
I/O Handling

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

ECE 650
Systems Programming & Engineering

Spring 2018

2

• Typical application flow consists of alternating phases
– Compute

– I/O operation

– Often I/O is the primary component with very short compute bursts

• Recall that OS manages resources
– Also includes I/O resources

– Initiates and controls I/O operations

– Controls I/O devices and device drivers

• I/O systems allow process to interact w/ physical devices
– Both within the computer: Disks, printer, keyboard, mouse

– And outside the computer: Network operations

Input/Output (I/O)

3

P0 P1 P2 P3

On-Chip Cache

Memory

Controller
PCIe Other IO

Processor Chip

To main memory

(e.g. DRAM)

• Processor Chip has IO Pins

• E.g. for connection to buses

• Memory bus

• PCIe bus

• Other dedicated IO to chip

• E.g. for power

Processor Interface to IO Devices

4

processor memory
monitor

graphics

controller

disk controller

disk

USB controller

mouse keyboard

USB PCIe Card

IO System Connections

5

• Devices connect via a port or a bus
– A bus is a set of wires with a well defined protocol

• Controller operates a port, bus or device
– Wide ranging complexities

• Disk controllers can be very complex

– Sometimes even a dedicated embedded processor is used

• Runs the controller software

• Two sides of the communication
– Processor:

• On-chip hardware (e.g. PCIe controller) interfaces to the bus protocol

• Or bridge / IO controller on separate chip in older systems

– IO devices:

• Via the controller mentioned above

IO System

6

• Processor interacts with controller for a target device
– Processor can send commands / data (or receive)

• Controller contains registers for commands / data
– Two ways for processor to communicate with these registers

• Dedicated I/O instructions that transfer bits to I/O port address

• Memory mapped I/O: controller regs are mapped to mem address
– Standard load/store instructions can write to registers

– E.g. graphics controller has large mem mapped space for pixel data

– Control register bit patterns indicate different commands to device

• Usually at least 4 register
– Data-in (to the processor) and Data-out (from the processor)

– Status: state of the device (device busy, data ready, error, etc.)

– Control Register: written by device to initiate command or change device
settings

Device Controller

7

• Handshake protocol

1. Host reads a busy bit in the status register until device free

2. Host sets write bit in command register & writes data into data-out

3. Host sets the command ready bit in the command register

4. Controller detects command ready bit set & sets busy bit

5. Controller reads command register; sees command; does I/O w/ device

6. Controller clears command ready bit; clear error & busy bits in status reg

• How to handle step 1

– Polling (busy-waiting) executing a small code loop
• Load – branch if bit not set

• Performance-inefficient if device is frequently busy

– Interrupt mechanism to notify the CPU

• Recall our previous lecture

Processor – Device Interaction

8

• Steps for reading from disk
– Initiate I/O read operations for disk drive

• Bring data into kernel buffer in memory

– Copy data from kernel space buffer into user space buffer

• Initiating I/O read ops from disk is high priority
– Want to efficiently utilize disk

• Use pair of interrupt handlers
– High priority handler handshakes w/ disk controller

• Keeps I/O requests moving to disk

• Raises low-priority interrupt when disk operations are complete

– Low priority handler services interrupt

• Moves data from kernel buffer to user space

• Calls scheduler to move process to ready queue

• Threaded kernel architecture is a good fit

More on Interrupts & I/O

9

• We’ve talked about a tight control loop (handshake) so far
– Processor monitors status bits (or interrupts)

– Move data in bytes or words at a time via data-in / data-out regs

• Programmed I/O (PIO)

• Some devices want to perform large data transfers
– E.g. disk, network

• Direct Memory Access (DMA):
Typically done w/ dedicated HW engine or logic
– Processor writes DMA commands to a memory buffer

• Pointer to src and dest addresses, # of bytes to transfer

– Processor writes address of DMA command block to DMA engine

– DMA engine operates on memory & handshakes with device

Direct Memory Access (DMA)

10

DMA Operation

• DMA-request & DMA-acknowledge to device controller
 Device asserts DMA-request when data is available to transfer

 DMA controller obtains bus control

• Puts appropriate request address on the bus

• Asserts DMA-acknowledge wire

 Device controller puts data on the bus

• DMA controller generates CPU interrupt when transfer is complete

11

Application Interface to I/O System

• Many different devices
 All with different functionality, register control definitions, etc.

 How can OS talk to new devices without modification?

 How can OS provide consistent API to applications for I/O?

• Solution to all computer science problems
 Either add a level of indirection (abstraction)…or cache it!

• Abstract away IO device details
 Identify sets of similar devices; provide standard interface to each

 Add a new layer of software to implement each interface

• Device Drivers

• Type of kernel module (OS extensions that can be loaded / unloaded)

12

Device Drivers

• Purpose: hide device-specific controller details from I/O subsystem
as much as possible
 OS is easier to develop & maintain

 Device manufacturers can conform to common interfaces

• Can attach new I/O devices to existing machines

• Device driver software is typically OS-specific
 Different interface standards across OSes

• Several different device categories (each w/ interface)
 Based on different device characteristics

• Block I/O, Character-stream I/O, Memory-mapped file, Network sockets

 OS also has low-level system calls (ioctl on Linux)

• Look at man page

13

• API for accessing block-oriented devices
– read, write, seek (if random access device)

• Applications normally access via file system interface

• Low-level device operation & policies are hidden by API

• Examples: Hard drive, optical disc drive

Block-Device Interface

14

• Keyboard, mice, for example

• API:
– get(), put() a character at a time

• Often libraries are implemented on top of this interface
– E.g. buffer and read a line at a time

– Useful for devices that produce input data unpredictably

• Examples: Serial port, modem

Character-Stream Interface

15

• Layer on top of block-device interface

• Provides access to storage as bytes in memory
– System call sets up this memory mapping

– We’ve seen an example of this for memory-mapped disk files

• Processor can read & write bytes in memory

• Data transfers only performed as needed between memory &
device

• Example: Video card (frame buffer)

Memory-mapped File Interface

16

• UNIX network sockets for example

• Applications can
– Create socket

– Connect a local socket to a remote address

• Address = host IP address and port number

• This will plug the socket into an application on the remote machine

– Use select() to monitor activity on any of a number of sockets

• Example: Ethernet or WiFi NIC

Network Device Interface

17

• Blocking
– Process is suspended on issuing a blocking IO system call

– Moved from ready queue to wait queue

– Moved back to ready queue after IO completes

• Nonblocking
– Process does not wait for IO call completion

• Any data that is ready is returned

– E.g. user Interface receives keyboard & mouse input

• Asynchronous
– IO call returns immediately & IO operation is initiated

– Process is notified of IO completion via later interrupt

– E.g. select() w/ wait time of 0

• Followed by read() if any source has data ready

Blocking vs. Nonblocking (vs. Async)

18

• Provides many services for I/O
– Scheduling

– Buffering

– Caching

– Spooling

– Device Reservation

– Error Handling

– Protection of I/O

OS Kernel I/O Subsystem

19

• Scheduling = Ordering application requests to IO devices
– OS does not necessarily have to send them in order received

• Can impact many aspects of the system
– Performance

• Average wait time by applications for I/O requests

• IO device utilization (how often are they busy performing useful work)

– Fairness

• Do applications get uniform access to I/O devices?

• Should some users / applications be prioritized?

• Implementation
– OS implements a wait queue for requests to each device

– Reorders queue to schedule requests to optimize metrics

I/O Scheduling

20

• Traditional hard disk has two access time components
– Seek time: disk arm moves heads to cylinder containing sector

– Rotational latency: disk rotates to desired sector

– Bandwidth is also important (# bytes per unit time)

• Somewhat analogous to CPU scheduling we discussed
– FCFS: first-come, first-served

• Fair, but generally not fast or high bandwidth

– SSTF: shortest seek time first

• Equivalent to SJF (see pros & cons from CPU scheduling)

– SCAN: move disk arm from one end to the other, back & forth

• Service requests as disk arm reaches their cylinder

• “Elevator” algorithm

– C-SCAN: move disk arm in a cyclical round trip (servicing forward, skipping
back)

• Improves wait time relative to SCAN

Example: Disk Scheduling

21

I/O Buffering

• Memory region to store in-flight data
 E.g. between two devices or a device and application

• Reasons for buffering
 Speed mismatch between source and destination device

• E.g. data received over slow network going to fast disk

 Want to write big blocks of data to disk at a time, not small pieces

• Double buffering

 Alternate which buffer is being filled from source and which is
written to destination

 Removes need for timing requirements between producer /
consumer

 Efficiently handle device data with different transfer sizes

22

I/O Caching

• Similar concept to other types of caching you’ve learned
 CPU caching (L1, L2, L3 caches for main memory)

 Disk caching using main memory

• Use memory to cache data regions for IO transfers
 Similar to buffering, but for a different purpose

• E.g. for disk IO, cache buffers in main memory
 Improves efficiency for shared files that are read/written often

 Improve latency for reads; Reduce disk bandwidth for writes

• Reads serviced by memory instead of slow disk

• Writes can be “gathered” and a single bulk disk write done later

23

I/O Spooling

• Spool: type of buffer to hold data for device that cannot accept
interleaved data streams
 Printers!

• Kernel stores each applications print I/O data
 Spooled to a separate disk file

• Later, the kernel queues a spool file to the printer
 Often managed by a running daemon process

 Allows applications to view pending jobs, cancel jobs, etc.

• Device Reservation:
 For similar purposes as spooling

 Kernel facility for allocating an idle device & deallocating later

24

I/O Error Handling & Protection

• I/O system calls return information about status
 errno variable in UNIX

 Indicate general nature of failure

 Failures can happen due to transient problems

• OS can compensate by re-trying failed operations

• Protection mechanisms for I/O by kernel
 All I/O instructions are privileged

• cannot be executed directly by user process

 User process must execute system call

 System call can check for valid request & data

