
Hypervisors & CPU Virtualization

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

ECE 650
Systems Programming & Engineering

Spring 2018

2

• We’ve discussed a form of virtualization
– Provided by the OS to user level programs / processes

– Programs written as if they have full access to an entire machine

• Resources: memory, disk, I/O, CPU

• User processes typically do not need to care or know that these
resources are in fact shared (concurrently or time-sliced) with others

• We can extend this to the OS
– Support multiple OS instances (guest OSes) running on a CPU

– Can be multiple instances of same OS or different OSes

– Typically, guest OSes run on top of new software layer

• Called Hypervisor (or VMM, Virtual Machine Monitor)

• Sits between the guest OSes and CPU hardware in SW stack

– Very useful for workload consolidation

Overview of Virtualization

3

• “Xen and the Art of Virtualization”

• Xen is a hypervisor

• Has evolved into a widely used one to support virtualization
– For x86 and ARM

– IBM SoftLayer, Amazon EC2, Rackspace Cloud

• Now supported in many different forms
– We’ll discuss the fundamental principles described in the paper

Xen

4

• Need to partition machine to support concurrent execution of
multiple operating systems

1. Virtual machines must be isolated from each other
– For protection

– So that performance of one does not affect performance of another

2. Must support a variety of different OSes
– To enable workload consolidation

3. Performance overhead should be small
– User applications should not slow down (much)

VM Challenges

5

Xen Approach

• Two main approaches to virtualization
 Full Virtualization:

• A virtual SW interface to all machine HW is exposed by VMM

• Guest OS cannot access hardware directly

• Advantages: can support unmodified guest OSes

• Disadvantages: performance (all guest OS-HW interaction goes through
VMM)

 Paravirtualization:

• This is what Xen uses

• Exposes HW to the guest OSes where it is critical for performance

• Exposed virtual SW interface to machine HW otherwise

• Advantages: less slowdown for user applications

• Disadvantages: requires some OS modification (but not to apps)

 Supports same Application Binary Interface (ABI)

6

• Guest OS
– Refers to one of the OSes that can be hosted on the Xen VMM

• Domain
– A running instance of a VM within which a guest OS executes

• Think of as analogous to program vs. process
– Static vs. dynamic

Definitions

7

Paravirtualized x86 Interface

• 3 main aspects of the paravirtualized interface
 Memory management

• Paging

 CPU

• Protection, Exceptions, System Calls, Interrupts, Time

 Device I/O

• Network, Disk, etc.

• We’ve covered each of these 3
 From the perspective of OS management

 While all details mentioned in the paper may not be clear, the general
concepts should seem familiar

8

Memory Management Interface

• This is the difficult part of paravirtualization

• Centers around TLB & page table management

• Two types of TLB
 SW managed:

• TLB miss traps to privileged SW; loads new entry from page tables

• TLB entries tagged with address space IDs to avoid flushing the TLB when
moving from CPU execution of one OS to another

 HW managed (what x86 has):

• HW in the processor handles TLB misses by “page table walk”

• No address space IDs

 Requires TLB flush on every address space switch

9

Memory Management Interface (2)

• How does Xen do it?
 Guest OSes do allocation and management of HW page tables

• Xen is minimally involved to ensure OS safety and isolation

• Guest OS can only map to memory it owns (physical frames)

• When a new page table is required (e.g. a process is created):

 Guest OS allocates & initializes a page that it owns

 Registers this page with Xen (Xen validates the page table info)

 Write permission to this page are removed from the guest OS

 Xen is mapped into top 64MB of every address space

• No TLB flush required when entering / exiting the VMM

10

CPU

• 4 privilege levels are supported in x86
 Referred to as ring 0 - ring 3 (from highest to lowest priority)

 Normally, the OS runs in ring 0, user process in ring 3

 Xen downgrades OS privilege to ring 1; Xen runs in ring 0

• Privileged instructions executed by the OS now fault and trap into
the VMM (can only be executed within ring 0)

• Exceptions handled in straightforward way
 Guest OS registers a table of exception handlers with Xen

 When HW events occur requiring exception handling, Xen returns control to
appropriate exception handler

• Special care for performance-sensitive exceptions:
 System calls and page faults

 “Fast handler” installed which is directly accessed by CPU

• No need to pass through Ring 0 VMM first

11

Device I/O

• Xen exposes a set of simple device abstractions

• I/O data is transferred between a domain & Xen
 Via ring buffers

 In asynchronous manner

• Lightweight event mechanism used to notify domains
 E.g. of I/O completion or data availability

12

Porting Effort

13

Control & Management

• Separate policy vs. mechanism
 Xen VMM implements mechanism (mostly)

 Management control software handles policy

• Running on a Guest OS

• Domain 0 hosts app-level management SW

• Control Interface:
 Create & Terminate domains

 Partition physical resources

• Across domains

• CPU, physical memory, disk, ...

14

Xen / Guest OS Interaction

• Hypercalls: From a domain to Xen
 Synchronous trap calls for service from a domain to Xen

 Analagous to a system call from user process to OS

 E.g. request page table updates

• Events: From Xen to a domain
 Asynchronous notifications to a domain from Xen

 Replaces device interrupts to an OS

 Uses mechanism similar to UNIX signals (recall, like SW interrupts)

 Pending events stored in a per-domain bitmask

 Xen updates bit mask & invokes an event-callback handler specified by a
guest OS

 Guest OS handles events & resets bits

15

• Domains allocate shared buffers for device I/O

I/O Data Transfer

16

CPU Scheduling

• Schedules domains on the CPU
 According to some set policy to set allocation per domain

 Uses a scheduling algorithm called Borrowed Virtual Time

• Per-domain scheduling parameters can be adjusted by the
management software running in Domain0

17

Time and Timers

• Xen provides 3 views of time to domains
 Real time

• ns since machine boot time

 Virtual time

• A time that advances only while domain is executing

• Can be used by guest OS to ensure it gets correct timeshare

 Wall clock

• Offset added to current real time

19

Evaluation

20

Virtualization beyond Xen: x86 extensions

• Modern x86 CPUs have hardware support for virtualization

• Intel virtualization (VT-x)
 Adds instructions for dealing with virtualization

 Allows guest OS to think it’s ring 0 but still have key operations trapped to
real VMM (removes needs for paravirtualization)

 Most modern virtualization uses this instead of Xen-style paravirtualization
(but principles are much the same; the CPU just does most of that work now)

• I/O MMU virtualization (Intel VT-d)
 Allows guest VMs to directly access hardware peripherals

 Example: Allow a VM to use a video card GPU

