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• Typical application flow consists of alternating phases 
– Compute 

– I/O operation 

– Often I/O is the primary component with very short compute bursts 

• Recall that OS manages resources 
– Also includes I/O resources 

– Initiates and controls I/O operations 

– Controls I/O devices and device drivers 

• I/O systems allow process to interact w/ physical devices 
– Both within the computer: Disks, printer, keyboard, mouse 

– And outside the computer: Network operations 

 

 

Input/Output (I/O) 
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Processor Interface to IO Devices 
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• Devices connect via a port or a bus 
– A bus is a set of wires with a well defined protocol 

• Controller operates a port, bus or device 
– Wide ranging complexities 

• Disk controllers can be very complex 

– Sometimes even a dedicated embedded processor is used 

• Runs the controller software 

• Two sides of the communication 
– Processor: 

• On-chip hardware (e.g. PCIe controller) interfaces to the bus protocol 

• Or bridge / IO controller on separate chip in older systems 

– IO devices: 

• Via the controller mentioned above 

 

 

IO System 
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• Processor interacts with controller for a target device 
– Processor can send commands / data (or receive) 

• Controller contains registers for commands / data 
– Two ways for processor to communicate with these registers 

• Dedicated I/O instructions that transfer bits to I/O port address 

• Memory mapped I/O: controller regs are mapped to mem address 
– Standard load/store instructions can write to registers 

– E.g. graphics controller has large mem mapped space for pixel data 

– Control register bit patterns indicate different commands to device 

• Usually at least 4 register 
– Data-in (to the processor) and Data-out (from the processor) 

– Status: state of the device (device busy, data ready, error, etc.) 

– Control Register: written by device to initiate command or change device 
settings 

 

 

Device Controller 
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• Handshake protocol 

1. Host reads a busy bit in the status register until device free 

2. Host sets write bit in command register & writes data into data-out 

3. Host sets the command ready bit in the command register 

4. Controller detects command ready bit set & sets busy bit 

5. Controller reads command register; sees command; does I/O w/ device 

6. Controller clears command ready bit; clear error & busy bits in status reg 

• How to handle step 1 

– Polling (busy-waiting) executing a small code loop 
• Load – branch if bit not set 

• Performance-inefficient if device is frequently busy 

– Interrupt mechanism to notify the CPU 

• Recall our previous lecture 

 

Processor – Device Interaction 
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• Steps for reading from disk 
– Initiate I/O read operations for disk drive 

• Bring data into kernel buffer in memory 

– Copy data from kernel space buffer into user space buffer 

• Initiating I/O read ops from disk is high priority 
– Want to efficiently utilize disk 

• Use pair of interrupt handlers 
– High priority handler handshakes w/ disk controller 

• Keeps I/O requests moving to disk 

• Raises low-priority interrupt when disk operations are complete 

– Low priority handler services interrupt 

• Moves data from kernel buffer to user space 

• Calls scheduler to move process to ready queue 

• Threaded kernel architecture is a good fit 

 

More on Interrupts & I/O 
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• We’ve talked about a tight control loop (handshake) so far 
– Processor monitors status bits (or interrupts) 

– Move data in bytes or words at a time via data-in / data-out regs 

• Programmed I/O (PIO) 

• Some devices want to perform large data transfers 
– E.g. disk, network 

• Direct Memory Access (DMA):  
Typically done w/ dedicated HW engine or logic 
– Processor writes DMA commands to a memory buffer 

• Pointer to src and dest addresses, # of bytes to transfer 

– Processor writes address of DMA command block to DMA engine 

– DMA engine operates on memory & handshakes with device 

 

 

Direct Memory Access (DMA) 
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DMA Operation 

• DMA-request & DMA-acknowledge to device controller 
 Device asserts DMA-request when data is available to transfer 

 DMA controller obtains bus control 

• Puts appropriate request address on the bus 

• Asserts DMA-acknowledge wire 

 Device controller puts data on the bus 

• DMA controller generates CPU interrupt when transfer is complete 
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Application Interface to I/O System 

• Many different devices 
 All with different functionality, register control definitions, etc. 

 How can OS talk to new devices without modification? 

 How can OS provide consistent API to applications for I/O? 

• Solution to all computer science problems 
 Either add a level of indirection (abstraction)…or cache it! 

• Abstract away IO device details  
 Identify sets of similar devices; provide standard interface to each 

 Add a new layer of software to implement each interface  

• Device Drivers 

• Type of kernel module (OS extensions that can be loaded / unloaded) 
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Device Drivers 

• Purpose: hide device-specific controller details from I/O subsystem 
as much as possible 
 OS is easier to develop & maintain 

 Device manufacturers can conform to common interfaces 

• Can attach new I/O devices to existing machines 

• Device driver software is typically OS-specific 
 Different interface standards across OSes 

• Several different device categories (each w/ interface) 
 Based on different device characteristics 

• Block I/O, Character-stream I/O, Memory-mapped file, Network sockets 

 OS also has low-level system calls (ioctl on Linux) 

• Look at man page 
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• API for accessing block-oriented devices 
– read, write, seek (if random access device) 

• Applications normally access via file system interface  

• Low-level device operation & policies are hidden by API 

 

• Examples: Hard drive, optical disc drive 
 

 

Block-Device Interface 
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• Keyboard, mice, for example 

• API: 
– get(), put() a character at a time 

• Often libraries are implemented on top of this interface 
– E.g. buffer and read a line at a time 

– Useful for devices that produce input data unpredictably 

 

• Examples: Serial port, modem 

Character-Stream Interface 



15 

• Layer on top of block-device interface 

• Provides access to storage as bytes in memory 
– System call sets up this memory mapping 

– We’ve seen an example of this for memory-mapped disk files 

• Processor can read & write bytes in memory 

• Data transfers only performed as needed between memory & 
device 

 

• Example: Video card (frame buffer) 

 

 

Memory-mapped File Interface 
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• UNIX network sockets for example 

• Applications can 
– Create socket 

– Connect a local socket to a remote address 

• Address = host IP address and port number 

• This will plug the socket into an application on the remote machine 

– Use select() to monitor activity on any of a number of sockets 

 

• Example: Ethernet or WiFi NIC 

Network Device Interface 
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• Blocking 
– Process is suspended on issuing a blocking IO system call 

– Moved from ready queue to wait queue 

– Moved back to ready queue after IO completes 

• Nonblocking 
– Process does not wait for IO call completion 

• Any data that is ready is returned 

– E.g. user Interface receives keyboard & mouse input  

• Asynchronous 
– IO call returns immediately & IO operation is initiated 

– Process is notified of IO completion via later interrupt 

– E.g. select() w/ wait time of 0 

• Followed by read() if any source has data ready 

 

Blocking vs. Nonblocking (vs. Async) 
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• Provides many services for I/O 
– Scheduling 

– Buffering 

– Caching 

– Spooling 

– Device Reservation 

– Error Handling 

– Protection of I/O 

 

OS Kernel I/O Subsystem 
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• Scheduling = Ordering application requests to IO devices 
– OS does not necessarily have to send them in order received 

• Can impact many aspects of the system 
– Performance 

• Average wait time by applications for I/O requests 

• IO device utilization (how often are they busy performing useful work) 

– Fairness 

• Do applications get uniform access to I/O devices? 

• Should some users / applications be prioritized? 

• Implementation 
– OS implements a wait queue for requests to each device 

– Reorders queue to schedule requests to optimize metrics 

 

I/O Scheduling 
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• Traditional hard disk has two access time components 
– Seek time: disk arm moves heads to cylinder containing sector 

– Rotational latency: disk rotates to desired sector 

– Bandwidth is also important (# bytes per unit time) 

• Somewhat analogous to CPU scheduling we discussed 
– FCFS: first-come, first-served 

• Fair, but generally not fast or high bandwidth 

– SSTF: shortest seek time first 

• Equivalent to SJF (see pros & cons from CPU scheduling) 

– SCAN: move disk arm from one end to the other, back & forth 

• Service requests as disk arm reaches their cylinder 

• “Elevator” algorithm 

– C-SCAN: move disk arm in a cyclical round trip (servicing forward, skipping 
back) 

• Improves wait time relative to SCAN 

 

Example: Disk Scheduling 
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I/O Buffering 

• Memory region to store in-flight data 
 E.g. between two devices or a device and application 

• Reasons for buffering 
 Speed mismatch between source and destination device 

• E.g. data received over slow network going to fast disk 

 Want to write big blocks of data to disk at a time, not small pieces 

• Double buffering 

 Alternate which buffer is being filled from source and which is  
written to destination 

 Removes need for timing requirements between producer / 
consumer 

 Efficiently handle device data with different transfer sizes 
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I/O Caching 

• Similar concept to other types of caching you’ve learned 
 CPU caching (L1, L2, L3 caches for main memory) 

 Disk caching using main memory 

• Use memory to cache data regions for IO transfers 
 Similar to buffering, but for a different purpose 

• E.g. for disk IO, cache buffers in main memory 
 Improves efficiency for shared files that are read/written often 

 Improve latency for reads; Reduce disk bandwidth for writes 

• Reads serviced by memory instead of slow disk 

• Writes can be “gathered” and a single bulk disk write done later 
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I/O Spooling 

• Spool: type of buffer to hold data for device that cannot accept 
interleaved data streams 
 Printers! 

• Kernel stores each applications print I/O data 
 Spooled to a separate disk file 

• Later, the kernel queues a spool file to the printer 
 Often managed by a running daemon process 

 Allows applications to view pending jobs, cancel jobs, etc. 

• Device Reservation: 
 For similar purposes as spooling 

 Kernel facility for allocating an idle device & deallocating later 
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I/O Error Handling & Protection 

• I/O system calls return information about status 
 errno variable in UNIX 

 Indicate general nature of failure 

 Failures can happen due to transient problems 

• OS can compensate by re-trying failed operations 

• Protection mechanisms for I/O by kernel 
 All I/O instructions are privileged 

• cannot be executed directly by user process 

 User process must execute system call 

 System call can check for valid request & data 

 


