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Memory Management 

• 3 issues to consider 
 More than 1 process can’t own all physical memory same time 

 Processes shouldn’t be allowed to read/write memory of another 

• Unless explicitly allowed (remember IPC?) 

 Process may contain more data than physical memory can store 

• OS must manage memory to address these issues 

• Recall a process’s memory… 
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In A Nutshell – Virtual Memory 

• Mechanism 
 Programs & processes reference “virtual” addresses 

• Cannot directly access physical memory addresses 

 OS converts process virtual address into physical mem address 

• For every memory access from a process 

• Implications 
 Multiple processes can co-reside in memory at once 

• OS ensures that their addresses will not conflict 

 OS is able to enforce memory protection 

• Since it will observe & translate address for every memory reference 

 Allows running a program that is larger than physical memory 

• Now let’s look at the details 
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Address Spaces 

• Logical (Virtual) Address Space 
 This is what a program sees (0x00…0 to 0xFF…F) 

• Size depends on the CPU architecture (e.g. 32-bit vs. 64-bit) 

 Compile + link + load generates logical addresses 

• Physical Address Space 
 This is what the main memory (and cache hierarchy) sees 

• Memory Management Unit (MMU) 
 Hardware that converts logical to physical addresses 

 OS interacts w/ MMU 
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Process Memory Allocation 

• Programs can access memory 
 Instructions are fetched from memory 

 Load and store operations address mem 

 No direct interface to disk 

• So programs & data must be in mem 
 Executing processes allocated in memory 

• Possible solution: 
 Load whole programs into main memory 

 Store base mem address of each program 

• “Base Register” 

 Store size of process for each program 

• “Limit Register” 

 CPU address generated by a process is: 

• Compared to limit register (for protection) 

• Added to base register to get physical addr 

• Any problems with this? 
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Issues with Simple Solution 

• How to decide where to load a new process in memory? 
 Similar problem to: 

• Dynamic memory management (malloc / free) 

• Allocation of disk blocks 

 Can use an allocation policy like: first fit, best fit, worst fit 

• Fragmentation is a big problem 
 50-percent rule: 

• Statistical analysis shows that for N allocated blocks, 0.5N lost  

• 1/2 of memory is unusable 

 This would be very costly for main memory 
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Paging 

• Use non-contiguous physical memory for a process 
 Avoids problem of external fragmentation 

 Analagous to some disk block allocation schemes we studied 

• Mechanism 
 Physical memory divided into fixed-size blocks (frames) 

 Virtual address space also divided into same-size blocks (pages) 

 Addresses generated by the processor have 2 parts: 

• Page number 

• Page offset (byte address within the page) 

 Typically page / frame size is a power of 2 (e.g. 4KB) 

• A range of page sizes may be supported (hugepages) 

 A table stores the physical frame number for each virtual page 

• Called the page table 

• Per-process data structure (need one per virtual address space) 
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Paging Mechanism 
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More on Paging 

• Internal fragmentation is still possible 
 Some pages from address space do not use a full frame 

• Page table entry size 
 If 4 bytes w/ 4KB pages, then can map a 2^32 * 4KB memory 

• Address translation mechanism also provides protection 
 User process generates virtual addresses in its address space 

 OS + hardware translate to physical addresses 

 Thus, no mechanism to access memory of another process 

• Except when explicitly enabled (IPC)  

• OS tracks physical memory frames in a frame table 
 Which are free and which are allocated (to which page / process) 
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A Microarchitecture Note 

• Every load, store, i-fetch requires 2 mem accesses? 
 One for page table entry 

 One for the physical address translated using this entry? 

• Hardware caches page table entries in TLB 
 Translation lookaside buffer: often a fully associative cache 

 Cache of virtual to physical page translation 

 A TLB miss for a virtual address requires a separate mem access 

 TLB often stores process ID owning the page address 

• Extends the protection mechanism for process address space isolation 

• TLB hit also compares the process ID to the running process ID 

 Treated as a TLB miss if mismatch 

• Allows the TLB to service multiple processes at once 
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Protection 

• Extra bits in the PT entry denote access rights for a page 
 readable, writable, and/or executable 

• Compared against the operation causing the access 
 Load 

 Store 

 Instruction fetch 

 

• Good idea for security: 
 Don’t let a memory page be both writable and executable, 

otherwise a buffer overflow could inject code which we then might run 
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Page Table 

• As described so far, we have assumed some things 
 Flat table with virtual-to-physical page translations 

 Page table for a process exists at a fixed physical memory location 

• We do have a problem with size 
 Assume: 

• A 32 or 64 bit virtual address space  

• 4 byte page table entries 

• 4096 byte pages 

 For 32-bit address space: (2^32 / 2^12) * 4B = 4MB 

 For 64-bit address space: (2^64 / 2^12) * 4B = 2^54 bytes 

• Clearly we don’t want to (for 32b) or cannot (for 64b) use a 
dedicated, contiguous region of main memory for the PT 
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Hierarchical Page Table 

• One solution: page the page table 
 Add another level of indirection 

• Split the page table entries up into groups 
 The size of a page or physical memory frame 

 With 4K pages & 4B PT entries, we have 2^10 entries per group 

 Allow these pages of PT entries to be swapped to/from disk 

• i.e., paged, just like regular process data 

 How do we find a PT entry in physical memory now? 

• A top-level page table used to page the page table 
 

index into top-level PT index into PT page page offset 

Example: 32-bit address space, 4KB pages, 4B per PT entry 

12 bits 10 bits 10 bits 
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Hierarchical Page Table (2) 

• What about 64-bit address spaces? 
 Even with 2-level page table, outer page table has 2^44 bytes 

 Try 3 levels of page tables: 

• 12 bits of page offset 

• 10 bits for 1st level PT index 

• 10 bits for 2nd level PT index 

• 32 bits for top-level PT index 

 Still requires 2^34 bytes contiguously allocated in memory 

• We need alternative solutions 
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Inverted Page Table 

• The page table we’ve discussed… 
 Has an entry per logical page of every active process  

 Each entry stores the physical page frame for the logical page 

• Or is invalid, meaning the page is not in memory 

 This is an intuitive way to do mapping, but requires huge space 

• To solve the size problem, we can invert the page table 
 One entry per physical page frame in memory 

 Each entry stores the logical page it stores (and the PID) 

 Finding a virtual-to-physical page mapping requires searching 

• Possibly every entry in the inverted page table! 

 Used by 64b UltraSPARC and Power Architectures 
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Inverted Page Table Mechanism 
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Inverted Page Table – Search Time 

• Searching the entire inverted table would take too long 
 Recall, it would only be searched on a TLB miss 

• To solve this, inverted page tables are often hashed 
 Hash input is the logical page number 

 Each hash table entry is a list of physical frames 

• Contain the frame number, PID, pointer to next in list 

 Reduces the TLB miss to (hopefully) only a few extra memory accesses to 
search the hashed entry in the inverted page table 
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Benefits of Virtual Memory 

• Programs can be larger than the physical memory 

• Multiple programs can execute at once 

• Reduced I/O: only used portions of a program are loaded 

• System libraries may be shared by many processes 
 A library is loaded into one location in memory 

 Virtual pages of multiple processes can map to this space 

• Allows processes to share memory 
 Via mapping virtual pages to a single physical page frame 

• Provides protection across process address spaces 
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More on Paging 

• We’ve discussed the basic of paging 
 Fixed-sized chunks of data move between disk & mem 

 There are ways to convert virtual addresses to physical 

• Address translation via page tables 

• Next we’ll discuss movement of pages between mem & disk 
 This is a management function of the OS 

 Demand paging brings pages into memory as needed 
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Overview 

• Case #1: TLB hit 
 Common case; VA to PA translation is complete quickly by CPU 

 Note many CPUs have multi-level TLB cache hierarchy 

• Case #2: TLB miss, Page Table hit 
 Need to access the software page table structures 

 Can be done by HW (page table walker) or SW (trap to OS) 

 PT entry valid bit is set; load entry into TLB and use for translation 

• Case #3: TLB miss, Page Table miss (called a Page Fault) 
 Causes trap into OS (if not already there for SW TLB miss handler machines) 

 OS initiates disk operation(s) to retrieve page 

 OS identifies a physical memory frame to store the page 

• Either a free frame (e.g. via a free-frame list) 

• Or must pick valid frame to “evict” from memory and write back to disk 

 OS modifies the page table entry: sets valid bit, PID field, physical frame 

 OS returns from the trap (like a return from interrupt) to re-execute the instruction 
 

• Work through example of access time… 
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The Table of Time 
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Event Picoseconds   ≈ Hardware/target Source 

Average instruction time*                                       30  30 ps Intel Core i7 4770k (Haswell), 3.9GHz https://en.wikipedia.org/wiki/Instructions_per_secon
d 

Time for light to traverse CPU core (~13mm)                                        44  40 ps Intel Core i7 4770k (Haswell), 3.9GHz http://www.anandtech.com/show/7003/the-haswell-
review-intel-core-i74770k-i54560k-tested/5 

Clock cycle (3.9GHz)                                      256  300 ps Intel Core i7 4770k (Haswell), 3.9GHz Math 

Memory read: L1 hit                                    1,212  1 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Memory read: L2 hit                              3,636  4 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Memory read: L3 hit                       8,439  8 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Memory read: DRAM                         64,485  60 ns Intel i3-2120 (Sandy Bridge), 3.3 GHz http://www.7-cpu.com/cpu/SandyBridge.html 

Process context switch or system call 3,000,000 3 us Intel E5-2620 (Sandy Bridge), 2GHz http://blog.tsunanet.net/2010/11/how-long-does-it-
take-to-make-context.html 

Storage sequential read**, 4kB (SSD)                    7,233,796  7 us SSD: Samsung 840 500GB 
http://www.samsung.com/global/business/semicond
uctor/minisite/SSD/global/html/whitepaper/whitepa
per01.html 

Storage sequential read**, 4kB (HDD)                  65,104,167  70 us HDD: 2.5" 500GB 7200RPM 
http://www.samsung.com/global/business/semicond
uctor/minisite/SSD/global/html/whitepaper/whitepa
per01.html 

Storage random read, 4kB (SSD)                   100,000,000  100 us SSD: Samsung 840 500GB 
http://www.samsung.com/global/business/semicond
uctor/minisite/SSD/global/html/whitepaper/whitepa
per01.html 

Storage random read, 4kB (HDD)             10,000,000,000  10 ms HDD: 2.5" 500GB 7200RPM 
http://www.samsung.com/global/business/semicond
uctor/minisite/SSD/global/html/whitepaper/whitepa
per01.html 

Internet latency, Raleigh home to  
NCSU (3 mi) 

            21,000,000,000  20 ms courses.ncsu.edu Ping 

Internet latency, Raleigh home to  
Chicago ISP (639 mi) 

             48,000,000,000  50 ms dls.net Ping 

Internet latency, Raleigh home to  
Luxembourg ISP (4182 mi) 

          108,000,000,000  100 ms eurodns.com Ping 

Time for light to travel to  
the moon (average) 

 1,348,333,333,333  1   s The moon http://www.wolframalpha.com/input/?i=distance+to
+the+moon 

* Based on Dhrystone, single core only, average time per instruction  

** Based on sequential throughput, average time per block  
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Performance of Demand Paging 

Stages in Demand Paging: 

• Trap to the operating system 

• Save the user registers and process state 

• Check that the page reference was legal and determine the location of the page on the disk 

• Issue a read from the disk to a free frame: 

 Wait in a queue for this device until the read request is serviced 

 Wait for the device seek and/or latency time 

 Begin the transfer of the page to a free frame 

• While waiting, allocate the CPU to some other process 

• Receive an interrupt from the disk I/O subsystem (I/O completed) 

• Save the registers and process state for the other process 

• Correct the page table and other tables to show page is now in memory 

• Wait for the CPU to be allocated to this process again 

• Restore the user registers, process state, and new page table, and then resume the interrupted 
instruction 
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Adapted from Operating System Concepts by Silberschatz, Galvin, and Gagne 
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Page Replacement 

• As processes execute and access pages… 
 Physical memory frames may fill 

 New pages required by a process will need a free frame 

 Must replace (evict) an existing page from a frame to make room 

• Optimizations 
 Keep a dirty bit in hardware with each memory frame 

• Only write page back to disk if it is dirty 

• Otherwise, can simply overwrite the frame with new page data 

• Significantly reduces disk I/O 

 Write evicted, dirty page back to disk swap space 

• Will discuss swap space more in a bit 

• Need to decide on a page replacement algorithm 
 Many choices 
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FIFO Page Replacement 

• Replace page brought into memory furthest in past 
 Could keep a timestamp of load time of each frame 

 Or could keep a separate FIFO queue of page frame numbers 

• Easy to implement, but performance is often poor 
 Some pages may have been allocated long ago, but used often 

• We can evaluate page replacement algorithms by: 
 Assuming some fixed number of memory page frames  

 Simulate page replacement decisions for some sequence of page accesses 
(only concerned with the page number) 

• Metric of interest is page faults 

• Belady’s Anomaly 
 For some algorithms, page faults may *increase* with more frames 
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Evaluating Page Replacement 

• Process 
 Assume some number of memory page frames 

 Simulate replacements for an access sequence of page numbers 

• Example: 
 4 page frames 

 Page accesses: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 
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FIFO Page Replacement Example 

• Page number reference sequence: 
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 

• 1 page frame: 
 12 page faults (all 12 references) 

• 2 page frames: 
 12 page faults 

• 3 page frames: 
 9 page faults 

• 4 page frames: 
 10 page faults (more than w/ 3 page frames! Belady’s Anomaly) 

• 5 page frames: 
 5 page faults 
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Optimal (OPT) Page Replacement 

• Replace the page that will not be accessed until furthest in the 
future 
 Produces guaranteed minimal page faults 

 Of course…cannot be implemented 

• Serves a good point of comparison for other algos 
 What is the # of page faults relative to OPT 
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LRU Page Replacement 

• Approximate OPT by looking backwards 

• Replace page that has not been accessed in longest time 

• Generally gives low page faults; often implemented 

• Easy to understand, but not to implement 
 Expensive per-frame timestamp counters & comparisons 

 Separate stack of page frames; page access moves it to top 

• Not susceptible to Belady’s Anomaly 
 Type of stack algorithm 

 Set of pages in memory with N frames is always a subset of the pages 
that would be in memory with N+1 frames 
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Some LRU Approximations 

• Reference Bits Algorithm 
 Associate some # of bits with each page frame (e.g. 8) 

 When a page is accessed, set its leftmost bit to 1 

 Periodically, the OS will shift bits of all pages to the right by 1 

 Page frame with the lowest value is the LRU page 

• Second Chance Algorithm 
 Keep a single reference bit per page frame (set on page access) 

 Use FIFO replacement, but if reference bit is set, don’t replace it 

• Instead move on to look at second FIFO page 

• Also clear FIFO page reference bit & set arrival time to current time 

• Continue this until a page frame with a 0 reference bit is found 

 

 



30 

Swap Space 

• Dedicated portion of the hard disk 

• Not part of the file system 
 No regular files can be stored there 

 Raw device format 

• Often used for storing pages moved to/from memory 

• May be faster or more efficient than file system portion 
 


