ECE 650
Systems Programming & Engineering

Spring 2018

Database Transaction Processing

Tyler Bletsch
Duke University

Slides are adapted from Brian Rogers (Duke)

Transaction Processing Systems

* Systems with large DB’s; many concurrent users
— As a result, many concurrent database transactions

— E.g. Reservation systems, banking, credit card processing, stock markets,
supermarket checkout

* Need high availability and fast response time

* Concepts
— Concurrency control and recovery
— Transactions and transaction processing
— ACID properties (desirable for transactions)
— Schedules of transactions and recoverability
— Serializability
— Transactions in SQL

Single-User vs. Multi-User

 DBMS can be single-user or multi-user
— How many users can use the system concurrently?
— Most DBMSs are multi-user (e.g. airline reservation system)

e Recall our concurrency lectures (similar issues here)
— Multiprogramming
— Interleaved execution of multiple processes
— Parallel processing (if multiple processor cores or HW threads)

I I I I I I I
LA A | | |
1 I I I I I
o | | | | |
I e— 1 | C |
o | L | | CPU1
A o ' 2 CcPU2
I I I I I I I
L | | | | |
T t1 \T t2 T t3 T 4 time

Interleaved concurrency is model we will assume

Transactions

* Transaction is logical unit of database processing
— Contains 2 1 access operation
— Operations: insertion, deletion, modification, retrieval
* E.g. things that happen as part of the queries we’ve learned

* Specifying database operations of a transaction:
— Can be embedded in an application program
— Can be specified interactively via a query language like SQL
— May mark transaction boundaries by enclosing operations with:
* “begin transaction” and “end transaction”

e Read-only transaction:
— No database update operations; only retrieval operations

Database Model for Transactions

* Database represented as collection of named data items
— Size of data item is its “granularity”
— E.g. May be field of a record (row) in a database
— E.g. May be a whole record (row) or table in a database

» Database access operations can include:

— read_item(X): read database item named X into a program variable (assume
program variable also named X)

— write_item(X): write value of program variable X into database item named X

Read & Write Commands

* read_item(X)
1. Find address of disk block containing item X
2. Copy disk block into a buffer in memory (if not already there)
3. Copy item X from memory buffer to program variable named X

e write_item(x)
1. Find address of disk block containing item X
2. Copy disk block into a buffer in memory (if not already there)
3. Copy item X from the program variable named X into memory
4.Store updated block from memory buffer back to disk
* At some point; does not need to be immediately
* This is where database is actually updated

read_item(X);
X=X-N;
write_item(X);
read_item(Y);
Y=Y+N;
write_item(Y);

* Two example transactions: T1, T2

e Read-set: T1={X,Y}, T2={X}
e Write-set: T1={X,Y}, T2={X}

read_item(X);
X=X+M;
write_item(X);

Concurrency Control Motivation

* Three problems can occur with concurrent transactions if executed
in an uncontrolled manner:
1. Lost Update Problem
2. Temporary Update (Dirty Read) Problem
3. Incorrect Summary Problem

 We'll use example of an airline reservation database
— Record (row) is stored for each airline flight
— One record field is the number of reserved seats
* A named data item

Lost Update Problem

read_item(X);
X=X-N;
read_item(X);
X=X+M,;
write_item(X);
read_item(Y);
write_item(X);
Y=Y+N;
write_item(Y);

* T1 transfers N reservations from flight X to flight Y

T2 reserves M new seats on flight X

* Update to flight X from T1 is lost!

— Similar to our concurrency examples

Temporary Update Problem

read_item(X);

X=X-N;

write_item(X);
read_item(X);
X=X+M,;
write_item(X);

read_item(Y);

Transaction T1 fails for some reason

DBMS must undo T1; change X back to its original value
But T2 has already read the temporarily updated value of X
Value T2 read is dirty data

— Created by transaction not yet completed and committed

10

Incorrect Summary Problem

sum = 0;
read_item(A);
sum=sum+A,;

read_item(X);

X=X-N;

write_item(X);
read_item(X);
sum=sum+X;
read_item(Y)
sum=sum+Y,

read_item(Y);

Y=Y+N

write_item(Y);

T3 reads X after N is
subtracted but reads Y
before N is added;
summary result is off
by N.

* One transaction is calculating an aggregate summary function

e Other transactions are updating records

e E.g. calculate total number of reservations on all flights

11

Recovery

* For each transaction, DBMS is responsible for either:
— All ops in transaction complete; their effect is recorded in database
OR
— Transaction has no effect on database or any other transaction

 DBMS can’t allow some operations to apply and not others
— This can happen if a transaction fails part of the way through its ops

 How can a failure happen?

— Logical abort (we tried to reserve enough seats but there weren’t enough)
A This one is common and mundane! Must support!

— System crash (HW, SW, or network error during transaction exe)

— Transaction or system error (e.g. integer overflow or divide by 0)

— Local errors (e.g. data for the transaction is not found)

— Concurrency control (discussed in a bit may abort transaction)

— Disk failure (read or write malfunction due to disk crash)

— Physical problems (power failure, natural disaster, ...)

12

Transaction Concepts

* Transaction is an atomic unit of work
— All operations completed in entirety or none of them are done

« DBMS tracks when transaction starts, terminate, commit or abort
— BEGIN_TRANSACTION: beginning of transaction execution
— READ or WRITE: read or write ops on database items

— END_TRANSACTION: specifies that READ and WRITE operations have
completed in the transaction

 DBMS may need to check whether the changes can be *committed*
— i.e. permanently applied to the database

* Or whether transaction must be aborted
— COMMIT_TRANSACTION: successful end of transaction
* Changes (updates) can be safely committed to database
— ABORT: unsuccessful end of transaction
* Changes that may have been applied to database must be undone

13

State Transition Diagram

read
begin write
transaction , end partially commit :
- active > » committed

transaction committed

Wﬁrt \
abort

failed — > terminated

* Transaction moves to active state right when it begins
* Transaction can issue read & write operations until it ends

* Transaction moves to partial committed state
— Recovery protocols need to ensure absence of a failure

* Transaction has reached commit point; changes can be recorded in DB
* Transaction can be aborted & go to failed state
* Terminated state corresponds to transaction leaving system

* Transaction info maintained in DBMS tables; failed trans may be restarted

14

System Log

* Used to recover from failures that affect transactions
— Track transaction operations that affect DB values
— Keep log on disk so it is not affected except by catastrophic fails

* Log records (T is a unigue transaction ID)
— [start_transaction,T]
* transaction T has started
— [write_item,T,X,old_val,new_val]
* transaction T has changed database item X from old_val to new_val
— [read_item,T,X] (not strictly needed)
* transaction T has read the value of item X
— [commit,T]
* transaction T has completed successfully, effects can be
— [abort,T]
* transaction T has been aborted

15

Transaction Commit Point

* “Commit point”

— A point in time in which all operations that access the DB have executed
successfully

— Effect of all operations on the DB have been recorded in the log
— Sometimes also called a “consistency point” or “checkpoint”

* Transaction said to be “committed”
— Its effect assumed to be permanently recorded in the DB
— Transaction writes a commit record [commit,T] to the log

* On a failure:
— Search log for started but not committed transactions
* Roll back their effects to undo their effects of updating the DB
— Search for transactions that have written their commit record
* Apply their write operations from the log to the DB

16

ACID Properties

* Transactions should possess ACID properties

— These should be enforced by concurrency control & recovery methods of the
DBMS

* Atomicity
* Consistent
* Isolation
* Durability

17

Atomicity

* “Atomicity”:
— Transaction is atomic unit of processing
— It is performed entirely or not at all

* Managed by the DBMS
— As part of the transaction recovery subsystem
— Requires executing every transaction (eventually) to completion
— Partial effects of an aborted transaction must be undone

18

Consistency

* “Consistency”:
— Complete execution of a transaction takes the database from one consistent
state to another
* Responsibility:
— Programmers of database programs
— And/Or DBMS module that enforces integrity constraints

e Database State

— Collection of all stored data items in the DB at a given point in time
— Consistent state satisfies all constraints of the schemas
— DB program should be written to guarantee this

19

* “Isolation”:

— Transaction appears as if executed in isolation from other transactions (no
interference)

* Enforced by the “concurrency control” subsystem of DBMS

— E.g. a transaction only makes its updates visible to other transactions after it
commits

— There are many options for these types of protocols

20

Durability

* “Durability”:

— Changes applied to database by a committed transaction must be persistent
(e.g. not lost due to any failure)

* Responsibility of recover subsystem of DBMS
— Also many options for recovery protocols

21

Schedule of Transactions

e Schedule of n transactions: T1, T2, ..., Tn

— Ordering of operations of the transactions
— Each operation is in-order within a given transaction, Ti
— But operations may be interleaved between Ti and Tj

* Notation
— read_item, write_item, commit, abort abbreviated asr, w, c, a

— Transaction ID is subscript following the operation
— E.g. S,: ry(X); ry(X); wy(X); ry(Y); wy(X); wy(Y)

22

Complete Schedule

see Wikipedia: Schedule (computer science)

* Conflicting operations: [For a more formal introduction to this, }
1. Belong to different transactions
2.Access the same named item X
3. At least one of the operations is a write_item(X)

* Schedule S of n transactions is complete schedule if:

1. Operations in S are exactly the operationsin T, T,, ..., T,,, with a commit or
abort operation as the last op for each transaction

2. Any pair of ops from same transaction T, appear in order

3. For any 2 conflicting ops, one must occur before the other
(i.e., order is explicit)

e Trivially correct schedule: serial schedule
= When all transactions are done strictly in order with no interleaving
= Definitely correct, but this kills performance
= We want this property but also to allow some interleaving...

23

https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Schedule_(computer_science)

Schedule Recoverability

e One strategy: Recovery.

= For schedules where transactions commit only after all transactions whose
changes they read have committed.

= |f first transaction aborts, then we can abort second transaction.

= Ability to do this depends on the schedule, some are not recoverable
e We can characterize schedules for which recovery is possible

= For recoverable schedules there may be a variety of algorithms

e Recoverable schedules:

= Once atrans T is committed, should never be necessary to undo it

= [f notrans T in S commits until all transactions T’ that have written an item
that T reads have committed

= |f this is not true, then the schedule is nonrecoverable

e Example of recoverable schedule
= S, ry(X); wy(X); ry(X); ra(Y); wy(Y); €5 wy(X); ¢y

24

Non-Recoverable Schedule

 Example:
— S¢: r1(X); wy(X); ry(X); ro(Y); wo(X); wy(Y); ¢, a4
— Non-recoverable because T2 reads X from T1; T2 commits before T1 commits;
what if T1 aborts?

* Value T2 read for X is no longer valid; it needs to abort as well

 Examples of making previous schedule recoverable:
— St ry(X); wy(X); ry(X); ri(Y); wy(X); wy(Y); ¢45 ¢,
— Sc: 14(X); wy(X); ry(X); ra(Y); wy(X); wylY); ay; a,

e Summary of above:
— ry(X); w(X); ry(X); ry(Y); wy(Y); cg; wy(X); cy; Recoverable (from last slide)
— ry(X); wi(X); ry(X); ro(Y); wy(X); wy(Y); c,; a4 Unrecoverable (top of slide)
— ry(X); wy(X); ry(X); ri(Y); w,o(X); wy(Y); cy; ¢, Fix #1
— 1,(X); wy(X); ry(X); ry(Y); wy(X); wy(Y); a;;a, Fix #2

25

Cascading Rollback

» “Cascading Rollback”:

— When an uncommitted transaction needs to rollback because it read an item
from a transaction that failed

— E.g. S, from previous slide

* This can be costly; thus important to characterize schedules where
this is guaranteed not to occur

— Called a cascadeless schedule

— If every transaction only reads items that were written by already committed
transactions

/N
— E.g., ri(A); wy(A); ry(A); w,(A); cq; ¢, becomes r,(A); ri(A); wi(A); w,(A); a; ¢,

* Final type of schedule: strict schedule

— Transactions cannot read or write X until last transaction that write X has
committed (or aborted)

— Even more restrictive than cascadeless (eases recovery)
— E.g., ry(A); wi(A); ry(A); wy(A); cq; ¢, becomes ri(A); wi(A); ¢ ; ry(A); w,y(A); ¢,

26

Serializability of Schedules

Another strategy: serializability

Characterize types of schedules considered correct...
— Even when concurrent transactions are executing!

Consider two transactions T1 and T2
— E.g. the airline reservation transactions we looked at earlier
— If no operation interleaving is possible then two outcomes:
* Execute all of T1 then all of T2
* Or execute all of T2 then all of T1
— If operation interleaving is possible then many possible orderings

Serializability of schedules:

— Used to identify which schedules are correct when transaction executions
have interleaving operations

27

Serial Schedule

“Serial Schedule”:

» All operation of each transaction executed consecutively
* No interleaving

* Formally:

— If for every transaction T in the schedule, all operations of T are executed
consecutively in the schedule

— Commit or abort of a transaction signals start of next transaction
— Otherwise the schedule is nonserial

* Easy to reason about correctness, but...

— Problem with serial schedules is performance
— Limited concurrency

* What if one operation requires a slow |/O operation?

28

Serializable Schedule

* Aschedule S of n transactions is serializable if:
— Results are equivalent to some serial schedule of the same n transactions

e Saying that a nonserial schedule S is serializable is equivalent to
saying that it is correct

29

Example: NOT a serializable schedule

read_item(X);
X=X-N;
read_item(X);
X=X+M,;
write_item(X);
read_item(Y);
write_item(X);
Y=Y+N;
write_item(Y);

* Recall our Lost Update problem
— Assume X=90 and Y=90 at start; N=3 and M=2
— We'd expect X=89 and Y=93 in database at end
— In this interleaving we end up with X=92 and Y=93
BROKEN!

30

Example: Serializable schedule

read_item(X);
X=X-N;
write_item(X);
read_item(Y);
read_item(X);
X=X+M,;
Y=Y+N;
write_item(Y);
write_item(X);

 This is a serializable schedule
 Would be allowed by the DBMS

* Non-serializable schedules can be aborted before commit

31

Conclusion

We want parallelism in our database and we want ACID properties

= But we’re accessing shared data, so conflicts arise

Simple mutex too expensive

Unlike simple RAM (like the malloc assignment), our data is
structured, so we can reason about how we interleave operations

Database schedules operations to ensure correctness

Tradeoffs exist between performance and cost/correctness of
recovery in exceptional circumstances

32

