ECE 650
Systems Programming & Engineering

Spring 2018

File Systems

Tyler Bletsch
Duke University

Slides are adapted from Brian Rogers (Duke)



File Systems

Disks can do two things: read_block and write_block

We want better interface, e.g. files and directories:
open, read, write, close, mkdir, rm, etc.

Filesystem is what does this (abbreviated FS in these slides)

FS allows easy access by applications to disk storage
— Two main aspects of a FS:

* What should the interface to the user be?
— E.g. File attributes, allowed file operations, directory structure

* What algorithms & data structures to map logical files to devices?



Hard Disk Properties

We should understand conceptual basics for FS topics

Can be rewritten in place

— E.g. read, modify, write to update data at one location
— Unlike, say, flash storage

Easy access both sequentially and randomly
— Rotate disks and move disk read/write heads to right location

Addressed as single-dimension array of logical blocks
— Usually 512B; unit of size for disk 1/O transfers

Disk organization
— Multiple platters; disk arm has read/write heads above each platter
— Platters divided into tracks; tracks into sectors
— Set of tracks at a particular arm position form a cylinder

Can convert logical block number into a physical disk location:
— Cylinder #, track number within the cylinder, sector number within the track
— In reality, this is complicated (e.g. by bad sectors)



We discussed this last time

FS Abstractions

Applications

Logical FS

\

File Organization Module

Basic FS

/O Control

Devices

Manages FS meta-data

Everything except for file contents

Converts file name to logical block address
Keeps file control block (e.g. inode) w/ file info

Translates logical block address to physical
Implements file allocation policy(ies)
Tracks storage blocks & manages free space

Can accept generic file commands

Issues commands to appropriate device drivers
Manages memory buffers that cache FS pieces
E.g. directory & data blocks

Device drivers; interrupt mechanism
Takes requests & writes control bits to devices



File Basics

File is named collection of data on secondary storage

Users only interact w/ secondary storage through files

Can represent many different types of information
— Executable programs
— Databases
— Spreadsheets, word processing documents, text files

Organization of information in a file depends on its type
— E.g. text file vs. object file vs. executable file



File Basics (2)

e Attributes

— Name, ID (unique number within the file system), type, location on storage
device, size, access control protection

* Operations
— Create, read, write, seek, delete

* File operations require finding the file
— Files typically found by searching a “directory” of file names
* Directory entry for a file name will point to its disk location
— OS optimizes this by keeping an open-file table
* With information about all open files
— After a file is opened, it can be reference by an ID
* E.g. afile descriptor
* Points to location in open file table



File System Directory

* Symbol table used to manage system files
— Stores meta-data about the file
* Name, disk location, file type, etc.

— When files are opened, searched for, created, deleted, renamed, or
directories are traversed, we use the directory

— Directory organization:
* Single-level: all files must have a distinct name
* Two-level: e.g. a file directory per user, with user files inside

* Tree:
— What we are familiar with from most OSes
— Real file name is file name + path through directory tree to the file



Directory Implementation

* Need to map from file location to device storage block
— Has many implications
* Device efficiency
* Performance
* Reliability

 Map a file name to pointers to the file data blocks

e What kind of data structure to use?
— List
— Hash Table



Directory List Implementation

e List of data structures

e Data structure contains at least:

— File name, pointers to data blocks on disk
— We will talk more about how to organize these pointers in a bit

* Simple, but inefficient
— Finding a file requires a linear search of all list entries
— Same for creating a file
* If not found, add a new entry to end of list
— Same for deleting a file
e Can have an extra bit or marker file name for “free” list entries
* Or keep a separate list of free list entries (a free list)



Directory List Example

Index
Name = foo
0 Blocks = {p1, p2, ...}
Free List 1 Name = abc
Blocks = {p5, p6, ...}
2
Name = NULL
g 2 Blocks = {}
3 Name = myfile.txt
Blocks = {p8}
Name = NULL
4 Blocks = {}
Name = bar
° | Blocks = {p10, pl1, p12}

10



Hash Table Implementation

* Again, a list (table) of directory entries
— But list index for a file is determined via a hash of the file name

* Improves efficiency
— Finding a file is straightforward
— Creating and deleting a file are constant time

* Extra complexity for handling collisions
— What if we only have a list of 64 entries, but 65 files?
— Multiple file names may hash to same entry
— Can utilize a chain of directory entries at each entry of the table
* Hybrid of List + Hash Table implementations
* Finding a file requires: 1) hash calculation + 2) small list search

11



File
name

\ 4

\

yseH

Index

Hash Table Example

Name = foo
Blocks = {p1, p2, ...}
Next = <addr>

Name = tmp.txt
Blocks = {p20, p25, ...}
Next = NULL

Name = abc
Blocks = {p5, p6, ...}
Next = NULL

Name = NULL
Blocks = {}
Next=NULL

Name = myfile.txt

Name = report.doc

Blocks = {p8} Blocks = {p30}
Next = <addr> Next = <@J’>
Name = NULL k//////////
Blocks = {}
Next=NULL Name = hello_world.exe
Name = bar BI:IOCIES;:N{SEE}
Blocks = {p10, p11, p12} ext=
Next = NULL

12



Disk Allocation

Need to allocate space for files on disk

Want to utilize the disk effectively
— E.g. minimize fragmentation, minimize seek times for reading files

e Common approaches
— Contiguous allocation
— Linked allocation
— Indexed allocation

Different approaches may be used by different FS’es

Thus, OS may support multiple approaches for different FS types

13



Contiguous Allocation

Each file occupies a sequential set of blocks on disk

— For file requiring N blocks, its blocks are:
* j;j+1; j+21 j+3l e ) J+N

Requires minimal disk activity for reading the file
— Disk rotation to read blocks from sectors within a track

— Read/write head only moves to next track after reading last sector of current
track

Directory entry for each file is very simple:
— Starting block number on disk + length of file

Both sequential and random access is easy:
— FS remembers current location in file and advances automatically
— To access block “b”, can compute j+b

14



Contiguous Allocation Example

File Name Start Size

Block
foo 0 2
0 1 2 3 notes.txt 5 1
report.doc 7 6
4 5 6 7
hello_world 16 4
8 9 10 11

12 13 14 15

16 17 18 19

15



Drawbacks of Contiguous Allocation

* Finding free blocks for a new file is complicated
— Described in detail in later charts
— We've studied a similar problem already (dynamic memory)
* Search “free” blocks: first fit, best fit, worst fit
* External fragmentation as blocks are alloc’d & free’d
— Often, some form of defragmentation is done
* Either periodically off-line, or regularly on-line

* Not easy to deal with growing / shrinking files
— When creating a file, how much space to request on disk?
* Too little? File runs out of space; Too much? Internal fragmentation
— Some OSes use mechanism known as extent to handle this
* If afile fills up its space, an extent (new set of blocks) is allocated
* File directory stores location + size, as well as pointer to extent

16



Linked Allocation

Addresses drawbacks of contiguous allocation

* File occupies a linked list of disk blocks

Blocks of a single file may be located anywhere on disk

Data Structures

— Directory stores block pointer to first and last blocks
— Each block stores a pointer to next block location
* Pointer is not available to user

17



Linked Allocation Operation

* Create file

— Create a new directory entry
* Pointer to first block of file; size setto 0
* File writes allocate a new block; add block to end of file list

* Advantages
— No external fragmentation (no need to compact disk space)
— No need to know file size at file creation time

18



Linked Allocation Example

Start
Block

File Name

hello_world 16

End
block

-

0 1 2 3
4 5 6—1* 7
8 9 10 11
12 4> 13 14 15
16 17 18 19

19



Drawbacks of Linked Allocation

e Random file access is inefficient
— To read data from “i”th block:
* Must always start at beginning and read from “i” blocks

* Sequential file access is “ok”
— But more disk seeks usually required as file is read

 Some disk space overhead is required for the pointers
— One pointer (e.g. 4 or 8 bytes) per 512 byte block
— Can group multiple blocks into a cluster and allocate clusters
* Improves overhead and sequential access performance

20



Example of Linked Allocation Variant

* File-allocation Table (FAT) file system
— Used by MS-DOS and 0S/2

* Disk space at the beginning of a volume is reserved
— Used to store a file allocation table (FAT)
— One entry per disk block (indexed by block number)
— Directory entry for a file contains pointer to start block in FAT
* Each entry in the FAT stores a pointer to the next entry for the file
— Essentially, group all of the block pointers together

e Cache the FAT (or parts of it) in memory
— Can improve random file access behavior
* Eliminates disk accesses to identify file blocks

21



Indexed Allocation

Solves the random access problem of linked allocation

Aggregates block pointers together in an index block

File has an index block
— List of pointers to the file blocks
— “i”th index block pointer points to the “i”"th block of the file

On file creation
— Index block is allocated; all pointers set to NULL

On file write (if a new block is needed)

— Obtain block from free space manager
— Stores block address in the next NULL index block entry

22



Indexed Allocation Example

0 1 <2 3
4 S 1 6 7
8 9 T 11
12 13 14 15
16 17 «—18 19

11

Index
Block

File Name

hello_world 11

L EEvor

II—\II—\I—\\joo

23



Drawbacks of Indexed Allocation

* A bit of extra wasted space compared to Linked
— What if file does not use as many blocks as index node holds?

e Size of index block (what if file becomes too big)?
— Linked index blocks
* Last pointer of index blocks points to next index block
— Multi-level index
* First level index block points to second-level index blocks
* Second-level index blocks point to file data disk blocks

24



Hybrid Indexed Allocation Scheme

UNIX uses a combined implementation
— And ext3 file system used frequently in Linux

* Directory entry data structure is called an inode

* inode has several fields
— File mode, owners, timestamps, size (block count)
— Index block of 15 pointers
* First 12 point directly to file data blocks
* One singly-indirect pointer
* One doubly-indirect pointer
* One triply-indirect pointer

Advantages:
— Small files fit in the direct indexed pointers
— Larger files increasingly utilize more indirect index lists

25



Inode indirection

Direct Blocks (12)
[File sizes to 48K]

Indirect Blocks (1024)
[4M storage]

Va

//

> T

Inode Double Indirect (1M)

[4GB storage]

1\

TEh R aD@oONOO BN -

N

Triple Indirect Pointer
[Up to 1G blocks, 4TB storage]

26
From “File Systems Indirect Blocks and Extents” by Cory Xie (link)


http://www.coderplay.org/filesysdev/File-Systems-Indirect-Blocks-And-Extents.html

Management of Free Space

* Parallels to memory management
— Need to reuse disk space new files as other files are deleted

e System maintains some type of list to track free blocks
— Creating a file removes some blocks from free list
— Deleting a file adds some blocks to free list

* Free list implementations
— Bit map
— Linked list
— Grouping
— Counting

27



Bit Map

* A bit per block is allocated to store block status

* Advantages
— Simplicity
— Easy to find first free block or N consecutive free blocks
* Many architectures have instructions to efficiently find first set bit

* Disadvantages
— Efficient only if bit map can be kept in main memory
— Size overhead becomes too large for large disks

28



Linked List

* Link all free blocks together in a list

* Head of list stored in special disk location
— Also cached in CPU memory

e Operations are not efficient
— Searching for free blocks requires many disk reads
— But traversal is infrequent
— Most often, the OS simply wants 1 free block
e E.g.to allocate via an indexed allocation scheme
— Can use first free block in list

29



Grouping

 Tweak on the free list approach

e Store address of N free blocks in first free block
— N-1 of them are free blocks for use for files
— Last one points to block containing pointers to N more free blocks

* Advantage
— Multiple free blocks can now be found quickly
* With few disk read operations

30



Counting

* Generally there are clusters of free blocks
— When files are deleted that span multiple blocks

* Keep address of a free block + # of subsequent free blocks
— Entry of free list is a block address + count
— Each list entry requires a little more state
— But number of free list entries may be significantly reduced

31



Conclusion

e File system design is a major contributor to overall performance

e Abstracts block device (read_block/write_block) into files and
directories (open/read/write/close/mkdir/rm/...)

e Key design questions we looked at:

= Directory implementation: list, hash table, other options!

= Block allocation: contiguous, linked list, index, multi-level hybrid, other
options!

= Free space management: bitmap, list (+grouping?, +counting?), others
options!

32



