
File Systems

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

ECE 650
Systems Programming & Engineering

Spring 2018

2

• Disks can do two things: read_block and write_block

• We want better interface, e.g. files and directories:
open, read, write, close, mkdir, rm, etc.

• Filesystem is what does this (abbreviated FS in these slides)

• FS allows easy access by applications to disk storage
– Two main aspects of a FS:

• What should the interface to the user be?
– E.g. File attributes, allowed file operations, directory structure

• What algorithms & data structures to map logical files to devices?

File Systems

3

• We should understand conceptual basics for FS topics

• Can be rewritten in place
– E.g. read, modify, write to update data at one location

– Unlike, say, flash storage

• Easy access both sequentially and randomly
– Rotate disks and move disk read/write heads to right location

• Addressed as single-dimension array of logical blocks
– Usually 512B; unit of size for disk I/O transfers

• Disk organization
– Multiple platters; disk arm has read/write heads above each platter

– Platters divided into tracks; tracks into sectors

– Set of tracks at a particular arm position form a cylinder

• Can convert logical block number into a physical disk location:
– Cylinder #, track number within the cylinder, sector number within the track

– In reality, this is complicated (e.g. by bad sectors)

Hard Disk Properties

4

– Manages FS meta-data

– Everything except for file contents

– Converts file name to logical block address

– Keeps file control block (e.g. inode) w/ file info

– Translates logical block address to physical

– Implements file allocation policy(ies)

– Tracks storage blocks & manages free space

– Can accept generic file commands

– Issues commands to appropriate device drivers

– Manages memory buffers that cache FS pieces

– E.g. directory & data blocks

– Device drivers; interrupt mechanism

– Takes requests & writes control bits to devices

Applications

Logical FS

File Organization Module

Basic FS

I/O Control

Devices

W
e

 d
is

c
u

s
s
e
d

 t
h

is
 l
a

s
t
ti
m

e

FS Abstractions

5

• File is named collection of data on secondary storage

• Users only interact w/ secondary storage through files

• Can represent many different types of information
– Executable programs

– Databases

– Spreadsheets, word processing documents, text files

• Organization of information in a file depends on its type
– E.g. text file vs. object file vs. executable file

File Basics

6

• Attributes
– Name, ID (unique number within the file system), type, location on storage

device, size, access control protection

• Operations
– Create, read, write, seek, delete

• File operations require finding the file
– Files typically found by searching a “directory” of file names

• Directory entry for a file name will point to its disk location

– OS optimizes this by keeping an open-file table

• With information about all open files

– After a file is opened, it can be reference by an ID

• E.g. a file descriptor

• Points to location in open file table

File Basics (2)

7

• Symbol table used to manage system files
– Stores meta-data about the file

• Name, disk location, file type, etc.

– When files are opened, searched for, created, deleted, renamed, or
directories are traversed, we use the directory

– Directory organization:

• Single-level: all files must have a distinct name

• Two-level: e.g. a file directory per user, with user files inside

• Tree:
– What we are familiar with from most OSes

– Real file name is file name + path through directory tree to the file

File System Directory

8

• Need to map from file location to device storage block
– Has many implications

• Device efficiency

• Performance

• Reliability

• Map a file name to pointers to the file data blocks

• What kind of data structure to use?
– List

– Hash Table

Directory Implementation

9

• List of data structures

• Data structure contains at least:
– File name, pointers to data blocks on disk

– We will talk more about how to organize these pointers in a bit

• Simple, but inefficient
– Finding a file requires a linear search of all list entries

– Same for creating a file

• If not found, add a new entry to end of list

– Same for deleting a file

• Can have an extra bit or marker file name for “free” list entries

• Or keep a separate list of free list entries (a free list)

Directory List Implementation

10

Name = foo

Blocks = {p1, p2, …}

Name = abc

Blocks = {p5, p6, …}

Name = NULL

Blocks = {}

Name = myfile.txt

Blocks = {p8}

Name = bar

Blocks = {p10, p11, p12}

Name = NULL

Blocks = {}

0

Index

1

2

3

4

5

2

4

Free List

Directory List Example

11

• Again, a list (table) of directory entries
– But list index for a file is determined via a hash of the file name

• Improves efficiency
– Finding a file is straightforward

– Creating and deleting a file are constant time

• Extra complexity for handling collisions
– What if we only have a list of 64 entries, but 65 files?

– Multiple file names may hash to same entry

– Can utilize a chain of directory entries at each entry of the table

• Hybrid of List + Hash Table implementations

• Finding a file requires: 1) hash calculation + 2) small list search

Hash Table Implementation

12

Name = foo

Blocks = {p1, p2, …}

Next = <addr>

Name = abc

Blocks = {p5, p6, …}

Next = NULL

Name = NULL

Blocks = {}

Next=NULL

Name = myfile.txt

Blocks = {p8}

Next = <addr>

Name = bar

Blocks = {p10, p11, p12}

Next = NULL

Name = NULL

Blocks = {}

Next=NULL

0

Index

1

2

3

4

5

H
a
s
h

File

name

Name = tmp.txt

Blocks = {p20, p25, …}

Next = NULL

Name = report.doc

Blocks = {p30}

Next = <addr>

Name = hello_world.exe

Blocks = {p35}

Next = NULL

Hash Table Example

13

• Need to allocate space for files on disk

• Want to utilize the disk effectively
– E.g. minimize fragmentation, minimize seek times for reading files

• Common approaches
– Contiguous allocation

– Linked allocation

– Indexed allocation

• Different approaches may be used by different FS’es

• Thus, OS may support multiple approaches for different FS types

Disk Allocation

14

• Each file occupies a sequential set of blocks on disk
– For file requiring N blocks, its blocks are:

• j,j+1, j+2, j+3, … , j+N

• Requires minimal disk activity for reading the file
– Disk rotation to read blocks from sectors within a track

– Read/write head only moves to next track after reading last sector of current
track

• Directory entry for each file is very simple:
– Starting block number on disk + length of file

• Both sequential and random access is easy:
– FS remembers current location in file and advances automatically

– To access block “b”, can compute j+b

Contiguous Allocation

15

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

File Name Start
Block

Size

foo 0 2

notes.txt 5 1

report.doc 7 6

hello_world 16 4

Contiguous Allocation Example

16

• Finding free blocks for a new file is complicated
– Described in detail in later charts

– We’ve studied a similar problem already (dynamic memory)

• Search “free” blocks: first fit, best fit, worst fit

• External fragmentation as blocks are alloc’d & free’d

– Often, some form of defragmentation is done

• Either periodically off-line, or regularly on-line

• Not easy to deal with growing / shrinking files
– When creating a file, how much space to request on disk?

• Too little? File runs out of space; Too much? Internal fragmentation

– Some OSes use mechanism known as extent to handle this

• If a file fills up its space, an extent (new set of blocks) is allocated

• File directory stores location + size, as well as pointer to extent

Drawbacks of Contiguous Allocation

17

• Addresses drawbacks of contiguous allocation

• File occupies a linked list of disk blocks

• Blocks of a single file may be located anywhere on disk

• Data Structures
– Directory stores block pointer to first and last blocks

– Each block stores a pointer to next block location

• Pointer is not available to user

Linked Allocation

18

• Create file
– Create a new directory entry

• Pointer to first block of file; size set to 0

• File writes allocate a new block; add block to end of file list

• Advantages
– No external fragmentation (no need to compact disk space)

– No need to know file size at file creation time

Linked Allocation Operation

19

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

File Name Start
Block

End
block

hello_world 16 7

Linked Allocation Example

20

• Random file access is inefficient
– To read data from “i”th block:

• Must always start at beginning and read from “i” blocks

• Sequential file access is “ok”
– But more disk seeks usually required as file is read

• Some disk space overhead is required for the pointers
– One pointer (e.g. 4 or 8 bytes) per 512 byte block

– Can group multiple blocks into a cluster and allocate clusters

• Improves overhead and sequential access performance

Drawbacks of Linked Allocation

21

• File-allocation Table (FAT) file system
– Used by MS-DOS and OS/2

• Disk space at the beginning of a volume is reserved
– Used to store a file allocation table (FAT)

– One entry per disk block (indexed by block number)

– Directory entry for a file contains pointer to start block in FAT

• Each entry in the FAT stores a pointer to the next entry for the file

– Essentially, group all of the block pointers together

• Cache the FAT (or parts of it) in memory
– Can improve random file access behavior

• Eliminates disk accesses to identify file blocks

Example of Linked Allocation Variant

22

• Solves the random access problem of linked allocation

• Aggregates block pointers together in an index block

• File has an index block
– List of pointers to the file blocks

– “i”th index block pointer points to the “i”th block of the file

• On file creation
– Index block is allocated; all pointers set to NULL

• On file write (if a new block is needed)
– Obtain block from free space manager

– Stores block address in the next NULL index block entry

Indexed Allocation

23

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

File Name Index
Block

hello_world 11

1

6

7

13

17

-1

-1

-1

11

Indexed Allocation Example

24

• A bit of extra wasted space compared to Linked
– What if file does not use as many blocks as index node holds?

• Size of index block (what if file becomes too big)?
– Linked index blocks

• Last pointer of index blocks points to next index block

– Multi-level index

• First level index block points to second-level index blocks

• Second-level index blocks point to file data disk blocks

Drawbacks of Indexed Allocation

25

• UNIX uses a combined implementation
– And ext3 file system used frequently in Linux

• Directory entry data structure is called an inode

• inode has several fields
– File mode, owners, timestamps, size (block count)

– Index block of 15 pointers

• First 12 point directly to file data blocks

• One singly-indirect pointer

• One doubly-indirect pointer

• One triply-indirect pointer

• Advantages:
– Small files fit in the direct indexed pointers

– Larger files increasingly utilize more indirect index lists

Hybrid Indexed Allocation Scheme

26

Inode indirection

From “File Systems Indirect Blocks and Extents” by Cory Xie (link)

 Triple

http://www.coderplay.org/filesysdev/File-Systems-Indirect-Blocks-And-Extents.html

27

• Parallels to memory management
– Need to reuse disk space new files as other files are deleted

• System maintains some type of list to track free blocks
– Creating a file removes some blocks from free list

– Deleting a file adds some blocks to free list

• Free list implementations
– Bit map

– Linked list

– Grouping

– Counting

Management of Free Space

28

• A bit per block is allocated to store block status

• Advantages
– Simplicity

– Easy to find first free block or N consecutive free blocks

• Many architectures have instructions to efficiently find first set bit

• Disadvantages
– Efficient only if bit map can be kept in main memory

– Size overhead becomes too large for large disks

Bit Map

29

• Link all free blocks together in a list

• Head of list stored in special disk location
– Also cached in CPU memory

• Operations are not efficient
– Searching for free blocks requires many disk reads

– But traversal is infrequent

– Most often, the OS simply wants 1 free block

• E.g. to allocate via an indexed allocation scheme

– Can use first free block in list

Linked List

30

• Tweak on the free list approach

• Store address of N free blocks in first free block
– N-1 of them are free blocks for use for files

– Last one points to block containing pointers to N more free blocks

• Advantage
– Multiple free blocks can now be found quickly

• With few disk read operations

Grouping

31

• Generally there are clusters of free blocks
– When files are deleted that span multiple blocks

• Keep address of a free block + # of subsequent free blocks
– Entry of free list is a block address + count

– Each list entry requires a little more state

– But number of free list entries may be significantly reduced

Counting

32

Conclusion

• File system design is a major contributor to overall performance

• Abstracts block device (read_block/write_block) into files and
directories (open/read/write/close/mkdir/rm/...)

• Key design questions we looked at:
 Directory implementation: list, hash table, other options!

 Block allocation: contiguous, linked list, index, multi-level hybrid, other
options!

 Free space management: bitmap, list (+grouping?, +counting?), others
options!

