
CSC230

Getting Starting in C

Tyler Bletsch

What is C?

• The language of UNIX

• Procedural language (no classes)

• Low-level access to memory

• Easy to map to machine language

• Not much run-time stuff needed

• Surprisingly cross-platform

Why teach it now?

To transition from basic programming to Operating Systems (CSC246),

Software Engineering (CSC326), etc.

 2

The Origin of C

3

Hey, do you want to build a system

that will become the gold standard

of OS design for this century?

We can call it UNIX.

Okay, but only if we also invent a

language to write it in, and only if

that language becomes the default

for all systems programming

basically forever.

We’ll call it C!

Ken Thompson Dennis Ritchie

AT&T Bell Labs, 1969-1972

4

Cool, it worked!

Told ya.

What were they thinking?

• Main design considerations:

– Compiler size: needed to run on PDP-11 with 24KB of

memory (Algol60 was too big to fit)

– Code size: needed to implement the whole OS and

applications with little memory

– Performance

– Portability

• Little (if any consideration):

– Security, robustness, maintainability

– Legacy Code

Taken from CSC230: C and Software Tools © NC State University Computer Science Faculty

5

C vs. other languages

Most modern languages C

Develop applications Develop system code (and applications)
 (the two used to be the same thing)

Computer is an abstract logic engine Near-direct control of the hardware

Prevent unintended behavior,

reduce impact of simple mistakes

Never doubts the programmer,

subtle bugs can have crazy effects

Runs on magic! (e.g. garbage collection) Nothing happens without developer intent

May run via VM or interpreter Compiles to native machine code

Smart, integrated toolchain
 (press button, receive EXE)

Discrete, UNIX-style toolchain
 make → gcc (compilation) → gcc (linking)

 (even more discrete steps behind this)

6
$ make
gcc -o thing.o thing.c
gcc -o thing thing.o

Why C?

• It’s a “portable assembly language”

• Useful in…

– Systems development: OS & Embedded

– Optimized routines for use with other languages

– Need for speed, size, or predictability

• Notable pure C software:

– UNIX and Linux – kernel and most utilities

– NetApp Data ONTAP (most common storage OS)

– Python, Perl, PHP, Java*, Ruby*

– A bajillion applications:
• http://en.wikipedia.org/wiki/Category:Free_software_programmed_in_C

7

* With some C++ as well

http://en.wikipedia.org/wiki/Category:Free_software_programmed_in_C

Example C superpowers

Most languages

• Develop file format

• Build routine to serialize

data out to disk

• Build routine to read &

parse data in

• Benchmark if

performance is a

concern

C

• Read/write memory to

disk directly

8

Task: Export a list of coordinates in memory to disk

Disk

Example C superpowers

Language Size of executable Size of runtime
(ignoring libraries)

Total size RAM used

Java 410 B 13 MB
(java + libjvm)

13 MB 14 MB

Python 60 B
(source code)

2.9 MB 2.9 MB 5.4 MB

Desktop C 8376 B None 8376 B 352 kB

Embedded C
(Arduino)

838 B None 838 B ~16 B

9

Task: Blink an LED

Atmel ATTINY4 microcontroller :

Entire computer (CPU, RAM, & storage)!

1024 bytes storage, 32 bytes RAM.

led = 0
while (true):
 led = NOT led
 set_led(led)
 delay for 1 sec

Max: 1024 B Max: 32 B

What about C++?

• Originally called “C with Classes”

(because that’s all it is)

• All C programs are C++ programs,
as C++ is an extension to C

• Adds stuff you might recognize

from Java (only uglier):

– Classes (incl. abstract classes & virtual functions)

– Operator overloading

– Inheritance (incl. multiple inheritance)

– Exceptions
10

Bjarne Stroustrup developed

C++ in 1979 at Bell Labs

C and Java: A comparison

#include <stdio.h>

#include <stdlib.h>

int main(int argc, const char* argv[]) {

 int i;

 printf("Hello, world.\n");

 for (i=0; i<3; i++) {

 printf("%d\n", i);

 }

 return EXIT_SUCCESS;

}

class Thing {

 static public void main (String[] args) {

 int i;

 System.out.printf("Hello, world.\n");

 for (i=0; i<3; i++) {

 System.out.printf("%d\n", i);

 }

 }

}

11

$ javac Thing.java && java Thing
Hello, world.
0
1
2

$ gcc -o thing thing.c && ./thing
Hello, world.
0
1
2

C Java

Common Platform for This Course

• Different platforms have different conventions

for end of line, end of file, tabs, compiler

output, …

• Solution (for this class): compile and run all

programs consistently on one platform

• Our common platform:

12

Don’t you gimme no

“it worked on my box”

nonsense!

Your Choices

* direct if you install realm kit

** Yes if you run X windows server on your computer

13

Option Use GUI-

based

Editor?

Access to

your unity

Filespace?

Matches

grading

environment?

Use Unity Lab Computer Y Y Y

ssh to VCL (linux) N** Y Y

ssh to remote-linux.eos.ncsu.edu N** Y Y

Use Mac OS X (+developer tools) Y sftp* N

Use MS Windows + cygwin Y sftp* N

Use Linux on your PC

(dual boot or virtualized)

Y sftp* N

Hello world

#include <stdio.h>

#include <stdlib.h>

int main(int argc, const char* argv[]) {

 int i;

 printf("Hello, world.\n");

 return EXIT_SUCCESS;

}

14

$ gcc –Wall –std=c99 -o hello hello.c
$./hello
Hello, world.

C File with

library function

declarations

Entry point of the

program, with

command line

arguments

Standard library

function, with message

argument

Exit program and

indicate successful

completion

