
Database Transaction Processing

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

ECE 650
Systems Programming & Engineering

Spring 2018

2

• Systems with large DB’s; many concurrent users
– As a result, many concurrent database transactions

– E.g. Reservation systems, banking, credit card processing, stock markets,
supermarket checkout

• Need high availability and fast response time

• Concepts
– Concurrency control and recovery

– Transactions and transaction processing

– ACID properties (desirable for transactions)

– Schedules of transactions and recoverability

– Serializability

– Transactions in SQL

Transaction Processing Systems

3

• DBMS can be single-user or multi-user
– How many users can use the system concurrently?

– Most DBMSs are multi-user (e.g. airline reservation system)

• Recall our concurrency lectures (similar issues here)
– Multiprogramming

– Interleaved execution of multiple processes

– Parallel processing (if multiple processor cores or HW threads)

time t1 t2 t3 t4

CPU1

CPU2

A A

B B
C

D

Interleaved concurrency is model we will assume

Single-User vs. Multi-User

4

• Transaction is logical unit of database processing
– Contains ≥ 1 access operation

– Operations: insertion, deletion, modification, retrieval

• E.g. things that happen as part of the queries we’ve learned

• Specifying database operations of a transaction:
– Can be embedded in an application program

– Can be specified interactively via a query language like SQL

– May mark transaction boundaries by enclosing operations with:

• “begin transaction” and “end transaction”

• Read-only transaction:
– No database update operations; only retrieval operations

Transactions

5

• Database represented as collection of named data items
– Size of data item is its “granularity”

– E.g. May be field of a record (row) in a database

– E.g. May be a whole record (row) or table in a database

• Database access operations can include:
– read_item(X): read database item named X into a program variable (assume

program variable also named X)

– write_item(X): write value of program variable X into database item named X

Database Model for Transactions

6

• read_item(X)
1. Find address of disk block containing item X

2. Copy disk block into a buffer in memory (if not already there)

3. Copy item X from memory buffer to program variable named X

• write_item(x)
1. Find address of disk block containing item X

2. Copy disk block into a buffer in memory (if not already there)

3. Copy item X from the program variable named X into memory

4. Store updated block from memory buffer back to disk

• At some point; does not need to be immediately

• This is where database is actually updated

Read & Write Commands

7

• Two example transactions: T1, T2

• Read-set: T1={X,Y}, T2={X}

• Write-set: T1={X,Y}, T2={X}

T1

read_item(X);

X=X-N;

write_item(X);

read_item(Y);

Y=Y+N;

write_item(Y);

T2

read_item(X);

X=X+M;

write_item(X);

Example

8

• Three problems can occur with concurrent transactions if executed
in an uncontrolled manner:

1. Lost Update Problem

2. Temporary Update (Dirty Read) Problem

3. Incorrect Summary Problem

• We’ll use example of an airline reservation database
– Record (row) is stored for each airline flight

– One record field is the number of reserved seats

• A named data item

Concurrency Control Motivation

9

• T1 transfers N reservations from flight X to flight Y

• T2 reserves M new seats on flight X

• Update to flight X from T1 is lost!
– Similar to our concurrency examples

T1

read_item(X);

X=X-N;

write_item(X);

read_item(Y);

Y=Y+N;

write_item(Y);

T2

read_item(X);

X=X+M;

write_item(X);

Lost Update Problem

10

• Transaction T1 fails for some reason

• DBMS must undo T1; change X back to its original value

• But T2 has already read the temporarily updated value of X

• Value T2 read is dirty data
– Created by transaction not yet completed and committed

T1

read_item(X);

X=X-N;

write_item(X);

read_item(Y);

…

T2

read_item(X);

X=X+M;

write_item(X);

Temporary Update Problem

11

T1

read_item(X);

X=X-N;

write_item(X);

read_item(Y);

Y=Y+N

write_item(Y);

T2

sum = 0;

read_item(A);

sum=sum+A;

read_item(X);

sum=sum+X;

read_item(Y)

sum=sum+Y;

T3 reads X after N is

subtracted but reads Y

before N is added;

summary result is off

by N.

Incorrect Summary Problem

• One transaction is calculating an aggregate summary function

• Other transactions are updating records

• E.g. calculate total number of reservations on all flights

12

• For each transaction, DBMS is responsible for either:
– All ops in transaction complete; their effect is recorded in database

 OR

– Transaction has no effect on database or any other transaction

• DBMS can’t allow some operations to apply and not others
– This can happen if a transaction fails part of the way through its ops

• How can a failure happen?
– Logical abort (we tried to reserve enough seats but there weren’t enough)

^ This one is common and mundane! Must support!

– System crash (HW, SW, or network error during transaction exe)

– Transaction or system error (e.g. integer overflow or divide by 0)

– Local errors (e.g. data for the transaction is not found)

– Concurrency control (discussed in a bit may abort transaction)

– Disk failure (read or write malfunction due to disk crash)

– Physical problems (power failure, natural disaster, …)

Recovery

13

• Transaction is an atomic unit of work
– All operations completed in entirety or none of them are done

• DBMS tracks when transaction starts, terminate, commit or abort
– BEGIN_TRANSACTION: beginning of transaction execution

– READ or WRITE: read or write ops on database items

– END_TRANSACTION: specifies that READ and WRITE operations have
completed in the transaction

• DBMS may need to check whether the changes can be *committed*
– i.e. permanently applied to the database

• Or whether transaction must be aborted

– COMMIT_TRANSACTION: successful end of transaction

• Changes (updates) can be safely committed to database

– ABORT: unsuccessful end of transaction

• Changes that may have been applied to database must be undone

Transaction Concepts

14

• Transaction moves to active state right when it begins

• Transaction can issue read & write operations until it ends

• Transaction moves to partial committed state
– Recovery protocols need to ensure absence of a failure

• Transaction has reached commit point; changes can be recorded in DB

• Transaction can be aborted & go to failed state

• Terminated state corresponds to transaction leaving system

• Transaction info maintained in DBMS tables; failed trans may be restarted

active
partially

committed

failed

committed

terminated

begin
transaction

read
write

end
transaction

abort

abort

commit

State Transition Diagram

15

• Used to recover from failures that affect transactions
– Track transaction operations that affect DB values

– Keep log on disk so it is not affected except by catastrophic fails

• Log records (T is a unique transaction ID)
– [start_transaction,T]

• transaction T has started

– [write_item,T,X,old_val,new_val]

• transaction T has changed database item X from old_val to new_val

– [read_item,T,X] (not strictly needed)

• transaction T has read the value of item X

– [commit,T]

• transaction T has completed successfully, effects can be

– [abort,T]

• transaction T has been aborted

System Log

16

• “Commit point”
– A point in time in which all operations that access the DB have executed

successfully

– Effect of all operations on the DB have been recorded in the log

– Sometimes also called a “consistency point” or “checkpoint”

• Transaction said to be “committed”
– Its effect assumed to be permanently recorded in the DB

– Transaction writes a commit record [commit,T] to the log

• On a failure:
– Search log for started but not committed transactions

• Roll back their effects to undo their effects of updating the DB

– Search for transactions that have written their commit record

• Apply their write operations from the log to the DB

Transaction Commit Point

17

• Transactions should possess ACID properties
– These should be enforced by concurrency control & recovery methods of the

DBMS

• Atomicity

• Consistent

• Isolation

• Durability

ACID Properties

18

• “Atomicity”:
– Transaction is atomic unit of processing

– It is performed entirely or not at all

• Managed by the DBMS
– As part of the transaction recovery subsystem

– Requires executing every transaction (eventually) to completion

– Partial effects of an aborted transaction must be undone

Atomicity

19

• “Consistency”:
– Complete execution of a transaction takes the database from one consistent

state to another

• Responsibility:
– Programmers of database programs

– And/Or DBMS module that enforces integrity constraints

• Database State
– Collection of all stored data items in the DB at a given point in time

– Consistent state satisfies all constraints of the schemas

– DB program should be written to guarantee this

Consistency

20

• “Isolation”:
– Transaction appears as if executed in isolation from other transactions (no

interference)

• Enforced by the “concurrency control” subsystem of DBMS
– E.g. a transaction only makes its updates visible to other transactions after it

commits

– There are many options for these types of protocols

Isolation

21

• “Durability”:
– Changes applied to database by a committed transaction must be persistent

(e.g. not lost due to any failure)

• Responsibility of recover subsystem of DBMS
– Also many options for recovery protocols

Durability

22

• Schedule of n transactions: T1, T2, …, Tn
– Ordering of operations of the transactions

– Each operation is in-order within a given transaction, Ti

– But operations may be interleaved between Ti and Tj

• Notation
– read_item, write_item, commit, abort abbreviated as r, w, c, a

– Transaction ID is subscript following the operation

– E.g. Sa: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y)

Schedule of Transactions

23

• Conflicting operations:
1. Belong to different transactions

2. Access the same named item X

3. At least one of the operations is a write_item(X)

• Schedule S of n transactions is complete schedule if:
1. Operations in S are exactly the operations in T1, T2, …, Tn, with a commit or

abort operation as the last op for each transaction

2. Any pair of ops from same transaction Ti appear in order

3. For any 2 conflicting ops, one must occur before the other
(i.e., order is explicit)

• Trivially correct schedule: serial schedule
 When all transactions are done strictly in order with no interleaving

 Definitely correct, but this kills performance

 We want this property but also to allow some interleaving...

Complete Schedule

For a more formal introduction to this,
see Wikipedia: Schedule (computer science)

https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Schedule_(computer_science)

24

Schedule Recoverability

• One strategy: Recovery.
 For schedules where transactions commit only after all transactions whose

changes they read have committed.

 If first transaction aborts, then we can abort second transaction.

 Ability to do this depends on the schedule, some are not recoverable

• We can characterize schedules for which recovery is possible

 For recoverable schedules there may be a variety of algorithms

• Recoverable schedules:
 Once a trans T is committed, should never be necessary to undo it

 If no trans T in S commits until all transactions T’ that have written an item
that T reads have committed

 If this is not true, then the schedule is nonrecoverable

• Example of recoverable schedule
 Sa: r1(X); w1(X); r2(X); r1(Y); w1(Y); c1; w2(X); c2;

25

• Example:
– Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c2; a1

– Non-recoverable because T2 reads X from T1; T2 commits before T1 commits;
what if T1 aborts?

• Value T2 read for X is no longer valid; it needs to abort as well

• Examples of making previous schedule recoverable:
– Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2

– Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); a1; a2

• Summary of above:
– r1(X); w1(X); r2(X); r1(Y); w1(Y); c1; w2(X); c2; Recoverable (from last slide)

– r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c2; a1 Unrecoverable (top of slide)

– r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2 Fix #1

– r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); a1; a2 Fix #2

Non-Recoverable Schedule

26

• “Cascading Rollback”:
– When an uncommitted transaction needs to rollback because it read an item

from a transaction that failed

– E.g. Se from previous slide

• This can be costly; thus important to characterize schedules where
this is guaranteed not to occur
– Called a cascadeless schedule

– If every transaction only reads items that were written by already committed
transactions

– E.g., r1(A); w1(A); r2(A); w2(A); c1; c2 becomes r2(A); r1(A); w1(A); w2(A); a1; c2

• Final type of schedule: strict schedule
– Transactions cannot read or write X until last transaction that write X has

committed (or aborted)

– Even more restrictive than cascadeless (eases recovery)

– E.g., r1(A); w1(A); r2(A); w2(A); c1; c2 becomes r1(A); w1(A); c1; r2(A); w2(A); c2

Cascading Rollback

27

• Another strategy: serializability

• Characterize types of schedules considered correct…
– Even when concurrent transactions are executing!

• Consider two transactions T1 and T2
– E.g. the airline reservation transactions we looked at earlier

– If no operation interleaving is possible then two outcomes:

• Execute all of T1 then all of T2

• Or execute all of T2 then all of T1

– If operation interleaving is possible then many possible orderings

• Serializability of schedules:
– Used to identify which schedules are correct when transaction executions

have interleaving operations

Serializability of Schedules

28

“Serial Schedule”:

• All operation of each transaction executed consecutively

• No interleaving

• Formally:
– If for every transaction T in the schedule, all operations of T are executed

consecutively in the schedule

– Commit or abort of a transaction signals start of next transaction

– Otherwise the schedule is nonserial

• Easy to reason about correctness, but…
– Problem with serial schedules is performance

– Limited concurrency

• What if one operation requires a slow I/O operation?

Serial Schedule

29

• A schedule S of n transactions is serializable if:
– Results are equivalent to some serial schedule of the same n transactions

• Saying that a nonserial schedule S is serializable is equivalent to
saying that it is correct

Serializable Schedule

30

• Recall our Lost Update problem
– Assume X=90 and Y=90 at start; N=3 and M=2

– We’d expect X=89 and Y=93 in database at end

– In this interleaving we end up with X=92 and Y=93

BROKEN!

T1

read_item(X);

X=X-N;

write_item(X);

read_item(Y);

Y=Y+N;

write_item(Y);

T2

read_item(X);

X=X+M;

write_item(X);

Example: NOT a serializable schedule

31

• This is a serializable schedule

• Would be allowed by the DBMS

• Non-serializable schedules can be aborted before commit

T1

read_item(X);

X=X-N;

write_item(X);

read_item(Y);

Y=Y+N;

write_item(Y);

T2

read_item(X);

X=X+M;

write_item(X);

Example: Serializable schedule

32

Conclusion

• We want parallelism in our database and we want ACID properties
 But we’re accessing shared data, so conflicts arise

• Simple mutex too expensive

• Unlike simple RAM (like the malloc assignment), our data is
structured, so we can reason about how we interleave operations

• Database schedules operations to ensure correctness

• Tradeoffs exist between performance and cost/correctness of
recovery in exceptional circumstances

