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File Systems

Disks can do two things: read_block and write_block

We want better interface, e.g. files and directories:
open, read, write, close, mkdir, rm, etc.

Filesystem is what does this (abbreviated FS in these slides)

FS allows easy access by applications to disk storage
— Two main aspects of a FS:

* What should the interface to the user be?
— E.g. File attributes, allowed file operations, directory structure

* What algorithms & data structures to map logical files to devices?



Hard Disk Properties

We should understand conceptual basics for FS topics

Can be rewritten in place

— E.g. read, modify, write to update data at one location
— Unlike, say, flash storage

Easy access both sequentially and randomly
— Rotate disks and move disk read/write heads to right location

Addressed as single-dimension array of logical blocks
— Usually 512B; unit of size for disk 1/O transfers

Disk organization
— Multiple platters; disk arm has read/write heads above each platter
— Platters divided into tracks; tracks into sectors
— Set of tracks at a particular arm position form a cylinder

Can convert logical block number into a physical disk location:
— Cylinder #, track number within the cylinder, sector number within the track
— In reality, this is complicated (e.g. by bad sectors)



We discussed this last time

FS Abstractions

Applications

Logical FS

\

File Organization Module

Basic FS

/O Control

Devices

Manages FS meta-data

Everything except for file contents

Converts file name to logical block address
Keeps file control block (e.g. inode) w/ file info

Translates logical block address to physical
Implements file allocation policy(ies)
Tracks storage blocks & manages free space

Can accept generic file commands

Issues commands to appropriate device drivers
Manages memory buffers that cache FS pieces
E.g. directory & data blocks

Device drivers; interrupt mechanism
Takes requests & writes control bits to devices



File Basics

File is named collection of data on secondary storage

Users only interact w/ secondary storage through files

Can represent many different types of information
— Executable programs
— Databases
— Spreadsheets, word processing documents, text files

Organization of information in a file depends on its type
— E.g. text file vs. object file vs. executable file



File Basics (2)

e Attributes

— Name, ID (unique number within the file system), type, location on storage
device, size, access control protection

* Operations
— Create, read, write, seek, delete

* File operations require finding the file
— Files typically found by searching a “directory” of file names
* Directory entry for a file name will point to its disk location
— OS optimizes this by keeping an open-file table
* With information about all open files
— After a file is opened, it can be reference by an ID
* E.g. afile descriptor
* Points to location in open file table



File System Directory

* Symbol table used to manage system files
— Stores meta-data about the file
* Name, disk location, file type, etc.

— When files are opened, searched for, created, deleted, renamed, or
directories are traversed, we use the directory

— Directory organization:
* Single-level: all files must have a distinct name
* Two-level: e.g. a file directory per user, with user files inside

* Tree:
— What we are familiar with from most OSes
— Real file name is file name + path through directory tree to the file



Directory Implementation

* Need to map from file location to device storage block
— Has many implications
* Device efficiency
* Performance
* Reliability

 Map a file name to pointers to the file data blocks

e What kind of data structure to use?
— List
— Hash Table



Directory List Implementation

e List of data structures

e Data structure contains at least:

— File name, pointers to data blocks on disk
— We will talk more about how to organize these pointers in a bit

* Simple, but inefficient
— Finding a file requires a linear search of all list entries
— Same for creating a file
* If not found, add a new entry to end of list
— Same for deleting a file
e Can have an extra bit or marker file name for “free” list entries
* Or keep a separate list of free list entries (a free list)



Directory List Example

Index
Name = foo
0 Blocks = {p1, p2, ...}
Free List 1 Name = abc
Blocks = {p5, p6, ...}
2
Name = NULL
g 2 Blocks = {}
3 Name = myfile.txt
Blocks = {p8}
Name = NULL
4 Blocks = {}
Name = bar
° | Blocks = {p10, pl1, p12}
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Hash Table Implementation

* Again, a list (table) of directory entries
— But list index for a file is determined via a hash of the file name

* Improves efficiency
— Finding a file is straightforward
— Creating and deleting a file are constant time

* Extra complexity for handling collisions
— What if we only have a list of 64 entries, but 65 files?
— Multiple file names may hash to same entry
— Can utilize a chain of directory entries at each entry of the table
* Hybrid of List + Hash Table implementations
* Finding a file requires: 1) hash calculation + 2) small list search
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Hash Table Example

Name = foo
Blocks = {p1, p2, ...}
Next = <addr>

Name = tmp.txt
Blocks = {p20, p25, ...}
Next = NULL

Name = abc
Blocks = {p5, p6, ...}
Next = NULL

Name = NULL
Blocks = {}
Next=NULL

Name = myfile.txt

Name = report.doc

Blocks = {p8} Blocks = {p30}
Next = <addr> Next = <@J’>
Name = NULL k//////////
Blocks = {}
Next=NULL Name = hello_world.exe
Name = bar BI:IOCIES;:N{SEE}
Blocks = {p10, p11, p12} ext=
Next = NULL
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Disk Allocation

Need to allocate space for files on disk

Want to utilize the disk effectively
— E.g. minimize fragmentation, minimize seek times for reading files

e Common approaches
— Contiguous allocation
— Linked allocation
— Indexed allocation

Different approaches may be used by different FS’es

Thus, OS may support multiple approaches for different FS types
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Contiguous Allocation

Each file occupies a sequential set of blocks on disk

— For file requiring N blocks, its blocks are:
* j;j+1; j+21 j+3l e ) J+N

Requires minimal disk activity for reading the file
— Disk rotation to read blocks from sectors within a track

— Read/write head only moves to next track after reading last sector of current
track

Directory entry for each file is very simple:
— Starting block number on disk + length of file

Both sequential and random access is easy:
— FS remembers current location in file and advances automatically
— To access block “b”, can compute j+b
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Contiguous Allocation Example

File Name Start Size

Block
foo 0 2
0 1 2 3 notes.txt 5 1
report.doc 7 6
4 5 6 7
hello_world 16 4
8 9 10 11

12 13 14 15

16 17 18 19
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Drawbacks of Contiguous Allocation

* Finding free blocks for a new file is complicated
— Described in detail in later charts
— We've studied a similar problem already (dynamic memory)
* Search “free” blocks: first fit, best fit, worst fit
* External fragmentation as blocks are alloc’d & free’d
— Often, some form of defragmentation is done
* Either periodically off-line, or regularly on-line

* Not easy to deal with growing / shrinking files
— When creating a file, how much space to request on disk?
* Too little? File runs out of space; Too much? Internal fragmentation
— Some OSes use mechanism known as extent to handle this
* If afile fills up its space, an extent (new set of blocks) is allocated
* File directory stores location + size, as well as pointer to extent

16



Linked Allocation

Addresses drawbacks of contiguous allocation

* File occupies a linked list of disk blocks

Blocks of a single file may be located anywhere on disk

Data Structures

— Directory stores block pointer to first and last blocks
— Each block stores a pointer to next block location
* Pointer is not available to user
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Linked Allocation Operation

* Create file

— Create a new directory entry
* Pointer to first block of file; size setto 0
* File writes allocate a new block; add block to end of file list

* Advantages
— No external fragmentation (no need to compact disk space)
— No need to know file size at file creation time
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Linked Allocation Example

Start
Block

File Name

hello_world 16

End
block

-

0 1 2 3
4 5 6—1* 7
8 9 10 11
12 4> 13 14 15
16 17 18 19
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Drawbacks of Linked Allocation

e Random file access is inefficient
— To read data from “i”th block:
* Must always start at beginning and read from “i” blocks

* Sequential file access is “ok”
— But more disk seeks usually required as file is read

 Some disk space overhead is required for the pointers
— One pointer (e.g. 4 or 8 bytes) per 512 byte block
— Can group multiple blocks into a cluster and allocate clusters
* Improves overhead and sequential access performance
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Example of Linked Allocation Variant

* File-allocation Table (FAT) file system
— Used by MS-DOS and 0S/2

* Disk space at the beginning of a volume is reserved
— Used to store a file allocation table (FAT)
— One entry per disk block (indexed by block number)
— Directory entry for a file contains pointer to start block in FAT
* Each entry in the FAT stores a pointer to the next entry for the file
— Essentially, group all of the block pointers together

e Cache the FAT (or parts of it) in memory
— Can improve random file access behavior
* Eliminates disk accesses to identify file blocks
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Indexed Allocation

Solves the random access problem of linked allocation

Aggregates block pointers together in an index block

File has an index block
— List of pointers to the file blocks
— “i”th index block pointer points to the “i”"th block of the file

On file creation
— Index block is allocated; all pointers set to NULL

On file write (if a new block is needed)

— Obtain block from free space manager
— Stores block address in the next NULL index block entry
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Indexed Allocation Example

0 1 <2 3
4 S 1 6 7
8 9 T 11
12 13 14 15
16 17 «—18 19

11

Index
Block

File Name

hello_world 11

L EEvor

II—\II—\I—\\joo
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Drawbacks of Indexed Allocation

* A bit of extra wasted space compared to Linked
— What if file does not use as many blocks as index node holds?

e Size of index block (what if file becomes too big)?
— Linked index blocks
* Last pointer of index blocks points to next index block
— Multi-level index
* First level index block points to second-level index blocks
* Second-level index blocks point to file data disk blocks
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Hybrid Indexed Allocation Scheme

UNIX uses a combined implementation
— And ext3 file system used frequently in Linux

* Directory entry data structure is called an inode

* inode has several fields
— File mode, owners, timestamps, size (block count)
— Index block of 15 pointers
* First 12 point directly to file data blocks
* One singly-indirect pointer
* One doubly-indirect pointer
* One triply-indirect pointer

Advantages:
— Small files fit in the direct indexed pointers
— Larger files increasingly utilize more indirect index lists
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Inode indirection

Direct Blocks (12)
[File sizes to 48K]

Indirect Blocks (1024)
[4M storage]

Va

//

> T

Inode Double Indirect (1M)

[4GB storage]

1\

TEh R aD@oONOO BN -

N

Triple Indirect Pointer
[Up to 1G blocks, 4TB storage]
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http://www.coderplay.org/filesysdev/File-Systems-Indirect-Blocks-And-Extents.html

Management of Free Space

* Parallels to memory management
— Need to reuse disk space new files as other files are deleted

e System maintains some type of list to track free blocks
— Creating a file removes some blocks from free list
— Deleting a file adds some blocks to free list

* Free list implementations
— Bit map
— Linked list
— Grouping
— Counting
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Bit Map

* A bit per block is allocated to store block status

* Advantages
— Simplicity
— Easy to find first free block or N consecutive free blocks
* Many architectures have instructions to efficiently find first set bit

* Disadvantages
— Efficient only if bit map can be kept in main memory
— Size overhead becomes too large for large disks
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Linked List

* Link all free blocks together in a list

* Head of list stored in special disk location
— Also cached in CPU memory

e Operations are not efficient
— Searching for free blocks requires many disk reads
— But traversal is infrequent
— Most often, the OS simply wants 1 free block
e E.g.to allocate via an indexed allocation scheme
— Can use first free block in list
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Grouping

 Tweak on the free list approach

e Store address of N free blocks in first free block
— N-1 of them are free blocks for use for files
— Last one points to block containing pointers to N more free blocks

* Advantage
— Multiple free blocks can now be found quickly
* With few disk read operations
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Counting

* Generally there are clusters of free blocks
— When files are deleted that span multiple blocks

* Keep address of a free block + # of subsequent free blocks
— Entry of free list is a block address + count
— Each list entry requires a little more state
— But number of free list entries may be significantly reduced
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Conclusion

e File system design is a major contributor to overall performance

e Abstracts block device (read_block/write_block) into files and
directories (open/read/write/close/mkdir/rm/...)

e Key design questions we looked at:

= Directory implementation: list, hash table, other options!

= Block allocation: contiguous, linked list, index, multi-level hybrid, other
options!

= Free space management: bitmap, list (+grouping?, +counting?), others
options!
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