HOURS

 FROM WORKS_ON

 WHERE ESSN=‘123456789’);
– Select SSN of employees working the same (project, hours) combination on some

project that employee with SSN 123456789 works on

More on IN Operator

29

• ANY and SOME operators have same meaning
– Can use equivalently to IN

– E.g. WHERE PNUMBER = ANY …

• instead of WHERE PNUMBER IN …

– Can also combine with operators for comparison (>, >=, <, <=)

• ALL
– Compares a value ‘v’ to every value in a set
– SELECT LNAME, FNAME

 FROM EMPLOYEE

 WHERE SALARY > ALL (SELECT SALARY FROM EMPLOYEE

 WHERE DNO=5);

 Returns names of employees whose salary is greater than salary of all employees in department 5

ANY, SOME, ALL Keywords

30

• Correlated condition:
– When condition in WHERE-clause of a nested query refers to some attribute

of a relation declared in the outer query

• Consider that the nested query is evaluated once for each tuple in
the outer query

• For example –

• SELECT E.FNAME, E.LNAME

 FROM EMPLOYEE AS E

 WHERE E.SSN IN (SELECT ESSN FROM DEPENDENT

 WHERE E.FNAME=DEPENDENT_NAME);

Correlated Nested Queries

31

• In general:
– For query written with nested SELECT, FROM, WHERE blocks

– And using the = or IN operators

– Can always be expressed as a single query block

• For example, can rewrite query from previous slide as:

• SELECT E.FNAME, E.LNAME

 FROM EMPLOYEE AS E, DEPENDENT AS D

 WHERE E.SSN=D.ESSN AND

 E.FNAME=D.DEPENDENT_NAME;

Correlated Nested Queries (2)

32

• Check whether result of correlated nested query is empty
– Empty means contains no tuples

• SELECT E.FNAME, E.LNAME

 FROM EMPLOYEE AS E

 WHERE EXISTS IN (SELECT * FROM DEPENDENT

 WHERE E.SSN=ESSN AND

 E.FNAME= DEPENDENT_NAME);

• Can also use “NOT EXISTS”

• SELECT FNAME, LNAME

 FROM EMPLOYEE

 WHERE NOT EXISTS (SELECT * FROM DEPENDENT

 WHERE SSN=ESSN);

Find names of employees who

have no dependents

EXISTS Function

33

• UNIQUE(Q)
– Returns true if there are no duplicate tuples in the query Q

– Otherwise returns false

UNIQUE Function

34

• WHERE-clause may contain explicit set of values
– Enclosed in parenthesis

• Example:
– SELECT DISTINCT ESSN

 FROM WORKS_ON
 WHERE PNO IN (1, 2, 3);

• SQL allows queries to check whether a value is NULL
– NULL means missing or undefined or not applicable

– Must use “IS” or “IS NOT” instead of = or ≠

– SELECT FNAME, LNAME
 FROM EMPLOYEE
 WHERE SUPERSSN IS NULL;

All employee SSNs who

work on projects 1, 2, or 3

All employees who do not

have supervisors

Explicit Sets and NULLs

35

• Specify a table resulting from a join operation
– In the FROM-clause of a query

– May be easier to follow than mixing together all the select and join conditions
in the WHERE-clause

• Example:
– Retrieve name and address of every employee who works for the ‘Research’

department

– SELECT FNAME, LNAME, ADDRESS

 FROM (EMPLOYEE JOIN DEPARTMENT ON DNO=DNUMBER) WHERE
DNAME='Research';

• Can also use ‘NATURAL JOIN’:
– No join condition is specified (e.g. ‘ON’ clause)

Joined Table

36

• Built-in functions:
– COUNT, SUM, MIN, MAX, AVG

– COUNT: # of tuples or values specified in a query

• Find sum of salaries of all employees of the ‘Research’ department,
as well as max, min, & average salaries

– SELECT SUM(SALARY), MAX(SALARY), MIN(SALARY), AVG(SALARY)

 FROM EMPLOYEE, DEPARTMENT

 WHERE DNO=DNUMBER AND DNAME=‘Research’;

• Retrieve the number of employees in the company
– SELECT COUNT(*) FROM EMPLOYEE;

• Count the # of distinct salary values in the database
– SELECT COUNT(DISTINCT SALARY) FROM EMPLOYEE;

Aggregate Functions

37

• Sometimes want to apply aggregate functions to subgroups of
tuples in a relation

– E.g. find average salary of employees in each department

– GROUP BY clause specifies the grouping attributes which should also appear
in the SELECT-clause

• Example: for each department, retrieve the department number,
number of employees in dept., and avg salary

– SELECT DNO, COUNT(*), AVG(SALARY)

 FROM EMPLOYEE

 GROUP BY DNO;

• Example: retrieve the project number, project name, and the # of
employees who work on that project

– SELECT PNUMBER, PNAME, COUNT(*)

 FROM PROJECT, WORKS_ON

 WHERE PNUMBER=PNO

 GROUP BY PNUMBER, PNAME;

GROUP BY Clause

38

• Views (also called Virtual Tables)
– Single table derived from other tables

– Does not necessarily exist in physical form (e.g. stored in dbase)

– Can think of as way to specify a table we need to reference often

• E.g. instead of JOIN on several tables every time for certain query

• Example:
– CREATE VIEW WORKS_ON1

 AS SELECT FNAME, LNAME, PNAME, HOURS

 FROM EMPLOYEE, PROJECT, WORKS_ON

 WHERE SSN=ESSN AND PNO=PNUMBER;

– Creates view with first name, last name, project name, and hours for each
employee’s project

SQL Views

39

Using SQL safely

• What if your app wants to allow a user to search the database?

• What if the user input is
 '; INSERT INTO USERS VALUES (‘hacker’, ‘mypassword’, True);

• You got hacked!!

• Mediocre solution: escape all user input (e.g., replace ' with \‘)

• Better solution: use prepared statements (database library lets you
create queries with placeholders that get filled with variables.

• Best solution: Don’t make SQL queries yourself – use an ORM
(next slide)

String sql = "SELECT ... FROM persons WHERE name = '" + userinput + "'";
DbCommand cmd = new DbCommand(connection, sql);

Result res = cmd.Execute();

String name = res[0]["FIRST_NAME"];

40

SQL injection example

41

Object Relational Mapping

• Object Relational Mapping (ORM): Library layer that connects
classes/objects to entities in the database
 Removes need to construct queries in most cases

 Is usually a good idea!!

• Without ORM:

• With ORM:

• Also avoids the risk of SQL injection!

String sql = "SELECT ... FROM persons WHERE id = 10";

DbCommand cmd = new DbCommand(connection, sql);

Result res = cmd.Execute();

String name = res[0]["FIRST_NAME"];

Person p = repository.GetPerson(10);

String name = p.getFirstName();

